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Abstract An object on the Semantic Web is likely to be denoted with several URIs by different parties. Object core-
ferencing is a process to identify “equivalent” URIs of objects for achieving a better Data Web. In this paper, we propose
a bootstrapping approach for object coreferencing on the Semantic Web. For an object URI, we firstly establish a kernel
that consists of semantically equivalent URIs from the same-as, (inverse) functional properties and (max-)cardinalities, and
then extend the kernel with respect to the textual descriptions (e.g., labels and local names) of URIs. We also propose a
trustworthiness-based method to rank the coreferent URIs in the kernel as well as a similarity-based method for ranking the
URIs in the extension of the kernel. We implement the proposed approach, called ObjectCoref, on a large-scale dataset that
contains 76 million URIs collected by the Falcons search engine until 2008. The evaluation on precision, relative recall and
response time demonstrates the feasibility of our approach. Additionally, we apply the proposed approach to investigate the
popularity of the URI alias phenomenon on the current Semantic Web.
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1 Introduction

The Semantic Web (SW) is an ongoing effort by
the W3C Semantic Web Activity, with the purposes
of realizing data integration and sharing among diffe-
rent applications and organizations. To date, a number
of prominent ontologies have been developed for pub-
lishing data in specific domains, such as the Friend of a
Friend (FOAF), which recommend some common iden-
tifiers for classes and properties in the form of URIs
that are widely used across data sources.

At the instance level, however, there is a lack of
agreement between sources on the use of common URIs
to identify a specific object [1]. In fact, due to the de-
centralized and dynamic nature of the Semantic Web,
it frequently happens that different URIs from various
sources, more likely originating from different RDF do-
cuments, denote the same real-world object, i.e., re-
fer to an identical thing (also known as URI aliases[2]).
Such examples exist in the domains of personal profiles,
academic publications, media or geographical resources,
etc.

Object coreferencing, also called object consolidation
or identification[3], is a process for identifying multiple
URIs of the same real-world object, that is, determin-
ing URI aliases (called coreferent URIs in this paper)
that denote a unique object[4]. Object coreferencing is
important for many data-centric applications, such as
heterogeneous data integration or mining systems, Se-
mantic Web search engines and browsers.

At present, object coreferencing has attracted sig-
nificant attentions from the Semantic Web community,
particularly driven by the Linking Open Data (LOD)
movement[5]. At an early stage, many researchers fo-
cused on exploiting coreferent URIs between local and
pairwise data sources[6-8]. With the development of
Semantic Web search engines such as Sindice[9] and
Falcons[10], a number of online systems have been im-
plemented for performing large-scale, distributed and
uncertain object coreferencing[1,4,11-12]. Additionally,
identifying duplicate entities, which is also under the
names of duplicate detection, record linkage, corefe-
rence resolution and many others, has been extensively
studied in the database and natural language processing
(NLP) areas[3,13-15].
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In this paper, we propose a novel approach for
bootstrapping object coreferencing on the Seman-
tic Web. The overview architecture of the pro-
posed approach is illustrated in Fig.1. By accept-
ing an object URI as input, the approach in Phase
1.1 iteratively establishes a kernel that is mandated
by the standard OWL semantics[16] of owl:sameAs,
owl:InverseFunctionalProperty (owl:IFP for ab-
breviation), owl:FunctionalProperty (from now on,
owl:FP), owl:maxCardinality and owl:cardinality.
These five built-in vocabulary elements in OWL are
considerable in number and frequently used to infer the
equivalence relation in many systems[17], and combin-
ing them together can establish a larger kernel.

Then, in Phase 1.2, the approach extends the ker-
nel based upon the textual descriptions of URIs. More
specifically, the approach finds the objects that have
exactly the same label(s) or local name (a string after
the last hash “#” or slash “/” of a URI) as the ones
in the kernel, after normalizing their strings in terms of
punctuation, cases, stopwords, etc.

Fig.1. Overview of our approach.

In Phase 2, our approach ranks the coreferent URIs
based on their coreference confidences. We propose a
trustworthiness-based method for ranking the corefe-
rent URIs in the kernel. The dereferenced documents
of URIs[2] are retrieved to classify each same-as, IFP,
FP or cardinality relation into three different levels of
trustworthiness. The trustworthiness between the in-
put URI and each URI in the kernel is the least trust-
worthy edge (i.e., same-as, IFP, FP or cardinality rela-
tion) in their most trustworthy path.

We also design a similarity-based method to rank
the URIs in the extension of the kernel. The similarities
are obtained by matching the contexts of URIs[18] (via
RDF sentences[19]) with a linguistic matcher. Also, the
popularity for each URI, i.e., the number of Semantic
Web documents and RDF triples referring to the URI,
is taken into account. The evidences for object corefe-
rencing, including the formed equivalence relations and
the matched textual descriptions of URIs, are displayed
as snippets for browsing, which can help users under-
stand the relevances between the coreferent URIs.

We implement an online prototype system named

ObjectCoref (http://ws.nju.edu.cn/objectcoref/), and
run it over a large-scale dataset that is collected by
the Falcons search engine[10] up to September 2008.
The dataset contains more than 76 million URIs and
about 600 million RDF triples. The evaluation on pre-
cision, relative recall and response time demonstrates
that, comparing with three other coreferencing systems,
our proposed approach achieves a higher relative recall,
but at the cost of lower precision (so ranking corefe-
rent URIs is needed). Furthermore, we randomly pick
up 100 000 URIs from the dataset and give preliminary
results which indicate the prevalence of URI aliases on
the current Semantic Web.

The rest of this paper is structured as follows. Re-
lated work is discussed in Section 2. Section 3 in-
troduces a bootstrapping approach to find coreferent
URIs. Section 4 describes a trustworthiness-based as
well as a similarity-based methods to rank coreferent
URIs. The experimental results on a large-scale dataset
are reported in Section 5. Section 6 analyzes the URI
alias phenomenon. Finally, Section 7 concludes this pa-
per and gives future work.

2 Related Work

Object coreferencing is a very important mechanism
for establishing semantic interoperability and realizing
effective data integration. Early studies focused on per-
forming local, pairwise and domain-specific coreferen-
cing. For example, the work in [6] disambiguated ge-
ographical resources, the work in [7] interlinked music
data and the work in [8, 20] integrated movie descrip-
tions. Compared with them, our approach is domain-
agnostic and does not tailor to any specific domain of
data.

Accompanied with the development of Semantic
Web search engines, such as SWSE[1], Sindice[9] and
Falcons[10], and the rapid growth in Linked Data,
the study of object coreferencing is drifting to Web-
scale. For instance, the work in [1, 9] conducted
large-scale object consolidation in terms of the ana-
lysis of IFPs, the work in [4] implemented a coreference
resolution service (CRS) mainly using owl:sameAs,
the work in [12] applied statistical methods to iden-
tify “quasi”-key properties for object coreferencing in
Linked Data, and KnoFuss[17] utilized schema match-
ing to improve the accuracy of coreferencing. The
publishing-centric approach called Silk[21] enables the
derivation of owl:sameAs relations between datasets
by using manually specified mapping criteria. Addi-
tionally, the studies in [22-23] investigated the use of
owl:sameAs on the Semantic Web, and the observation
in [23] on the popularity of owl:sameAs is in accordance
with ours.
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Technically speaking, the architecture of our ap-
proach is similar to [24]. The study in [24] dedicated
a large-scale clustering to ontology terms. It looked up
synonyms to establish a kernel, and extended the ker-
nel with identical terms in labels or identifiers. There
are two differences between our approach and [24]: 1)
we adopt OWL built-in vocabulary elements to build
the kernel, which have standard semantics and usually
are trustworthy, while [24] depended on thesauri, which
may be imprecise in some cases; and 2) we propose
ranking methods for the coreferent URIs, while [24]
used a uniform threshold to filter wrong URIs, which is
hard to decide across different domains.

Furthermore, our work is relevant to the problem
known as duplicate detection and coreference resolution
in the database and NLP fields, which have been exten-
sively studied in the past several decades[3,13,15,25-26].
These methods are treated as similarity-based due to
lack of formal semantics to define equivalence. On the
Semantic Web, however, OWL provides well-defined se-
mantics for the equivalence relation, which must be
carefully considered. There also exist many works
that address instance matching in ontology (or schema)
matching[27-28]. But they have not been aware of the
characteristics of the Web, while our method uses the
dereferenceability of URIs to classify the coreference
confidence.

3 Finding Coreferent URIs

In the section, we will introduce our algorithm BOCr
for bootstrapping object coreferencing.

The overview of BOCr is illustrated in Fig.2, which
consists of two major iterations. Taking an object
URI u as input, the algorithm initializes an empty
queue Q and pushes u into Q. E is defined to
record the equivalence relations between URIs. For
building the kernel (Lines 4∼19), BOCr iteratively
picks up each unchecked URI v in Q, and starts
four parallel threads: CorefBySameAs(), CorefByIFP(),
CorefByFP() and CorefByCard(), in order to perform
coreferencing on v (see Lines 6∼13). Different equi-
valence relations with different marks (e.g., “same-as”)
are put into E through AddEquivRel() for further rank-
ing, while U ′ keeps the newly found URIs in each ite-
ration to avoid duplicate coreferencing in Q. The kernel
iteration converges when there is no URI in Q. Then,
the normalized textual descriptions of the URIs in the
kernel are extracted for extension. ExtendByDesc()
searches the objects with the same descriptions as the
ones in the kernel (Line 22). BOCr returns a set of
URIs U that denote the same object as u, and a set of
same-as, IFP, FP and cardinality relations E.

Input: A URI u that denotes an object.

Output: A coreferent URI set U , and a set of

same-as, IFP, FP and cardinality relations E.

1 U ← {u};
2 Q.Push(u); /* Q is a queue */

3 E ← ∅;

4 while Q 6= ∅ do /* Kernel */

5 v ← Q.Pop();

6 Us
v ← CorefBySameAs(v);

7 AddEquivRel(E, v, Us
v , “same-as”);

8 U i
v ← CorefByIFP(v);

9 AddEquivRel(E, v, U i
v , “IFP”);

10 Uf
v ← CorefByFP(v);

11 AddEquivRel(E, v, Uf
v , “FP”);

12 Uc
v ← CorefByCard(v);

13 AddEquivRel(E, v, Uc
v , “cardinality”);

14 U ′ ← (Us
v ∪ U i

v ∪ Uf
v ∪ Uc

v)\U ;

15 for each v′ ∈ U ′ do

16 Q.Push(v′);
17 end

18 U ← U ∪ U ′;
19 end

20 for each v ∈ U do /* Extension */

21 s ← Desc(v);

22 Ud
v ← ExtendByDesc(s);

23 U ← U ∪ Ud
v ;

24 end

25 return U, E;

Fig.2. Algorithm BOCr.

Example. Fig.3 illustrates a set of coreferent URIs
regarding Chris Bizer at the Free University Berlin,
which are represented with the solid pattern for the
kernel and the dotted one for the extension. Sup-
posing that sw:chris-bizer is the URI to start
from. By searching for the objects linking with
owl:sameAs, several coreferent URIs are discovered,
such as ontoworld:Chris Bizer. At the time, if we
have knowledge of some IFPs, which are shown with
asterisks (∗) in the figure, we find the objects hav-
ing the same values as well, e.g., bizer:chris. No-
tice that the construction of the kernel is an itera-
tive process, and the same-as or IFP relations (see the
solid lines in the figure) are recorded. For instance,
dblp:Christian Bizer is reached from bizer:chris,
and they have a same-as relation. Next, the kernel is
extended by using the descriptions of the URIs from
the kernel (e.g., “chris bizer”, “chris” and “christian
bizer”). This may cause errors, so ranking strategies to
reflect their confidences are required. We will introduce
our methods in Section 4.

3.1 Coreferencing by Same-As

Let U be a set of URI references, B be a set of blank



666 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

Fig.3. Example.

node IDs and L be a set of literals. A triple 〈s, p, o〉 ∈
(U ∪B)× U × (U ∪B ∪ L) is called an RDF triple[29].

The semantics of owl:sameAs specifies that all the
URIs linked with this property, in the representation of
〈s, owl:sameAs, o〉 (called same-as triple for simplicity
from now on), have the same identity[16], implying that
the subject and object should be the same resource.

Definition 1 (Same-As Relation). Let U be a set of
URIs. The same-as relation, denoted by S, is defined
as the minimal reflexive and symmetric relation on U ,
which satisfies the following conditions: 1) ∀s ∈ U ,
〈s, s〉 ∈ S; 2) ∀s, o ∈ U , if there is a same-as triple
〈s, owl:sameAs, o〉, then 〈s, o〉 ∈ S and 〈o, s〉 ∈ S.

3.2 Coreferencing by IFPs

The semantics of an IFP guarantees that a value
can only be the value of this property for a single ob-
ject, i.e., two separate objects are indirectly inferred
to be identical based on having the same value of that
property[16].

To identify IFPs, we parse ontologies to find
the properties whose rdf:type is explicitly given as
owl:IFP. This is done at preprocessing time. Note that
IFPs can be inferred in multiple ways based on OWL
semantics. For example, the work in [30] did reasoning
over pD* that includes rules for handling owl:sameAs,
owl:IFP and owl:FP axioms. However, anyone can de-
fine anything on the Semantic Web, and thus inferring
IFPs over different sources may cause errors and in-
consistency. For instance, we inferred dc:title as an
IFP in the Falcons dataset. The work in [31] studied
the reasoning problem of new ontologies published on
the Web redefining the semantics of existing entities
resident in other ontologies (called ontology hijacking),
which enlightens us to only consider dereferenceable[2]

IFPs in our approach for avoiding ontology hijacking.
Definition 2 (IFP Relation). Let U be a set of

URIs. The IFP relation, denoted by I, is defined as the

minimal reflexive and symmetric relation on U , satis-
fying that: 1) ∀s ∈ U , 〈s, s〉 ∈ I; 2) ∀s1, s2 ∈ U , if there
exist an IFP p and two IFP triples 〈s1, p, o〉, 〈s2, p, o〉,
then 〈s1, s2〉 ∈ I and 〈s2, s1〉 ∈ I.

To find the IFP relations, we match the values of
objects in the RDF triples with the same IFPs as the
predicates. If the values are exactly the same (by
implementing a trivial string comparison algorithm),
then we construct an IFP relation between the sub-
jects of those IFP triples. For example in Fig.3, because
both sw:chris-bizer and bizer:chris have an IFP
foaf:mbox sha1sum, and the sha1sum values are the
same, we bridge an IFP relation between them. This
approach has been shown to be feasible in [1, 9]. Also,
the lexical forms of some literals can be empty, where
for example the values of foaf:mbox sha1sum are blank
in a few triples. We omit these triples to avoid wrong
coreferencing.

Due to several heterogenous ways for expressing
email addresses, we develop an ad hoc method for iden-
tifying identical email addresses for two widely-used
IFPs: foaf:mbox and foaf:mbox sha1sum. Given an
email address, we compute its sha1sum value and uti-
lize foaf:mbox sha1sum to find new coreferent URIs.
We bridge the IFP relations between the URIs using
the two IFPs.

3.3 Coreferencing by FPs and (Max-)
Cardinalities

The process of using FPs to find coreferent URIs is
similar to that of IFPs. We first recognize the derefe-
renceable properties whose types are explicitly defined
as owl:FP, and then use these FPs to construct the FP
relations.

Definition 3 (FP Relation). Let U be a set of URIs.
The FP relation, denoted by F, is defined to be the mini-
mal reflexive and symmetric relation on U , which satis-
fies that: 1) ∀o ∈ U , 〈o, o〉 ∈ F; 2) ∀o1, o2 ∈ U , if there
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exist an FP p and two FP triples 〈s, p, o1〉, 〈s, p, o2〉,
then 〈o1, o2〉 ∈ F and 〈o2, o1〉 ∈ F.

The cardinality constraint owl:cardinality (or
owl:maxCardinality) is a built-in OWL property that
links a restriction class with a data value. A restriction
having an owl:cardinality (or owl:maxCardinality)
constraint describes a class of all objects that have ex-
actly (at most) N semantically distinct values for the
property concerned, where N is the value of the cardi-
nality constraint. If N = 1, its semantics is similar to
FPs (but with respect to a particular class) and can be
applied to produce coreferent URIs.

Definition 4 (Cardinality Relation). Let U
be a set of URIs. The cardinality relation, rep-
resented by C, is defined as the minimal reflex-
ive and symmetric relation on U , which satisfies
that: 1) ∀o ∈ U , 〈o, o〉 ∈ C; 2) ∀o1, o2 ∈
U , if there exist a (max-)cardinality restriction
〈c, owl: onProperty, p〉, 〈c, owl:maxCardinality, “1”〉
(or 〈c, owl:cardinality, “1”〉), where c, p are the re-
striction class and property respectively, and two car-
dinality triples 〈s, p, o1〉, 〈s, p, o2〉 with 〈s, rdf:type, c〉,
then 〈o1, o2〉 ∈ C and 〈o2, o1〉 ∈ C.

3.4 Kernel

Based on the same-as, IFP, FP and cardinality rela-
tions, we define the equivalence relation below.

Definition 5 (Equivalence Relation). Let S, I,F,C
be the same-as, IFP, FP and cardinality relations on a
set U of URIs, respectively. K is the transitive closure
on S ∪ I ∪ F ∪ C.

It is worth noting that K is an equivalence relation
on U , because S, I,F,C are all reflexive and symmetric.

Theorem 1 (Kernel). Let U be a set of URIs. For
a URI u ∈ U , the algorithm BOCr establishes an equiv-
alence class [u]K = {v | v ∈ U, 〈u, v〉 ∈ K}, called a
kernel, of u under the equivalence relation K.

Proof. See the algorithm BOCr. The detailed proof
is straightforward. ¤

It is worth noting that more and more vocabula-
ries are being published on the Semantic Web, we will
consider more vocabulary elements for the kernel, e.g.,
skos:exactMatch.

3.5 Extension from the Kernel

On the current Semantic Web, there are a consi-
derable amount of coreferent URIs that have not been
interlinked with owl:sameAs or others. For instance,
we find more than 70 URIs denoting Tim Berners-Lee
in our dataset, where only 9 of them are resident in the
kernel. This inspires us to extend coreferent URIs from
the kernel.

The method ExtendByDesc() in the algorithm

searches those URIs satisfying the condition that their
textual descriptions exactly match the one of any URI
in the kernel. The rationale is that URIs having iden-
tical textual descriptions are likely to refer to the same
object. The exact match implies that the approach
would discard the URIs whose textual descriptions are
only a part (substring) of the ones in the kernel. In
[32], the same method is applied to match two hundred
biomedical ontologies effectively. In this paper, we use
E to denote the extension relation.

Specifically, the textual description of a URI is de-
rived from the rdfs:label(s) in its dereferenced do-
cument or from its local name (the string after the
last hash “#” or slash “/” of the URI). The tex-
tual descriptions are normalized via uniforming string
cases and removing some employed delimiters. For ex-
ample, “Tim Berners-Lee” equals “Tim Berners Lee”
and “tim+berners-lee”. It is also important in prac-
tice to remove some non-content-bearing stopwords like
“user”, “xml” and “rdf”. Currently, we defined 616
stopwords.

Looking up synonyms in thesauri, e.g., WordNet or
Geonames, may also bring benefits to the extension by
increasing the number of coreferent URIs, especially for
the multilingual case. But we do not use any back-
ground thesaurus at present, since it is often difficult
to find proper synonyms at the instance level. For ex-
ample, WordNet cannot return any synonym for “Tim
Berners-Lee”. Also, if the description is polysemic, the
extension tends to involve wrong or ambiguous results.
Nevertheless, we will consider the use of appropriate
thesauri in future work.

We store the normalized textual descriptions of URIs
in a database table, and create indexes on them for
quick search.

4 Ranking Coreferent URIs

In the previous section, we constructed a number
of coreferent URIs. In this section, we propose a
trustworthiness-based method to rank the coreferent
URIs in the kernel and a similarity-based method for
ranking the URIs in the extension, depending on the in-
put URI. Coreferencing evidences like the same-as, IFP,
FP and cardinality relations and the matched textual
descriptions of URIs are displayed as snippets for user
browsing. In general, we employ the following heuristic
rules:
• For the kernel, a URI can be reached from the in-

put URI via an equivalence relation. Each equivalence
relation is constituted by at least one path of the
same-as, IFP, FP and cardinality relations (i.e., edges).
The dereferenced documents of URIs[2] are retrieved to
classify the trustworthiness of a same-as, IFP, FP or
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cardinality relation into different levels. The trustwor-
thiness between the input and any URI in the kernel
is the least trustworthy edge in their most trustworthy
path. We assume that the URIs in the kernel are always
ranked higher than the ones in the extension.
• The context for each URI in the extension (as well

as the input URI) is constructed by using the notion
of RDF sentences[19]. The similarity between any URI
in the extension and the input URI is calculated by
matching their contexts with a linguistics-based match-
ing algorithm V-Doc[18]. The greater the similarity, the
higher the rank of the URI in the extension.
• Furthermore, when the coreference confidences of

the URIs in the kernel (in the extension) are equal,
a popularity-based ranking takes effect to impose the
total order of the ranking. We count the number of
Semantic Web documents (SWDs) and RDF triples re-
ferring to each URI. The rationale is that, if some URI
appears in more SWDs or RDF triples, people might
be more familiar with the URI, and they would like
to see the URI being ranked higher. We also prefer
the number of SWDs to RDF triples for each URI.
Please note that certain linkage-based techniques, e.g.,
PageRank[33] and HITS[34], can also be adopted to rank
coreferent URIs. But the size of a kernel is usually small
and the similarities computed by V-Doc are unlikely
to be the same, thus the linkage-based analysis cannot
bring much benefit to the ranking.

4.1 Ranking for the Kernel

Because anyone can say anything on the Semantic
Web, the trustworthiness of the same-as, IFP, FP and
cardinality relations needs to be classified. The act of
retrieving a representation of a resource identified by
a URI is referred to as dereferencing that URI[2]. The
document retrieved by dereferencing the URI of an ob-
ject can be considered as the authoritative definition
of that URI[31]. This inspires us to compare the dere-
ferenced documents of URIs with the documents that
declare the same-as, IFP, FP or cardinality triples.

Let 〈s, o〉 ∈ S be a same-as relation. deref (s) and
deref (o) be the dereferenced documents of s and o, re-
spectively. doc is a document that contains the corre-
sponding same-as triple. We distinguish the trustwor-
thiness of 〈s, o〉 into three different levels (due to the
symmetry of the same-as relation), which are shown in
Fig.4.
• Level 1: deref (s) = doc = deref (o). This case hap-

pens where s, o are dereferenced to the same document
of the same-as triple. It is considered to be more trust-
worthy than the other two levels.
• Level 2: deref (s) = doc 6= deref (o) or deref (s) 6=

doc = deref (o). This is caused by the different

dereferenced documents of s and o, and only one of
them equals doc. For example, one party declares the
same-as relation with existing objects. Another such
case is either s or o is dereferenceable, while the other
is not.
• Level 3: deref (s) 6= doc 6= deref (o), because 1)

neither s nor o is dereferenceable; or 2) a third-party
document suggests the relation, which does not equal
deref (s) or deref (o). This constitutes the least trust-
worthy level.

Fig.4. Classification of same-as relation.

Additionally, there are two special cases to be ad-
dressed: 1) a same-as relation may be formed from
different same-as triples, thus there can be more than
one doc for a single same-as relation. In our approach,
we use the highest level of trustworthiness as its level;
and 2) reciprocal same-as triples[23] exist in Level 2.
For example, assuming that there exists a same-as rela-
tion 〈s, o〉 that is derived from two documents doc1 and
doc2. In doc1, deref (s) = doc1 6= deref (o); while in
doc2, deref (s) 6= doc2 = deref (o). We upgrade the case
to the same trustworthiness as Level 1. In our dataset,
we found the reciprocal same-as triples among two or
three documents, but no more than three documents.

Similar to the same-as relation, given two IFP triples
〈s1, IFP, o〉 and 〈s2, IFP, o〉 declared in doc1 and doc2

respectively, we distinguish the trustworthiness of the
IFP relation 〈s1, s2〉 ∈ I into three levels, based on the
dereferenceability of s1 and s2 (see Fig.5). We select
the highest level of trustworthiness of an IFP relation
as its level.
• Level 1: deref (s1) = doc1 and deref (s2) = doc2.

The case is considered as most trustworthy in the three
levels of trustworthiness of the IFP relation.

Fig.5. Classification of an IFP relation.
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• Level 2: deref (s1) = doc1 and deref (s2) 6= doc2, or
deref (s1) 6= doc1 and deref (s2) = doc2. It is assumed
to be more trustworthy than Level 3.
• Level 3: deref (s1) 6= doc1 and deref (s2) 6= doc2.
Based on the same manner (the dereferenceability

of subjects) as the IFP relation, we divide an FP rela-
tion or a cardinality relation into three different levels
of trustworthiness as well. We omit the details in this
paper.

A URI in the kernel is reachable from the input URI
through an equivalence relation, which is composed of
at least a path of the same-as, IFP, FP and cardina-
lity relations under our definition of the equivalence re-
lation. An edge on a path is a same-as, IFP, FP or
cardinality relation. The distance (length) of an edge
is assigned according to its trustworthiness level: 1 for
Level 1, 2 for Level 2 and 3 for Level 3. We define the
shortest path from the input URI to a URI in the kernel
as the most trustworthy path between them. The trust-
worthiness between any URI and the input is the least
trustworthy edge (= 1/edge distance) in the shortest
path.

Example. In Fig.3, sw:chris bizer can reach
linkeddata:this through two IFP relations, or
through an IFP relation and a same-as relation.
Let us assume that the two IFP relations be-
tween sw:chris bizer and bizer:chris and between
bizer:chris and linkeddata:this are in Level 2,
and the same-as relation between bizer:chris and
linkeddata:this is in Level 3. The edge distance from
bizer:chris to linkeddata:this is 2. So, the shor-
test path from sw:chris bizer to linkeddata:this
contains two IFP relations, and the shortest path dis-
tance is 4 (= 2 + 2). Therefore, the trustworthiness
between them is 0.5.

4.2 Ranking for the Extension

To rank the URIs in the extension, we propose a
matching-based method to compute the similarity be-
tween each URI in the extension and the input URI.

A URI is a compact sequence of characters which
identifies an abstract or physical resource. Although
URIs contain a few textual descriptions, e.g., the local
names for the objects they denote, they alone are not
adequate to determine whether the denoted objects are
similar.

In an RDF graph, a URI is involved in a set of RDF
triples that form a context for the URI. We use the
notion of RDF sentences[19] to extract contexts, which
guarantees the completeness of blank nodes in the con-
texts. Blank nodes are a class of existentially quanti-
fied resources whose meanings exist in the scope of the
triples they appear. RDF triples that share a blank

node form an integrated structure to indicate a joint
context of that blank node. If such triples are sepa-
rated, the context is broken. But, RDF semantics[29]

provides no intrinsic mechanism to preserve this kind
of structures.

We define that two RDF triples are b-connected if
they share some blank nodes. The b-connected relation
is defined as transitive, that is, two RDF triples are b-
connected if they both b-connect to another triple. An
RDF sentence in an RDF graph is the maximum clo-
sure of the b-connected RDF triples (called a minimum
self-contained graph in [35], which proved that an RDF
graph can be decomposed into a unique set of RDF
sentences).

Definition 6 (RDF Sentence). An RDF sentence,
st, is a subset of RDF triples T in an RDF graph g,
which satisfies the following conditions:
• ∀ti, tj ∈ st, ti, tj are b-connected;
• ∀ti ∈ st, tj ∈ g \ st, ti, tj are not b-connected.
Furthermore, we define:

subj (st) = {s | ∃〈s, p, o〉 ∈ st}, (1)

pred(st) = {p | ∃〈s, p, o〉 ∈ st}, (2)

obj (st) = {o | ∃〈s, p, o〉 ∈ st}. (3)

Next, we introduce our definition of the context for
a URI using RDF sentences as basic units instead of
RDF triples, where the URI appears as the subject of
some triples in each RDF sentence. This is similar to
the Concise Bounded Description[36].

Definition 7 (Context). Let u be a URI. The con-
text of u, denoted by ctx (u), is a set of RDF sen-
tences ctx (u) = {st1, st2, . . . , stn}, where each sti (i =
1, 2, . . . , n) satisfies that u ∈ subj (sti).

With regard to the given URI for constructing a con-
text, only forward links (u ∈ subj (sti)) are considered
in the context. However, the direction of a property
in RDF is somehow arbitrary so that backward links
may also be considered. Although it is not difficult to
include backward links, only forward links are included
here because we think that the predicates and objects
in RDF triples are mainly used for describing the sub-
jects, and the number of triples in each context can be
reduced. The impact of including backward links in
contexts will be considered in our future work.

Fig.6. Context for tbl:i.
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Example. Fig.6 shows an RDF sentence that con-
sists of four RDF triples. The RDF sentence forms
a context stating that tbl:i knows a person whose
name is “Danny Ayers”, etc. If we only extract the
triple 〈tbl:i, foaf:knows, :genid〉 for tbl:i, it can
hardly give any useful information due to the blank
node :genid.

After forming the contexts for all the URIs in the ex-
tension and the input URI, we now adopt a linguistics-
based ontology matching algorithm V-Doc[18] to com-
pare the context of each URI in the extension with the
input (rather than all the URIs in the kernel due to
computation cost).

Terms in the context of a URI are extracted to con-
struct the virtual document for that URI. To formalize,
we firstly define the sets of neighboring URIs and lite-
rals within a context. Let U,L be the sets of all URIs
and all literals, respectively. Given the context ctx (u)
of a URI u, the neighboring URIs and literals in the
context are:

neighURI (u) = {v ∈ U | ∃st(st ∈ ctx (u)∧
v ∈ (pred(st) ∪ obj (st)))},

(4)
neighLit(u) = {l ∈ L | ∃st(st ∈ ctx (u)∧

l ∈ obj (st))}. (5)

We use the vector space model to represent the vir-
tual document of a URI. Given ∀u ∈ U , let ln(u) be the
term vector representing its local name, and lbl(u) be
the term vector representing its label(s) encoded in its
dereferenced document. Given ∀l ∈ L, let lexForm(l)
be the term vector that denotes its lexical form. The
virtual document of a URI u, denoted by VD(u), is
computed by involving not only the local textual de-
scription of u, but also the descriptions of neighbors to
reflect its intended meaning:

VD(u) = α · ln(u) + β · lbl(u)+

γ ·
∑

v∈neighURI (u)

(ln(v) + lbl(v))+

θ ·
∑

l∈neighLit(u)

lexForm(l), (6)

where α, β, γ, θ are weighting coefficients, and we set
them to 2, 2, 1 and 1 respectively, according to our
past experience of using virtual documents in ontology
matching[18].

The problem of computing similarities between the
input URI and a URI in the extension is transformed
into the problem of computing similarities between two
virtual documents, which has been extensively studied
in information retrieval. For a URI u, let VD(u) be

the term vector representing its virtual document cal-
culated according to (6). VD(u) is refined by inverse
document frequency (IDF) factors, that is, a higher
weight is assigned to a term in a virtual document if
the term occurs in fewer documents. The similarity be-
tween the input URI u and any URI v in the extension
is computed based on the cosine similarity measure:

sim(u, v) =
VD(u) •VD(v)
|VD(u)| · |VD(v)| , (7)

where the numerator is the dot product of the two term
vectors, and the denominator is the product of their
magnitudes.

We utilize these cosine similarities to rank the core-
ferent URIs in the extension. The greater the similarity,
the higher the rank of the URI in the extension.

5 Evaluation

We implemented an online system, called Object-
Coref, for our proposed method. In this section, we
report the experimental results on a large-scale dataset
collected by the Falcons[10] search engine till Septem-
ber 8th, 2008. All the tests were carried out on an
Intel Core2 Duo 2.40 GHz CPU, 4 GB memory with
Windows 7 Professional and Java 6. The dataset was
indexed on four Xeon Quad 2.40 GHz CPUs, 16GB
memory with Red Hat Linux Enterprize Server 5.3 and
MySQL 5.0.

5.1 Dataset Characteristics

The characteristics of the dataset are listed in Table
1. This dataset contains 596 418 935 RDF triples (tr.)
from 11 719 608 SWDs which refer to 76 389 570 URIs,
equal to an average of 7.81 RDF triples per URI.

Table 1. Characteristics of the Dataset

URIs Same-As tr. IFP tr. FP tr. Card. tr.

76 389 570 7 880 906 27 686 35 652 34 635

By investigating the dataset, 7 880 906 unique same-
as triples were found, where 474 869 triples are in
Level 1, 5 228 423 in Level 2 and 2 177 614 in Level 3.
Furthermore, there are 828 086 reciprocal same-as
triples in Level 2 between two documents and 1 020 re-
ciprocal ones among three documents, which are mainly
from http://bio2rdf.org and http://dbpedia.org. Con-
sidering the purpose of ObjectCoref, blank nodes pro-
vide no meanings outside their original scopes. So, we
omitted the same-as (and IFP, FP, cardinality) triples
with blank nodes in our experiment.

We discovered 1 791 unique IFPs from the dataset,
where 413 ones (23%) are dereferenceable. Based on
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these dereferenceable IFPs, 27 686 IFP triples with-
out any blank nodes were retrieved, and most of them
are about foaf:mbox sha1sum (11 903) and foaf:mbox
(2 981). We also found that 11 760 IFP triples have the
IFP relations with others.

For FPs, we found 11 765 dereferenceable FPs from
21 067 ones in total, and derived 35 652 FP triples with-
out blank nodes, in which 440 triples have the FP rela-
tions with others.

In addition, we discovered 113 dereferenceable pro-
perties that are involved in 34 635 cardinality triples
without blank nodes, where 6 123 have the cardinality
relations with others.

Based on the statistical data, we can see that the
bulk (99.8%) of equivalence relations are given by ex-
plicit same-as triples.

5.2 Precision and Relative Recall

In this experiment, we tested the top-k precision
and relative recall of ObjectCoref on performing ob-
ject coreferencing on the Semantic Web. We analyzed
364 408 query logs in the Falcons search engine, and
chose 10 popular query URIs in object search, which
are depicted in Table 2. These URIs cover a wide range
of real-world domains (such as people, geography), and
some of their local names have several meanings. For
instance, “Jaguar” can be either a mammal or a car
brand. We selected each URI having a clear meaning
among its polysemic local names, to observe whether
or not ObjectCoref can identify the correct coreferent
URIs and how well.

Table 2. Summary of Sample URIs

HTTP URI

1 www.w3.org/People/Berners-Lee/card#i

2 data.semanticweb.org/person/chris-bizer

3 www.cs.vu.nl/...#Frank+van+Harmelen

4 www4.wiwiss.fu-berlin.de/factbook/.../China

5 dbpedia.org/resource/United States

6 dbpedia.org/resource/Berlin

7 dbpedia.org/resource/Semantic Web

8 dbpedia.org/resource/Apple Inc.

9 dbpedia.org/resource/Jaguar [mammal]

10 semanticweb.org/wiki/Java [programming]

We employed 5 students to perform peer reviews
for the top-10 and top-20 coreferent URIs found by
ObjectCoref. A student judges if each returned URI is
coreferent with the input, in terms of the provided evi-
dences like equivalence relations, textual descriptions,
snippets summarized by Falcons or dereferenced docu-
ments. But, there still exist a few URIs that are hard
to identify if they are coreferent. We treated them as
correct in our experiment.

The top-k precision is computed by prec(k) =
|correct(k)|/k, and the relative recall is the number of
coreferent URIs retrieved by one system divided by the
total number of unique URIs from all systems. The re-
lative recall provides a practical, if imperfect, solution
to the problem that the total number of results is un-
known, and it has been widely used to assess the quality
of large ontology matching[27]. One may think to use
the correct number of coreferent URIs of one system
over the number of correct ones from all systems as the
relative recall, but this might be impossible if the num-
ber is very large. For example, to evaluate the relative
recall of a search engine, it is infeasible to determine the
correct answers from ten thousands of returned results
for a query.

The coreferent URIs without ranking (denoted by
W/O-rank) was adopted to compare the top-k pre-
cision. Furthermore, three coreferencing websites
called sameas.org (http://sameas.org/), rkbexplorer
(http://www.rkbexplorer.com/sameAs/, by CRS[4])
and sig.ma (http://sig.ma/, by Sindice[9]) provided ser-
vices for object coreferencing in terms of the same-as or
IFP relations. We input the 10 sample URIs in Table 2
into them, and collected the coreferent URIs that they
returned. It is worth noting that all the services above
are built on different datasets, therefore the returned
results only have partial overlap.

The comparisons on the top-10 and top-20 precision
of W/O-rank and ObjectCoref are depicted in Figs. 7(a)
and 7(b), respectively. These figures indicate that both
W/O-rank and ObjectCoref are effective to achieve a
good precision for Semantic Web object coreferencing.
In addition, by ranking the coreferent URIs, the preci-
sion can be further improved. In particular, by using
the matching-based ranking, the top-20 precision ave-
ragely increases, especially in No.2 (“chris-bizer”) and
No.8 (“Apple Inc.”). The reason is that, with the con-
text matching, the URIs that are more similar to the
input are ranked higher than the less similar ones. For
instance, in No.2, with the help of contexts, another
“Chris” (Chris Lilley at the W3C) in the extension was
moved to the end of the query result. In addition, our
experiment also suggested that the coreferent URIs in
the kernel are usually correct (see the top-10 precision).

The comparison on the top-20 precision of Object-
Coref, sameas.org, rkbexplorer and sig.ma is shown in
Fig.8(a), while the relative recall is in Fig.8(b). From
the experiment, we saw that sameas.org and rkbex-
plorer used a closely similar dataset but with different
ranking schemes, while sig.ma focused on data mash-
up and limited the size of returned URIs per query no
more than 20.

From the figures, we observed that the relative recall



672 J. Comput. Sci. & Technol., July 2011, Vol.26, No.4

Fig.7. W/O-rank vs. ObjectCoref. (a) Top-10 precision. (b)

Top-20 precision.

Fig.8. ObjectCoref vs. others. (a) Top-20 precision. (b) Relative

recall.

of sameas.org, rkbexplorer and sig.ma are significantly
smaller (usually less than 0.2) than the one of Object-
Coref, even excluding the wrong coreferent URIs. This
proves that ObjectCoref performed better than the rest
three systems in performing object coreferencing, since
iteratively combining the use of same-as, IFPs, FPs and
cardinalities forms a more complete kernel, and merely
using a part of them would miss some correct corefe-
rent URIs. Additionally, the extension and ranking are
feasible, ObjectCoref achieved a comparable precision
(with much more coreferent URIs) as compared with
the three other systems.

5.3 Response Time

We analyzed the response time of ObjectCoref with
regard to the size of coreferent URIs per input. The
background intuition is that the more returned URIs
associated to an input, the longer ObjectCoref spends to
deal with it. Our objective is to figure out whether Ob-
jectCoref can always complete object coreferencing in a
controllable time. The response time includes the time
for coreferencing, ranking and generating user-friendly
snippets for display.

We randomly chose 5 000 sample URIs in our
dataset, and repeated the experiment 10 times to
measure the average response time. Fig.9 shows the
response time per size of coreferent URIs. Each point
in the figure corresponds to a sample URI. From this
figure, we observed that 99% of cases correspond to the
samples with 6 100 coreferent URIs, while the average
response time is 162.5 ms. The maximum size of the
coreferent URIs is 924, and ObjectCoref took 10.5 s to
complete the case. This experiment shows that Ob-
jectCoref is capable of being used for online purposes.
We tested various curves to fit the response time, and
found that the best is a linear regression with equation
y = 12.82x + 58, where the correlation coefficient is

Fig.9. Response time (in log-log scale).
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0.934. This proves that the response time of Object-
Coref can be approximately predicted using a linear
function over the number of coreferent URIs returned.

6 Analysis of URI Alias Phenomenon

Just as one may expect to use different names to
refer to the same person, Web architecture allows the
association of more than one URIs to a resource. As
defined in [2], the URIs denoting the same object are
called URI aliases. Although there are benefits from
URI aliases such as naming flexibility, overusing URI
aliases are not encouraged because they weaken the
“network effect”. In this section, we investigate the
popularity of URI alias phenomenon on the current Se-
mantic Web, based upon our equivalence relation.

It is very hard, if not impossible, to identify all URI
aliases on the Semantic Web. In this paper, we try to
apply the equivalence relation K and the extension re-
lation E (see Section 3) to observe the popularity of the
URI alias phenomenon, and the popularity PK, PE are
defined as the average sizes of all unique equivalence
classes under K,E, respectively.

Table 3. Popularity of URI Aliases

Indicator Popularity

PK 1.42

PE 15.33

Psameas.org 1.46

Prkbexplorer 1.20

P 300
M 4.23

We randomly chose 100 000 object URIs in our
dataset and fed them into ObjectCoref. As listed in Ta-
ble 3, the popularity under K is 1.42, while under E is
15.33, which indicate that there is a large gap between
PK and PE.

The top-5 largest equivalence classes under K and
E are listed in Tables 4 and 5 respectively, where [n]
denotes the number of similar URIs having the same
size. Most of the largest kernels derive from the same-
as relation and fall into the biomedical domain. For
the URIs in the extensions, because they are not al-
ways accurate, we resorted to manpower for obtaining
the “real” popularity and the average precision of the
extensions.

We randomly chose 300 URIs from the 100 K sam-
ples and employed 7 students to manually identify cor-
rect URIs in the extensions of ObjectCoref. It turns out
that the popularity from the manual observation, de-
noted by P 300

M , is 4.23, as compared with P 300
E = 14.99

under the same 300 URIs. So the average precision of
the extensions is about 4.23/14.99 = 0.28. If our sam-
pling is typical and the manual observation is relatively

accurate, we can conclude that the kernel would omit
some coreferent URIs, while the extension can find con-
siderable candidates but lacks accuracy.

Table 4. Top-5 Largest Kernels

HTTP URI Size

www.biopax.org/...#biochemicalReaction5 204

bio2rdf.org/accession:af...[3] 133

bio2rdf.org/accession:af107466 79

rdfweb.org/.../cwm-crawler-output.rdf# g...[2] 63

bio2rdf.org/accession:af048837 47

Table 5. Top-5 Largest Extensions

HTTP URI Size

dbpedia.org/data/...[4]/birth date and age 18 939

dbpedia.org/resource/...[2]/flagicon 4 032

dbpedia.org/resource/...[8]/coor dms 3 766

www.advogato.org/person/...[11]/diary.html 3 606

www.informatik.uni-trier.de/...[6]:Michael.html 3 116

We also checked some inaccurate extensions and
observed that the improper extraction of the textual
descriptions of URIs mainly causes the inaccuracy. For
instance, the size of the extension for http://dbpe-
dia.org/data/Leon Bott/dateofbirth/birth date and a-
ge is 18 939. This is because we used “birth date and
age” for extension, which is prevalent in our dataset as
there are many data in DBpedia that describe the birth
date and age of different people. However, if we could
identify “Leon Bott” is the key description, the exten-
sion would be more accurate. On the other hand, if the
local name of a URI is specific, e.g., “Tim Berners-Lee”
or “Semantic Web”, the extension is more accurate. As
a future work, we will consider possible ways to identify
the discriminative parts of URIs for extension.

7 Conclusion

The main contributions of this paper are summa-
rized as follows.
• We introduced a bootstrapping approach to per-

form object coreferencing on the Semantic Web. We
firstly established a set of semantically equivalent URIs
(called a kernel) for an input object URI based on the
same-as, IFP, FP and cardinality relations, and then
extended the kernel in terms of the textual descriptions
of URIs.
• We defined a trustworthiness-based measure for

ranking the coreferent URIs in the kernel. The derefe-
renced documents of URIs were retrieved to classify
each same-as, IFP, FP or cardinality relation into
different trustworthiness levels. We also proposed a
similarity-based method to rank the URIs in the exten-
sion. The context of each URI was extracted in terms of
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its RDF sentences, and the similarities between differ-
ent contexts were calculated by the V-Doc algorithm.
•We implemented an online prototype system called

ObjectCoref, and evaluated its performance on a large-
scale dataset collected by the Falcons search engine in
2008. The experimental results demonstrated that Ob-
jectCoref achieves both good precision and relative re-
call on object coreferencing with acceptable response
time. We also analyzed the popularity of the URI alias
phenomenon based on the average sizes of the kernels
and extensions of 100 000 sample URIs.

In future work, we will incorporate different mea-
sures to rank the coreferent URIs discovered by our
approach. In addition, we would like to exploit more
possible semantics, rules and thesauri to find coreferent
URIs. We also hope to test our approach on various
datasets from other Semantic Web search engines.
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[15] Li Y, Muśılek P, Reformat M, Wyard-Scott L. Identification
of pleonastic it using the web. Journal of Artificial Intelli-
gence Research, 2009, 34(1): 339-389.

[16] Dean M, Schreiber G. OWL web ontology language reference.
http://www.w3.org/TR/owl-ref/, Feb. 10, 2004.

[17] Nikolov A, Uren V, Motta E, de Roeck A. Overcoming schema
heterogeneity between linked semantic repositories to improve
coreference resolution. In Proc. ASWC, Shanghai, China,
Dec. 6-9, 2009, pp.332-346.

[18] Qu Y Z, Hu W, Cheng G. Constructing virtual documents for
ontology matching. In Proc. WWW, Edinburgh, UK, May
23-26, 2006, pp.23-31.

[19] Hu W, Qu Y Z, Cheng G. Matching large ontologies: A divide-
and-conquer approach. Data and Knowledge Engineering,
2008, 67(1): 140-160.

[20] Ferrara A, Lorusso D, Montanelli S. Automatic identity recog-
nition in the Semantic Web. In Proc. ESWC Workshop on
IRSW, Tenerife, Spain, Jun. 2, 2008.

[21] Volz J, Bizer C, Gaedke M, Kobilarov G. Discovering and
maintaining links on the web of data. In Proc. ISWC, Chan-
tilly, USA, Oct. 25-29, 2009, pp.650-665.

[22] Halpin P, Hayes P J, McCusker J P, McGuinness D L, Thomp-
son H S. When owl:sameAs isn’t the same: An analysis of
identity in linked data. In Proc. ISWC, Shanghai, China,
Nov. 7-11, 2010, pp.305-320.

[23] Ding L, Shinavier J, Shangguan Z N, McGuinness D L.
SameAs networks and beyond: Analyzing deployment sta-
tus and implications of owl:sameAs in linked data. In Proc.
ISWC, Shanghai, China, Nov. 7-11, 2010, pp.145-160.

[24] Gracia J, d’Aquin M, Mena E. Large scale integration of
senses for the Semantic Web. In Proc. WWW, Madrid, Spain,
Apr. 20-24, 2009, pp.611-620.

[25] Fellegi I P, Sunter A B. A theory for record linkage. Journal
of the American Statistical Society, 1969, 64(328): 1183-1210.

[26] Cheng T Y, Wang S. A novel approach to clustering merchan-
dise records. Journal of Computer Science and Technology,
2007, 22(2): 228-231.

[27] Euzenat J, Shvaiko P. Ontology Matching. Heidelberg:
Springer, 2007.

[28] Wang S, Englebienne G, Schlobach S. Learning concept map-
pings from instance similarity. In Proc. ISWC, Karlsruhe,
Germany, Oct. 26-30, 2008, pp.339-355.

[29] Klyne G, Carroll J J. Resource description framework (RDF):
Concepts and abstract syntax. http://www.w3.org/TR/rdf-
concepts/, Feb. 10, 2004.

[30] Urbani J, Kotoulas S, Maassen J, van Harmelen F, Bal H.
OWL reasoning with WebPIE: Calculating the closure of 100
billion triples. In Proc. ESWC, Heraklion, Greece, May 30-
Jun. 3, 2010, pp.213-227.

[31] Hogan A, Pan J Z, Polleres A, Decker S. SAOR: Template rule
optimisations for distributed reasoning over 1 billion linked
data triples. In: Proc. ISWC, Shanghai, China, Nov. 7-11,
2010, pp.337-353.

[32] Ghazvinian A, Noy N F, Jonquet C, Shah N, Musen M A.
What four million mappings can tell you about two hundred
ontologies. In Proc. ISWC, Chantilly, USA, Oct. 25-29, 2009,
pp.229-242.



Wei Hu et al.: Bootstrapping Object Coreferencing on the Semantic Web 675

[33] Page L, Brin S, Motwani R, Winograd T. The PageRank ci-
tation ranking: Bringing order to the web. Technical Report,
Stanford University, 1998.

[34] Kleinberg J. Authoritative sources in a hyperlinked environ-
ment. In Proc. SODA, San Francisco, USA, Jan. 25-27, 1998,
pp.668-677.

[35] Tummarello G, Morbidoni C, Bachmann-Gmür R, Erling O.
RDFSync: Efficient remote synchronization of RDF models.
In Proc. ISWC/ASWC, Busan, Korea, Nov. 11-15, 2007,
pp.537-551.

[36] Stickler P. CBD — Concise bounded description. http://
www.w3.org/Submission/CBD/, Jun. 3, 2005.

Wei Hu is a lecturer at the De-
partment of Computer Science and
Technology, Nanjing University. He
received his B.Sc. degree in com-
puter science and technology in 2005,
and his Ph.D. degree in computer
software and theory in 2009 both
from the Southeast University. His
research interests include Semantic
Web, ontology engineering and data
fusion.

Yu-Zhong Qu is a professor and
Ph.D. supervisor at the Department
of Computer Science and Technol-
ogy, Nanjing University. He received
his B.Sc. and M.Sc. degrees in
mathematics from Fudan University
in 1985 and 1988 respectively, and his
Ph.D. degree in computer software
from Nanjing University in 1995. His
research interests include software

methodology, Semantic Web and Web science.

Xing-Zhi Sun is a researcher in
the Semantic Technology group, IBM
China Research Laboratory. He re-
ceived his B.Sc. degree in electri-
cal engineering from the Shanghai
Jiao Tong University in 2000, and
his Ph.D. degree in computer science
from the University of Queensland,
Australia, in 2005. His research in-
terests include ontology data man-

agement and data analysis in healthcare.


