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Abstract A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear
dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align
low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset.
The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally
searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional
coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the
existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample
extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of
experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed
method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.
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1 Introduction

Data coming from practical applications, such as
biological sciences and multimedia information process-
ing, are often of very high dimensionality, which gene-
rally causes unexpected difficulties to discover know-
ledge from them[1]. The encountered high-dimensional
data are, however, very often with intrinsic low-
dimensional structures. Consider, for instance, the
gray-scale images of an object taken under fixed light-
ing conditions with a moving camera. Such an image
would typically be represented by a brightness value
and two camera orientation measures (e.g., up-down
and left-right angles). Convenience and better results
can be led in further data analysis related to clustering,
visualization and searching if one can find and make
full use of the intrinsic low-dimensional structure of the
data. Therefore, to find the intrinsic low-dimensional
structure, or equivalently, to look for the intrinsic low-
dimensional representation of a dataset, has been the
focus of data analysis. This is known frequently as
the nonlinear dimensionality reduction (NLDR) tech-
niques.

In recent years, an NLDR technique, called “mani-
fold learning”, has been specifically highlighted. It
aims to generate the low-dimensional representation

of the high-dimensional data distributed on a smooth
manifold with intrinsic low dimension. The case em-
bodies many important applications in machine learn-
ing and pattern recognition[2], image processing[3], re-
mote sensing[4], biological data mining[5] and facial ex-
pression recognition[6]. So far a variety of manifold
learning methods have been developed, such as locally
linear embedding (LLE)[2], isometric feature mapping
(ISOMAP)[3], Laplacian eigenmap[7], and others[8-13].

However, there still remain some problems on the
current manifold learning research. There have several
commonly encountered difficulties in application of the
existing manifold learning methods, which include: (i)
computational efficiency issue[14]: a manifold learning
method always involves the solution of an eigenvalue
problem scalable to the number of input data points.
Hence when the data sizes are large, the computational
load of manifold learning tends to be extremely heavy;
(ii) applicability issue[15]: the effectiveness of the exist-
ing manifold learning methods cannot be guaranteed
when the input dataset lies on some complex mani-
folds, such as the ones with intrinsic loopy structures
or multiple clusters; (iii) out-of-sample issue[16]: the al-
gorithms of the traditional manifold learning deal with
the entire dataset simultaneously. Such a batch mode
conducts the difficulty of their out-of-sample extension
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when new data points become available. Besides, some
other issues, like metric preserving and local minima
averting problems[16], should also be under considera-
tion. To a large extent, these difficulties have baffled
the development and more substantial applications of
current manifold learning.

Two approaches have been mainly adopted to al-
leviate the aforementioned difficulties in the latest re-
search. The first one is the alignment approach[8,17-22].
Its idea is to perform global alignment on a mixture of
local NLDR models constructed on the overlapping ar-
eas lying on the entire data manifold. The latest strat-
egy of this approach is the locally multidimensional
scaling (LMDS)[14]. LMDS attains an effective align-
ment learning through aligning a collection of overlap-
ping local neighborhood patches by solving an eigen-
value problem scalable with the number of overlapping
patches after getting the low dimensional embeddings
of each patch with the classical MDS[23] method. This
kind of approach has the following advantages: (i) the
approach scales with the number of overlapping patches
rather than the number of individual data points, and
hence the computational cost can be evidently saved
with respect to the original algorithm; (ii) it generally
does not suffer from the problem of local optima con-
tributed by its batch computation; (iii) it needs only lo-
cal measures, such as inter-point distances within each
neighborhood, as input, and hence avoid the negative
influence of using the global measure estimation. How-
ever, just because the computations of the alignment
approaches are almost in whole batch, they have the
following disadvantages: (i) the out-of-sample exten-
sion of the approach is not direct; and (ii) the applica-
bility domain of the algorithms cannot be substantially
extended, such as for solving loopy situations.

The other one is the incremental approach[24-29]. Its
idea is to utilize a point-by-point mode to incrementally
compute the embedding coordinate of each data point
in the input set. The latest useful incremental tech-
nique, called Riemannian manifold learning (RML), is
suggested in [16]. The method incrementally learns the
embedding coordinate of the new coming point by pre-
serving the distances and angles between the point and
its neighboring points. Actually, the disadvantages of
the alignment approach are partially alleviated by the
incremental approach. This is because, on one hand,
the incremental approach is to iteratively compute the
embedding coordinate for each new coming data point,
and this naturally brings the convenience of the out-
of-sample extension; on the other hand, the incremen-
tal approach caters for the dataset with more com-
plicated structures, like the loopy manifold data[16].
Nevertheless, the incremental approach generally has
low computational efficiency because it generally needs

to take considerable computation in the large number
of iterations, generally scalable to the number of indi-
vidual data points in the entire dataset. Besides, the in-
cremental learning computes the embedding of only one
point at each iteration, and hence the low-dimensional
coordinate of the new coming point might be distorted
due to the shortage of the assistance of enough coop-
erative information. This deficiency tends to further
yield negative impact on the subsequent processing of
NLDR process. Such a case tends to happen in applica-
tions with some special manifold data, like the 5-cluster
dataset shown in Fig.7, to which the RML incremental
method cannot be effectively applied.

The aim of this paper is to propose a novel tech-
nique, combining both characteristics of the alignment
and the incremental approaches, so as to alleviate the
disadvantages of both methods simultaneously. There-
fore, we can set up a more general manifold learning
approach.

In what follows, the general idea and the implemen-
tation details of the IAM method are presented in Sec-
tion 2. The computational complexity of the method
is also introduced and evaluated in this section. To
verify the effectiveness of the passage method, results
obtained from a series of empirical studies performed
on synthetic and real-world datasets are analyzed and
interpreted in Section 3. The paper is then concluded
with a summary and outlook for future research in Sec-
tion 4.

2 Incremental Alignment Method

Given the dataset X = {xi}l
i=1 ⊂ Rn residing on the

manifold with intrinsic dimensionality d, the proposed
method aims at calculating its intrinsic low-dimensional
representation set Y = {yi}l

i=1 ⊂ Rd (d < n). The
method is called incremental alignment method because
it learns data patch by patch incrementally and aligns
them together to approach the final global result. Be-
fore presenting the algorithm of the proposed method,
it is necessary to firstly introduce the process of the
alignment and incremental processes involved in the
proposed IAM algorithm as follows.

2.1 To Implement Patch-by-Patch Alignment

One of the basic assumptions of manifold learning is
that a point together with its neighboring samples con-
sists of a neighborhood patch with approximate linear
figure and residing on the underlying manifold. Under
such an assumption, the low-dimensional representa-
tion of each local neighborhood patch can be effectively
calculated by virtue of some classical linear dimension-
ality reduction skills, such as the multi-dimensional
scaling (MDS)[23] and the principle component analysis
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(PCA)[30-31]. It has been theoretically and empirically
verified that these classical techniques are of excellent
performance in such linear cases. According to this as-
sumption, it is easy to realize the alignment of the low-
dimensional representations of two overlapping neigh-
borhood patches through the following three steps.

Denote the overlapping neighborhood patches as
X1 = {x1

i }k1
i=1 and X2 = {x2

i }k2
i=1 respectively, where

k1 and k2 are the sizes of X1 and X2 respectively,
and denote their intersection set as X̃ = X1

⋂
X2 =

{x̃i}k̃
i=1, where k̃ is the size of X̃. Firstly, the d-

dimensional embedding set of X1 and X2, denoted as
Y 1 = {y1

i }k1
i=1 and Y 2 = {y2

i }k2
i=1 correspondingly, are

obtained by applying MDS or PCA. The corresponding
embedding subsets of X̃ in Y 1 and Y 2 are denoted as
Ỹ 1 = {ỹ1

i }k̃
i=1 and Ỹ 2 = {ỹ2

i }k̃
i=1 respectively. The

aim of the second step is to linearly transform Ỹ 1 and
Ỹ 2 so as to let the transformed sets matched as well as
possible, i.e., we want to find the linear transformation
parameters W ∗ and b∗ so that

Φ(W , b) =
k̃∑

i=1

‖ỹ1
i − (Wỹ2

i + b)‖2 (1)

can be minimized, where W ∈ Rd×d and b ∈ Rd. This
quadratic optimization problem can be easily solved.
We adopt the quasi-Newton method here due to its
stable performance, well generalization capability, and
efficiency. Denote the optimal value of Φ(W , b) as

E∗ = Φ(W ∗, b∗). (2)

In the third step, utilizing W ∗ and b∗ obtained, the
alignment of Y 1 and Y 2 can be easily achieved by unit-
ing the following three sets:

{y1
i |y1

i ∈ Y 1, y1
i /∈ Ỹ 1}∪

{W ∗y2
i + b∗|y2

i ∈ Y 2, y2
i /∈ Ỹ 2}∪

{ ỹ1
i + (W ∗ỹ2

i + b∗)
2

|1 6 i 6 k̃
}

. (3)

Fig.1 vividly illustrates how the above steps is pro-
cessed. Note that the first and second sets in (3) corre-
sponds to the points of Y 1/Ỹ 1 and Y 2/Ỹ 2 after align-
ment (depicted as squares and circles), and the third
set represents the transformed points of the overlap-
ping sets between Y 1 and Y 2 in the alignment process,
and each point is actually the mean of the transformed
ones corresponding to Ỹ 1 and Ỹ 2 respectively (demon-
strated as the “∗” points).

2.2 To Incrementally Search Patches

The figure of the manifold underlying the input data
can be approximated by the overlapping local neigh-
borhood patches superimposed on the dataset. For
the given dataset X, we aim at incrementally gene-
rating a patch sequence C1, C2, . . . , Cm which satisfies
∪m

i=1Ci = X and Ci ∩ (∪j<iCj) 6= ∅, ∀ 2 6 i 6 m.

Fig.1. Graphical presentation of the alignment process of IAM. (a) Two neighborhood patches in Swiss roll dataset, denoted as squares

and circles respectively, and points of each patch are enclosed together. (b) The first step of the alignment process. The squares and

“+” points as well as the circles and “×” points denote the embeddings of two patches respectively. Specifically, “+” and “×” points

denote the overlapping points of two patches respectively. (c) The second step of the alignment process. The transformed embedding

points of two patches are denoted similar with denotations depicted in (b). (d) The third step of the alignment process. The aligned

embeddings of both patches are depicted together.
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Here we present an efficient greedy algorithm to real-
ize this purpose, to make the proposed patch-by-patch
alignment method be effectively implemented. The core
idea of the algorithm is to incrementally yield a se-
quence of points from the original dataset, and then to
construct the neighborhood patch sequence around the
points in the sequence under appropriate neighborhood
sizes which are adaptively selected to avoid well-known
short-circuit issue. Evidently, three problems are in-
volved in such an algorithm: 1) how to initiate the start
point of the sequence; 2) how to adaptively specify the
neighborhood size around a point in the sequence; and
3) how to incrementally generate the next point of the
sequence.

About issue 1), the start point of the sequence is pre-
ferred to be randomly chosen from the original dataset.
The experiments have illustrated that the selection of
the start point will have unsubstantial effect on the fi-
nal alignment result. Generally speaking, if the point
is selected in the center of the dataset, as utilized in
[32-33], the proposed method can be of a bit better per-
formance. Yet this needs more computational expense.
Hence simple random selection is still suggested.

The above issue 2) actually is the well-known
neighborhood-size specification problem in manifold
learning area. Specifically, if the size is chosen to be
too large, the so-called “short-circuit” problem will oc-
cur, i.e., some neighborhood patches will deviate from
the underlying manifold and hence will not have linear
figures at all[32-33]. On the contrary, if the size is chosen
too small, the discontinuity of the neighborhood graph
arises. Therefore, we give the following algorithm in
solving this issue.

Algorithm 1. Neighborhood Size Selection

Step I (K-NN Generation):

1: Search K nearest neighbors of x:

K-NN(x) = {xi}K
i=1;

2: Calculate the diameter of K-NN(x):

dmax = maxxp, xq∈K-NN (x) D(xp, xq);

Step II (Jumping Distance Detection):

3: Initiate set CurrentSet = {x},
RemainSet = K-NN (x)/{x};

4: j = 1;

5: while RemainSet 6= ∅ do

6: xj = arg min
xi∈RemainSet

D(x, xi);

7: k = j;

8: if d(xj ,CurrentSet) < ηdmax then

9: CurrentSet = CurrentSet ∪ {xj};
10: RemainSet = RemainSet/{xj};
11: j = j + 1;

12: else then

13: k = k − 1;

14: terminate while;

15: end if

16: end while

The neighborhood size k of x can then be output
and utilized.

In the algorithm, D(xp,xq) is the distance between
the points xp and xq and d(x,CurrentSet) means the
minimal distance between x and the points in set Cur-
rentSet. K is the suitably large neighborhood size for
helping avoiding the discontinuity problem. And the
jumping distance here is finding a j-th nearest neighbor
xj which is not near to any of x’s (j − 1) nearest neigh-
bors compared with the diameter of the neighborhood
patch. It causes a “jump” on the distance sequence
d(x,CurrentSet). Hence, by collecting x’s (j − 1)-NN,
the short-circuit can be easily avoided.

Both of the parameters K and η should be deter-
mined by the distribution of the dataset. The number
of iteration in IAM we will introduce later is equal to
the number of patches and the larger the K is, the
less the patches are. So the choice of K should be large
enough to make IAM faster but without worrying about
the shortcut problem because of the jumping distance
detection step. However, K cannot be chosen too large
in order to keep the linearity of the patch because the
alignment algorithm is under the assumption of local
linearity. For η, experimentally, 1

4 to 1
3 will be suitable

for most situations.
For issue 3), the following algorithm is specifically

designed. The interpretation of the procedure of the
algorithm will be given after presenting the algorithm
as follows.

Algorithm 2. Incrementally Searching Patches

Step I:

1: Initiate start point x ∈ X, Cdetected = {x,

k-NN (x)}, Cundetected = X/{x, k-NN (x)},
S1 = Cdetected/{x}, S2 = ∅;

Step II:

2: while Cundetected 6= ∅ do

Step II.1:

3: Denote z as the first element in sequence S1,

S1 = S1/{z};
4: Search visible neighbors① of z: VN (z);

5: if VN (z) ⊂ Cdetected then

6: Goto next iteration;

7: else then

8: Specify neighborhood size k of z by utilizing

Algorithm 1 and goto Step II.2;

9: end if
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Step II.2:

10: CkNN = k-NN (z) ∩ Cundetected;

11: S1 = S1 ∪ CkNN , S2 = S2 ∪ {(z, k)};
12: Cdetected = Cdetected ∪ Ck-NN ,

Cundetected = Cundetected/Ck-NN ;

13: end while

Step III:

14: Output S2 = {xi, ki}s
i=1 as detected sequence.

Note that the denotation C1/C2 means deleting any
element of C2 from C1 if it is contained in C1.

In the above procedure, S1 is the candidate set which
records all the data might be at the “border” of de-
tected data, and S2 is the current detected point se-
quence, along with the correspondingly selected neigh-
borhood sizes. Cdetected records the dataset constructed
by the overlapping of the neighborhood patches around
the current point sequence S2, and Cundetected records
the undetected points in the current shape, i.e., the
complement of Cdetected in X.

In Step II.1, from the current candidate set S1, we
incline to select the points near to the border of cur-
rent detected set Cdetected so as to accelerate the speed
of the incremental alignment iteration. To this end, it
only needs to detect whether the visible neighbors of a
point in S1 is completely belong to Cdetected. If yes, it
can be reasonably considered that the point is in the in-
ner part of the detected patch set; otherwise, the point
can be adopted as the next point in the sequence. And
then in Step II.2, update all the sets including S1, S2,
Cdetected and Cundetected for further searching.

It should be emphasized that the proposed algorithm
always puts the nearest neighbors of the newly-detected

point at the end of the candidate sequence S1. This
means that only after the procedure detects all of the
neighboring points around a previously detected point,
those of the subsequent candidates can then be con-
sidered. This property guarantees the collection of the
neighborhood patches around the detected points in se-
quence S2 incrementally expands in different directions,
while averting the abnormality that it only stretches to
some specific orientation. This can be directly observed
from Fig.2, which shows the process of the proposed al-
gorithm when being applied to the cylinder dataset as
shown in Fig.6.

2.3 To Deal with Loopy Cases

However, combining the alignment and incremental
idea mentioned above cannot solve some special situ-
ations, such as the cylinder like manifold data (as de-
picted in Fig.6). Here, we discuss how to make the
algorithm more adaptive.

The NLDR of data lying on the manifold with in-
trinsic loopy structures is generally dealt with by cut-
ting the data manifold along one generatrix line, and
then unrolling the manifold data to construct the cor-
responding low-dimensional data embeddings[16,34]. In
our case, the encountered problem by loopy cases is
depicted in Fig.3. For a newly aligned neighborhood
patch KNN i in Step II of Algorithm 3, if the overlap-
ping part between KNN i and the set CurrentX is just
located on the generatrix line, it is evident that we can-
not implement effective alignment between KNN i and
CurrentX by applying the method presented in Sub-
section 2.1. Therefore, such a kind of neighborhood
patches should be tackled in a specific way.

Fig.2. The incrementally selected neighborhood patches by applying the proposed incremental technique at (a) 6th, (b) 20th, (c) 50th,

(d) 80th and (e) 120th iterations respectively. The lower sub-figures correspondingly show the low-dimensional embeddings of the

neighborhood patches calculated by Algorithm 3.

①A point a is said to be a visible neighbor of x, if there is no other point z that stays in the area between a and x to separate
them. Equivalently, it requires that the angle formed by zx and za should be acute or right, but not obtuse, i.e., {a ∈ k-NN (x)|〈x−z,
a− z〉 > 0, ∀z ∈ k-NN (x)}. This property guarantees detection for least neighborhoods which can provide enough boundary informa-
tion in incremental patch searching. The details can be referred to in [16].
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Fig.3. Graphical presentation of the loopy issue encountered by

Algorithm 3. (a) The circles are figured as a local patch lying on

the generatrix line of the loopy manifold. (b) Low-dimensional

embeddings of the data points depicted in (a).

Here we introduce an extra alignment criteria for
detecting and solving loopy cases. Firstly initiate a
threshold ε > 0, and then for each involved neighbor-
hood patch (i.e., KNN i around xi), detect whether the
alignment error E∗ between KNN i and CurrentX (cor-
responding to the value calculated in (2)) is less than
the preset threshold ε. If yes, the iteration is continued;
otherwise, it means it has detected a loopy structure,
because the large alignment error is caused by the over-
lapping of the new coming patch with two sides of the
generatrix line while the calculated low-dimensional co-
ordinates of these two sides are not connective but lo-
cated in the two ends of the unfolded manifold. Then
we need to make the new coming patch just overlap-
ping with one side of the generatrix line for alignment
as following: from the patch sequence KNN j , 1 6 j < i,
select intersectant one with KNN i and where the small-
est alignment error between KNN i and KNN j can be
attained. Then by taking the selected KNN j as the
alignment base, the embedding set of KNN i can then
be reasonably calculated, and the loopy abnormity can
be simultaneously alleviated. To reduce the number of
parameters in the proposed algorithm, we choose ε au-
tomatically as follows: since the loopy issue tends not
to occur in the beginning of the alignment iterations,
we can estimate a suitable ε by setting it as the maxi-
mal alignment error in the first several iterations (say,
10) without regarding loopy structure.

After adding this part to the algorithm, the effi-
ciency will be the most important issue we care about.

However, for non-loopy cases, this step can be directly
skipped, and the computation of the algorithm will not
be affected at all. Furthermore, even for dataset with
intrinsic loopy structures, the increase of the compu-
tational complexity for this part will be unsubstantial,
which will be further evaluated in the next subsection.

To sum up, we give the whole IAM as follows:

Algorithm 3. Incremental Alignment Method

Step I (Incremental Step):

1: Incrementally generate sequence

S2 = {(xi, ki)}s
i=1 by utilizing Algorithm 2;

2: CurrentX = ∅, CurrentY = ∅;

Step II (Alignment Step):

Step II.1:

3: Generate neighborhood set kNN 1 by (x1, k1);

4: Calculate low-dimensional embeddings

Y 1 = {yj}k1
j=1 of kNN 1;

5: CurrentX = kNN 1, CurrentY = Y 1;

6: for i = 2, 3, . . . , s

Step II.2:

7: Generate kNN i by (xi, ki);

8: Calculate Y i aligned to CurrentY by utilizing the

alignment method presented in Subsection 2.1;

9: Calculate alignment error E∗ by (2);

10: if E∗ < ε then

11: Update CurrentY with Y i by (3), CurrentX =

CurrentX ∪ kNN i;

12: Goto next iteration;

13: else then

14: Goto Step II.3;

15: end if

Step II.3 (Loopy Structure Adaptation):

16: for j from 1 to i− 1, calculate alignment embe-

ddings Y
(j)
i and alignment error E(Y

(j)
i ) aligned

with low-dimensional embeddings in CurrentY

of kNN j respectively (skip unoverlapping patches

with kNN i);

17: Y ∗
i = arg min

Y (j)
i ,16j<i

E(Y
(j)
i );

18: Update CurrentY with Y ∗
i by (3), CurrentX =

CurrentX ∪ kNN i;

19: end for

Step III:

20: Output Y = CurrentY as the final embedding result

of X.

2.4 Computational Complexity of IAM

Undoubtedly, the computational speed of IAM is one
of the most crucial issues in its applications. To clarify
this point, the computational efficiency of IAM is exa-
mined in this subsection.

Let us consider the algorithm without loopy cases
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first. For Step I of Algorithm 3 (i.e., Algorithm 2),
the nearest neighbor searching (Step II.1 of Algo-
rithm 2) for each iteration substantially determines
the computational complexity of this process. Since
the number of iterations is equal to the size l of
the input dataset X, this step takes no more than
O(nl log l) computational cost by utilizing the K-D
trees or ball trees method[35-36]. For each iteration
of Step II.2 in Algorithm 3, searching ki-NN of xi

takes O(nl log l) time, and solving quasi-Newton op-
timization introduced in Subsection 2.1 costs no more
than O(Kd2) time by utilizing the well-known BFGS
method[37]. Therefore, altogether Step II.2 without con-
sidering loopy cases of Algorithm 3 costs no more
than O(s(nl log l + Kd2)) computational expense. As
s = l/K, the entire computational cost of IAM without
loopy structure adaptation is at most O(nl2 log l/K +
ld2 + nl log l). Compared with the computational com-
plexity of most of the current manifold learning
method, such as O(Knl2 log l + l3) of ISOMAP[38],
O(nl2 + nlK3) of LLE[35], O(nl log l + lK2 + l2 log l) of
RML[16], and O(nl log l + Kl + l3/K3) of LMDS[14]②,
despite the computational complexity of IAM has no
more orders of l than others, it has the advantage that
it is inverse proportional to K. And as l increases, for
most of instances, it means the dataset becomes more
dense, then K can be even larger. Therefore, the real
computational complexity of IAM is between O(nl log l)
and O(nl2 log l). That is, the computational speed of

IAM excels most of the current manifold learning meth-
ods.

For the amended IAM algorithm of considering the
loopy cases, the supplemental Step II.3 generally has
an immaterial effect on the computational speed of the
whole algorithm. Actually, the patches lying on the
generatrix line only consist of a minor part of the whole
patches involved in the alignment process. That is to
say, the time m implementing Step II.3 of Algorithm
3 is generally far less than the entire iteration time s
of the alignment step. Since for each neighborhood
patch kNN j involved in Step II.3, the quasi-Newton
optimization is implemented at most s times on the
alignment of kNN i and kNN j , 1 6 j < i, the increased
computational complexity of the amended IAM algo-
rithm is thus no more than O(msKd2), whose order is
generally lower than O(lKd2), and further lower than
O(lKnd). Therefore, the amended algorithm does not
substantially impact the computational complexity of
the whole algorithm. This will be further experimen-
tally evaluated by a series of synthetic and real-world
datasets in the next section.

3 Experimental Results

To evaluate the performance of the proposed me-
thod, multiple synthetic and real benchmark datasets
were utilized as the test basis. Four synthetic datasets,
including the Swiss roll, Swiss hole, cylinder, 5-cluster
data (as depicted in the upper left figures of Figs. 4∼7

Fig.4. 2-D data embeddings of the Swiss roll dataset, calculated by IAM, ISOMAP, LLE, RML, and LMDS respectively.

②Actually, the computational complexity of LMDS is around O(nl log(l) + Kl + m3), where m is the number of the overlapping
patches and no more than l/K. We substitute the latter for the former in the above evaluation to make it easier to be compared with
other complexities.
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Fig.5. 2-D data embeddings of the Swiss hole dataset, calculated by IAM, ISOMAP, LLE, RML, and LMDS respectively.

Fig.6. 2-D data embeddings of the cylinder dataset, calculated by IAM, ISOMAP, LLE, RML, and LMDS respectively.

respectively), are firstly employed for evaluation. And
2 real datasets, including ISOMAP face data and LLE
face data, are analyzed for further substantiation. Fur-
thermore, the experiment on the influence of data size
on the efficiency and out-of-sample extension are shown
later. All programs were implemented on the Matlab
7.0 platform. The implementation environment was
the personal computer with AMD 2.6 GHz CPU, 4 GB

memory and Windows XP operating system.

3.1 Experiments on Synthetic Data Sets

The proposed method is firstly tested on four syn-
thetic datasets. For comparison of learning effects and
time consumptions, four of the existing methods, inclu-
ding ISOMAP, LLE, RML, and LMDS methods, have
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Fig.7. 2-D data embeddings of the 5-cluster dataset, calculated by IAM, ISOMAP, LLE, RML, and LMDS respectively.

also been utilized. The corresponding 2-D embedding
results are depicted and corresponding time consump-
tions are shown in Figs. 4∼7 respectively. In the exper-
iments, we will notice the disadvantage of incremen-
tal approach (represented by RML), such as time con-
suming and local minima problem, and disadvantage
of alignment approach (represented by LMDS), such as
weak extensibility for loopy datasets. The analysis for
these results are listed detailedly as follows.

Swiss Roll Data. The dataset consists of 2000 points,
randomly generated from the classical Swiss roll man-
ifold, as depicted in Fig.4. From this figure, it is easy
to observe that all of the five methods obtain satisfac-
tory low-dimensional embeddings of the original data,
except that the embedding figure obtained by LLE is a
little distorted in the global scale.

Swiss Hole Data. The dataset resides on a Swiss-
roll-like manifold distribution. Yet different from the
classical Swiss roll manifold, a piece of sub-manifold is
absent at the inner part of the manifold, wrapped from
a 2-D rectangle area, as shown in Fig.5. 2150 samples
were generated from such a Swiss hole manifold, and
their embeddings calculated by the proposed method
and four current methods are demonstrated in Fig.5.
Evidently, IAM, RML, and LMDS perform perfectly by
preserving the geometry around the hole. Yet ISOMAP
and LLE yield distorted shapes around the hole.

Cylinder Data. The 2000 points of this dataset
are sampled from a manifold distribution with cylinder
shape, which is of intrinsic loopy structures obviously.

By observing the experimental results depicted in Fig.6,
it is evident that IAM as well as RML cuts the cylinder
dataset along one generatrix line and unroll it to form a
long stripe. However, other three methods (ISOMAP,
LLE, and LMDS) produce incorrect mixed point clouds.

Multi-Cluster Data. The dataset with size 2080
is uniformly generated from the S-curve manifold
composed by five clusters of globally connected sub-
manifolds, wrapped by a 2-D rectangle, a diamond, a
sphere, a square and a triangle respectively, as depicted
in Fig.7. The figure also shows the 2-D embedding re-
sults obtained by the proposed method and other four
current methods. Obviously IAM and LMDS can yield
satisfactory results, in which the shapes of the five clus-
ters are preserved and the global connection is main-
tained. ISOMAP and LLE can maintain the global con-
nection, but the shapes of the clusters are degenerated.
Note that RML also perfectly recovers the shapes of the
original five clusters. However, the connections between
embedding clusters are highly distorted such that the
inter-cluster structures are seriously destroyed and the
cluster information cannot be correctly reflected, which
is actually caused by local minima problem.

To further support the computational complexity
evaluation of IAM presented in Subsection 2.4, the
computational times of all experiments were recorded
and are depicted below the corresponding sub-figures of
Figs.4∼7 respectively. Based on these records, it can be
concluded that averagely the time consumption of IAM
is about 1

60 , 3
4 , 1

20 , 1
3 of that of ISOMAP, LLE, RML,
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and LMDS respectively. Together with the theoretical
result obtained in Section 2, the efficiency of the pro-
posed IAM is apparent.

3.2 Experiments on Real Datasets

To evaluate IAM on real-world dataset, ISOMAP
face data and LLE face data were employed for testify-
ing the performance of the proposed method. The ob-
jective is to embed each original high-dimensional data
into a 3-D or 2-D space, in which the underlying data
distributions can be easily visualized. The results are
listed in detail as follows.

ISOMAP Face Data. The dataset contains 698 ima-
ges, which are all 64×64-pixel (4096-dimensional) gray
scale pictures. Fig.8 shows its 3-D representation cal-
culated by the proposed IAM algorithm. It can be ob-
served that in the embedding space, data points are
uniformly distributed and well organized. Particularly,
by observing the representative images shown next to
the circled points in different parts of the space, it is
easy to see that each coordinate axis of the embedding
highly accords with one degree of representational free-
dom underlying the original data: x and y axes repre-
sent the degrees of left-right poses and up-down poses
of the objective images respectively, and z axis reflects
the angles of the light illuminating on the images.

Fig.8. 3-D data embeddings of ISOMAP face data calculated by

IAM.

LLE Face Data. The dataset consists of 1965 pho-
tographs, picturing the face of the similar person with
various expressions. Each element of the set is scaled
as a 20 × 28-pixel (560-dimensional) gray-scale im-
age. The 2-D embedding points of the data obtained
by applying the proposed IAM algorithm are depicted
in Fig.9, along with some representative face images
superimposed on the corresponding data points. From

the figure, it can be observed that the similarity of the
faces among the local regions is well preserved, and fur-
thermore, the global cluster structure of similar facial
expressions (such as smile, wink) is also nicely revealed.

Fig.9. 2-D data embeddings of LLE face data calculated by IAM.

3.3 Experiments on Data Size Influence

As analysis in Subsection 2.4, the computational
complexity of IAM is much less than most of exist-
ing manifold learning methods, which has been proved
by previous experiments. Furthermore, the computa-
tional complexity of IAM should be influenced much
less by the increase of data size. Here we show the
relationship between time consumption and data size
with 29 different data sizes for Swiss roll and cylin-
der datasets. In Fig.10 and Fig.11, we can tell the

Fig.10. Relationship between time consumption and data size

with 29 different data sizes for Swiss roll dataset.
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Fig.11. Relationship between time consumption and data size

with 29 different data sizes for cylinder dataset.

computational complexity of IAM influenced by data
size is very close to O(l log l), which is almost linear
when data size l in such order of magnitude or higher.
Additionally, although cylinder is a dataset with loopy
structure, we see no significant extra time consumption
in Fig.11 compared with the Swiss roll dataset in Fig.10.
So it is convinced that the loopy structure adaptation
step has very little influence on the efficiency of the
algorithm.

3.4 Out-of-Sample Extension

One of the most valuable benefits of incremental
method is out-of-sample extension. Particularly, for a
newly input high-dimensional sample, firstly to search
its k-NN under neighborhood size k specified by Algo-
rithm 2, and to implement Step II of the IAM algo-
rithm once on the neighborhood patch searched. Then
the low-dimensional coordinate of the new sample in
the representational space can be naturally generated.
Fig.12 shows the experiment on out-of-sample exten-
sion. After we have the 2-dimensional embeddings of a
Swiss roll dataset with data size of 1000, we can embed
new coming samples into the original result by applying
the method we mentioned above. Two groups of fifty
extra new data are perfectly embedded into the original
low-dimensional embeddings successively.

From this experiment, we can also see how incre-
mental method works in IAM. It can update the global
low-dimensional embeddings incrementally when new
data involved. But different from incremental methods
like [25, 29], which will update low-dimensional embed-
dings of whole dataset when new data involves, IAM is
more like RML[16]. It only updates the embeddings lo-
cally near the new coming samples. Honestly, methods
like [25, 29] will get more accurate global results as the
data size gets larger and larger. However, IAM only

Fig.12. Out-of-sample extension of a Swiss roll dataset with original data size of 1000. The circles are figured as new coming samples.

(a) 2-dimensional embeddings of Swiss roll dataset. (b) Fifty new coming samples are embedded into the low-dimensional result.

(c) Further fifty new samples are embedded into the result.
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refines limited results in the whole dataset but saves
much more time in operation and the results can be
also satisfactory because of its well local shape preserv-
ing property.

In summary, the proposed IAM algorithm outper-
forms the existing methods in the visualization task
and computational speed on four synthetic datasets,
and also achieves satisfactory embedding results on two
real datasets. Furthermore, it has been proved that the
size of dataset influences the efficiency of the algorithm
very little because of its alignment property and as an
incremental method, the out-of-sample extension can
be easily approached.

4 Conclusion

In this paper, we have proposed a new mani-
fold learning method, called the incremental alignment
method (IAM). The most distinguished characteristic is
the utilization of the patch-by-patch incremental imple-
mentation techniques. In specific, two steps have been
involved in the proposed method: the incremental step
and the alignment step. The former step incrementally
searches and generates the neighborhood patch to be
aligned in the latter step, and the latter one calculates
the low-dimensional coordinates of the patch so gene-
rated and aligns them into the representational space.
The proposed formulation has the following prominent
advantages:

1) It has been theoretically and experimentally eva-
luated that the computational complexity of the pro-
posed method is influenced much less by the increase
of data size. This property makes IAM excels most of
the current manifold learning methods in efficiency and
can lead to large scale data applications in the future.

2) It has been empirically testified that the proposed
method expands the applicability of the current mani-
fold learning methods, such as the data lying on loopy
manifold or multi-cluster manifold.

3) The incremental-learning property of the pro-
posed method has implied its easy out-of-sample exten-
sion. The low-dimensional coordinate of newly input
high-dimensional sample in the representational space
can be easily generated just by operating one more ite-
ration of the algorithm. The high simpleness and effi-
ciency make IAM much more extensible.

4) The classical linear dimensionality technique
(MDS or PCA) utilized in the alignment step of the pro-
posed method has guaranteed the isometric property for
each neighborhood patch. And consequently the global
metric information of the entire data has also been well
preserved on the low-dimensional representations cal-
culated by the IAM method. The local minima issue
has been well alleviated. This property promises their

comparatively faithful performance on further pattern
recognition applications.

The effectiveness of the proposed method will be
further evaluated by more practical large-scale appli-
cations in our future investigation. Besides, the effec-
tiveness of the IAM method needs to be further inves-
tigated when noise or outliers exist in the input data.
Effort should be devoted to the analysis of these aspects
in future research to further enhance the performance
of the proposed method.
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