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Abstract Storing and sharing databases in the cloud of computers raise serious concern of individual privacy. We
consider two kinds of privacy risk: presence leakage, by which the attackers can explicitly identify individuals in (or not
in) the database, and association leakage, by which the attackers can unambiguously associate individuals with sensitive
information. However, the existing privacy-preserving data sharing techniques either fail to protect the presence privacy or
incur considerable amounts of information loss. In this paper, we propose a novel technique, Ambiguity, to protect both
presence privacy and association privacy with low information loss. We formally define the privacy model and quantify
the privacy guarantee of Ambiguity against both presence leakage and association leakage. We prove both theoretically
and empirically that the information loss of Ambiguity is always less than the classic generalization-based anonymization
technique. We further propose an improved scheme, PriView, that can achieve better information loss than Ambiguity. We
propose efficient algorithms to construct both Ambiguity and PriView schemes. Extensive experiments demonstrate the
effectiveness and efficiency of both Ambiguity and PriView schemes.

Keywords privacy, data sharing, anonymity, utility, cloud computing

1 Introduction

Recent years have witnessed an emerged paradigm
called cloud computing[1] which promises reliable ser-
vices delivered through next-generation data centers
that are built on computation and storage virtual-
ization technologies. Data and programs are being
swept up from desktop PCs and corporate server rooms
and installed in the cloud of computers. With the
aid of cloud computing, consumers no longer need
to invest heavily or encounter difficulties in build-
ing and maintaining complex IT infrastructure. This
is extremely useful for the users, for instance, some
small/median-size enterprises, who have limited re-
sources but computational-expensive tasks (e.g., data
warehouse and data mining applications) for their data.

Although cloud computing offers the possibility of
reliable storage of large volumes of data, efficient query
processing, and savings of database administration cost
for the data owner, sharing data with a third-party ser-
vice provider and allowing it to take custody of per-
sonal documents raises questions about privacy protec-
tion. [2] has given an example scenario that a gov-
ernment agency presents a subpoena or search warrant
to the cloud service provider that has possession of in-
dividual data. As the service provider is presumably
less likely to contest the order, it will release the data

without informing the data owners. This situation gets
even worse as some service providers secretly sell their
hosted data to make profit. As large amounts of data
that are stored in the cloud contain personal informa-
tion and are in non-aggregate format, sharing the data
with third-party service providers in the cloud without
careful consideration will raise great threat to data pri-
vacy.

In this paper, we consider two kinds of leakage of
private information: presence leakage, by which an in-
dividual is identified to be in (or not in) the original
dataset, and association leakage, by which an indivi-
dual is identified to be associated with some sensitive
information. As [3] has proven that knowing an indi-
vidual is in the database poses a serious privacy risk,
both presence privacy and association privacy are im-
portant and must be well protected.

We must note that the data privacy concern in
the cloud computing is also shared in the traditional
data publishing scenario; for analysis purpose, the
data needs to be released in some format that is close
to its raw value. Therefore, the privacy attacks in
the data publishing scenario can also be applied to
data sharing in cloud computing. One typical at-
tack is called record linkage attack[4-5]. In particu-
lar, removing explicit identifiers such as name and
SSN from the released data is insufficient to protect
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personal privacy; the combination of non-identification
attributes, for instance, zipcode, gender and date of
birth, still can uniquely identify individuals. These at-
tributes are called quasi-identifier (QI) attributes. The
QI-attributes are commonly present with individual
names and SSNs in the external public datasets, for
example, voting registration lists. Then by join of the
shared dataset and the external public datasets, the at-
tacker still can restore the identity of individuals as well
as their private information.

Released Data

Quasi-Identifier Sensitive

Name Age Gender Zipcode Disease

Alan 45 M 11000 diabetes

Charles 20 M 12000 flu

George 50 M 23000 diarrhea

Henry 60 M 12000 stroke

Alice 20 F 54000 leukemia

Carol 50 F 23000 diabetes

Grace 60 F 23000 leukemia

Helen 60 F 21000 dyspepsia

(a)

Age Gender Zipcode Disease

[20, 60] M [11000, 23000] diabetes

[20, 60] M [11000, 23000] flu

[20, 60] M [11000, 23000] diarrhea

[20, 60] M [11000, 23000] stroke

[20, 60] F [21000, 54000] leukemia

[20, 60] F [21000, 54000] diabetes

[20, 60] F [21000, 54000] leukemia

[20, 60] F [21000, 54000] dyspepsia

(b)

Fig.1. Examples of original and generalized dataset. (a) Original

dataset. (b) 3-diversity table.

Various techniques have been proposed to defend
against the record linkage attack in the context of
privacy-preserving data publishing. One of the popular
privacy principles is called k-anonymity[4-6]. Specifi-
cally, a table is said to satisfy k-anonymity if every
record in the table is indistinguishable from at least k−1
other records with respect to quasi-identifier attributes.
This ensures that no individual can be uniquely iden-
tified by record linkage attack. An improved principle
called l-diversity, which also catches considerable at-
tention recently, further requires that every group of
indistinguishable records must contain at least l dis-
tinct sensitive values[7]. Fig.1(b) shows an example of
a 3-diversity table.

Generalization[4-5] is a popular methodology to re-
alize k-anonymity and l-diversity. In particular, the
dataset is partitioned into groups (called QI-groups).

For the records in the same group, their quasi-identifier
values (QI-values) are replaced with the identical gen-
eralized values so that they are indistinguishable from
each other with regard to their QI-values. The
generalization-based anonymization technique can pro-
tect both presence privacy and association privacy;
thus it can be used as a potential solution to privacy-
preserving data sharing in the cloud.

However, generalization often results in considerable
amount of information loss, which severely compro-
mises the accuracy of data analysis. For example, con-
sider the 3-diversity dataset in Fig.1(b). Without ad-
ditional knowledge, the researcher will assume uniform
data distribution in the generalized ranges. Let us look
at the following aggregate query:

Query Q1:

SELECT count(*) from Released-Data

WHERE Disease = stroke AND Age > 45;

The query falls into the first QI-group in Fig.1(b) and
returns count = 1 for the age range [20, 60]. Since the
range [20, 60] covers forty discrete ages, the answer of
query Q will be estimated as 1× (60−45)

(60−20) = 3
8 , which is

much less than the real answer 1. The error is caused
by the fact that the data distribution in the genera-
lized ranges may significantly deviate from uniformity
as assumed. Therefore, generalization may circumvent
correct understanding of data distribution on even a
single attribute.

To address the defect of generalization, the
permutation-based technique (e.g., anatomy[8], k-
permutation[9]) are proposed recently. The basic idea
is that instead of generalization of QI-values, both the
exact QI-values and the sensitive values are published
in two different tables. Then by lossy join of these two
tables, every individual will be associated with all dis-
tinct sensitive values in the same QI-group (i.e., these
sensitive values are permutated). Compared with the
generalization-based technique, by publishing the exact
QI-values, the permutation-based technique achieves
better accuracy of aggregate queries. However, since
revealing the exact quasi-identifier values together en-
ables the adversary to easily confirm the presence of
any particular individual, the permutation-based tech-
nique fails to protect presence privacy[10]. It arises the
issue of trade-off between privacy and data utility: to
achieve better utility, privacy has to be sacrificed to
some extent. However, as in many applications, pri-
vacy always has higher priority than utility; users may
accept data analysis result of reasonable amount of in-
accuracy but cannot allow leakage of any private in-
formation. Therefore, it is important to design the
anonymization technique that can guard both presence
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privacy and association privacy as the generalization-
based technique but with better utility.

1.1 Our Approach: Ambiguity

In this paper, we propose an innovative technique,
Ambiguity, to protect both presence privacy and associ-
ation privacy with low information loss. Similar to the
permutation-based technique, Ambiguity publishes the
exact QI-values so that it can provide better utility than
the generalization-based technique. However, to pro-
tect presence privacy, instead of publishing QI-values
together in a single table, Ambiguity publishes them
in separate tables. Specifically, for each QI-attribute,
Ambiguity releases a corresponding auxiliary table. In
addition, Ambiguity releases a sensitive table (ST) that
contains the sensitive values and their frequency counts
in each QI-group. The QI-group membership is in-
cluded in all auxiliary tables and the sensitive table.
Fig.2 illustrates an example of the Ambiguity scheme of
the dataset in Fig.1(a).

How can Ambiguity protect the presence privacy? In-
tuitively, it hides the presence of individuals by brea-
king the associations of QI-values. When the adversary
tries to reconstruct the QI-values, he/she will have mul-
tiple candidates of QI-values due to the lossy join of the
auxiliary tables. Out of these candidates, some are false
match, i.e., they exist in the external database but not
in the original dataset. For example, assume that the
adversary knows that Alan is of (Age = 45, Gender =
M, Zipcode = 11000). All these values are present in
the QI-group G1 (i.e., the tuples of group ID 1) in the
released Ambiguity scheme in Fig.2. Since these val-
ues may all come either from Alan’s record or from a
few other individuals’ records, the adversary only can
conclude that Alan’s record may exist in the original
dataset. Since G1 corresponds to 4 tuples in AT 1, 1
tuple in AT 2, and 3 tuples in AT 3, the adversary will
have 4×1×3 = 12 tuples from the join result of all aux-
iliary tables of group ID 1. From the Count attribute
in the sensitive table ST, the adversary knows that G1

consists of 4 tuples in the original dataset. Thus there
are

(
12
4

)
number of choices to pick 4 tuples out of 12

combinations, out of which
(
11
3

)
choices contain Alan’s

record. Without additional knowledge, the adversary’s
belief probability of Alan’s record is present in the origi-
nal dataset is Pr(Alan ∈ T ) =

(
11
3

)
/
(
12
4

)
= 4/12 = 1/3.

How can Ambiguity protect the association privacy?
The protection of sensitive associations is accomplished
by lossy join of auxiliary tables and the sensitive
table. For example, to infer whether the associa-
tion (Alan, diabetes) exists in the original dataset,
since the reasoning is dependent on the presence of
Alan’s record, the adversary has to calculate the prob-
ability Pr((Alan,diabetes) ∈ T | Alan ∈ T ) =
Pr((Alan,diabetes)∈T∩Alan∈T )

Pr(Alan∈T ) . We have shown above
that Pr(Alan ∈ T ) = 1/3. Then to calculate
Pr((Alan,diabetes) ∈ T ∩ Alan ∈ T ), the adversary
joins the auxiliary tables and the sensitive table on the
first QI-group. The result contains 4×1×3×4 = 48 tu-
ples, which include all possible associations between QI-
values and sensitive values in the first QI-group. Again,
from the frequency counts in the sensitive table, the ad-
versary knows that this QI-group consists of 4 tuples.
Then his/her probability that Alan is associated with
diabetes with the assumption that his record is present
in the original dataset.

How can Ambiguity achieve less information loss
than the generalization-based technique? In this paper,
we consider the error of count queries as the informa-
tion loss. Ambiguity achieves less information loss than
generalization-based approaches since it releases the ex-
act QI-values. As a result, the estimation of query
results based on Ambiguity schemes is more accurate
than generalized ranges. For example, for the afore-
mentioned query Q1, it matches the first QI-group in
Fig.2. There are four distinct ages, three of which (i.e.,
45, 50 and 60) satisfy Age > 45. Thus the answer will
be estimated as 3/4. Compared with the answer 3/8
from the generalized table (Fig.1(b)), the query result
from the Ambiguity scheme is much closer to the real
answer 1.

Age GID

45 1

20 1

50 1

60 1

20 2

50 2

60 2

(a)

Gender GID

M 1

F 2

(b)

Zipcode GID

11000 1

12000 1

23000 1

54000 2

23000 2

21000 2

(c)

GID Disease Count

1 diabetes 1

1 flu 1

1 diarrhea 1

1 stroke 1

2 leukemia 2

2 diabetes 1

2 dyspepsia 1

(d)

Fig.2. An example of Ambiguity scheme. (a) Auxiliary table AT1 on QI = Age. (b) Auxiliary table AT2 on QI = Gender. (c) Auxiliary

table AT3 on QI = Zipcode. (d) Sensitive table ST.
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Approaches Presence Association Info.

Privacy Privacy Loss

Generalization Yes Yes Worst

Permutation Yes No Best

Ambiguity Yes Yes Between

(our work)

Fig.3. Comparison of Ambiguity with other techniques.

A brief comparison of our Ambiguity technique to
both generalization-based and permutation-based tech-
niques is given in Fig.3. We must note that although
the Ambiguity technique breaks the correlations be-
tween the attributes, which results in worse informa-
tion loss than the permutation-based approaches, this
is what we have to sacrifice for protection of the pres-
ence privacy. Furthermore, as we will show in Section 6
that the Ambiguity technique always produces less in-
formation loss than the generalization-based technique,
it is an effective approach for privacy-preserving data
sharing in the cloud.

1.2 Contributions

In this paper, we comprehensively study the Am-
biguity technique. First, we formalize the Ambiguity
methodology in Section 3. Ambiguity releases the QI-
values and sensitive values in different tables, so that
both presence privacy and association privacy can be
well protected.

Second, we define both presence privacy and associa-
tion privacy in a unified framework (Section 4). Specifi-
cally, we define both presence and association privacy as
probabilities, with association privacy probability con-
ditionally dependent on the presence privacy probabil-
ity. We discuss how to measure both presence and asso-
ciation privacy probability for the Ambiguity technique
(Section 5).

Third, we investigate the information loss of the Am-
biguity technique. We theoretically prove that the in-
formation loss by Ambiguity is always better than the
generalization-based technique (Section 6).

Fourth, we develop an efficient algorithm to generate
the Ambiguity scheme that provides sufficient protec-
tion to both presence privacy and association privacy.
The algorithm is designed in a greedy fashion so that
the amount of information loss is minimized (Section 7).

Fifth, we discuss PriView, an extension to Ambi-
guity. In particular, instead of splitting the original
dataset into multiple view tables, with each containing
a single QI-attribute, PriView splits the original dataset
into only two view tables, each containing multiple QI-
attributes. We analyze the privacy guarantee of PriV-
iew. Furthermore, we formally prove that PriView has
better utility than Ambiguity (Section 8).

Finally, we use extensive experiments to prove both
the efficiency and effectiveness of the Ambiguity and the
PriView techniques (Section 9). Our experimental re-
sults demonstrate that both techniques always achieve
better information loss than the generalization-based
technique.

The rest of paper is organized as follows. Section
2 describes the related work. Section 3 introduces the
background and defines the notions. Section 10 sum-
marizes the paper.

2 Related Work

The most related work is in the area of privacy-
preserving data publishing. Privacy-preserving data
publishing has received considerable attention recently.
There are considerable amounts of work on privacy
models and anonymization techniques.

The k-anonymity model is one of the earlies privacy-
preserving data publishing models. In a k-anonymous
table, each record is indistinguishable from at least
k−1 other records with respect to their quasi-identifier
values. As the enhancement to k-anonymity, seve-
ral privacy principles, for example, l-diversity[7], t-
closeness[11] and (α, k)-anonymity[12], have been pro-
posed to provide stronger privacy guarantee. The l-
diversity model requires that every QI-group must con-
tain at least l “well-represented” sensitive values. The
t-closeness model requires that the distance between the
distribution of anonymized dataset and that of the ori-
ginal database must be within t. And (α, k)-anonymity
requires that: 1) every quasi-identifier qid is shared by
at least k records, and 2) the confidence that qid is as-
sociated with the sensitive value s should be no larger
than α, the given threshold. Surprisingly, most of them
only pay attention to association privacy. Formal defi-
nition and technical discussion of the presence privacy
is completely ignored. One exception is δ-presence[3].
It defines the presence privacy as probabilities. In par-
ticular, given a released dataset T ∗, for any individual
t, its presence probability Pr(t ∈ T | T ∗) = m

n , where
m is the number of generalized tuples that match the
QI-values of t, and n is the number of tuples in the
external public dataset, i.e., the presence probability is
dependent on the size of the external public dataset.
Compared with our work, we assume the data owner
is not aware of which external public datasets are avai-
lable to the adversary, which is true in many real-world
applications. Under this assumption, it is impractical
to use the δ-presence privacy model in our work.

There are several techniques that anonymize
datasets to achieve the above privacy principles. Most
of these techniques can be categorized into two types:
generalization-based and permutation-based.
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Generalization-Based Techniques. Generalization is
a popular anonymization technique to realize the afore-
mentioned privacy models. By generalization, the
quasi-identifier values are replaced with less specific
ones (e.g., replace specific age with a range of ages),
so that after generalization, the original dataset is par-
titioned into groups, with each group consisting of at
least k tuples that are of the same generalized quasi-
identifier values[4,13-14].

Permutation-Based Techniques. Although the
generalization-based technique can effectively protect
privacy, it brings considerable amount of information
loss. The situation gets even worse when the origi-
nal dataset contains a large number of QI attributes:
due to the curse of dimensionality, it becomes difficult
to generalize the data without an unacceptably high
amount of information loss[15]. To address this defect,
a few permutation-based techniques (e.g., anatomy[8],
k-permutation[9], bucketization[16]) are recently pro-
posed to protect privacy without any data perturba-
tion. Anatomy[8] releases all QI and sensitive values
separately in two tables. By breaking the associa-
tion between sensitive values and QI-values, it pro-
tects the association privacy. Both k-permutation[9]

and bucketization[16] techniques first partition the tu-
ples into buckets. Then they randomly permute the
sensitive values within each bucket. The permutation
disconnects the association between the sensitive val-
ues and the QI attributes and thus guard association
privacy. All these permutation-based approaches re-
lease the exact QI-values, which enable them to achieve
better utility than the generalization-based technique.
However, releasing the exact QI-values in the same ta-
ble enables the adversary to easily confirm that a par-
ticular individual is included in the original dataset.
Therefore, the permutation-based approaches cannot
provide enough protection to presence privacy[10]. We
refer the readers to [17] for a detailed survey on privacy-
preserving data publishing.

3 Background and Notions

Let T be a relational table. Let A denote the set
of attributes {A1, A2, . . . , Am} of T and t[Ai] the value
of attribute Ai of tuple t. The attribute set A can
be categorized as identifier attributes ID, sensitive at-
tributes S, and quasi-identifier attributes QI. ID is
used to uniquely identify the individuals. Typical ID
attributes include people’s name and social security
number (SSN). For most of the cases, ID attributes
are removed from the released dataset. Sensitive at-
tributes S are the attributes, for example, disease or
salary, whose values are considered as sensitive. In the
next discussion, we assume there is only one sensitive

attribute S. Our work can be easily extended to mul-
tiple sensitive attributes.

Next, we formally define quasi-identifier attributes.
Definition 3.1 (Quasi-Identifier (QI) Attributes).

A set of non-sensitive non-ID attributes QI is called
quasi-identifier (QI) attributes if these attributes can
be linked with external datasets to uniquely identify an
individual in the general population.

The quasi-identifier attributes of the dataset in
Fig.1(a) is the set {Gender, Age, ZipCode}. Next, we
define QI-groups.

Definition 3.2 (QI-Group). Given a dataset T , QI-
groups are subsets of T such that each tuple in T be-
longs to exactly one subset. We denote QI-groups as
G1, G2, . . . , Gm. Specifically, ∪m

i=1Gi = T , and for any
i 6= j, Gi ∩Gj = ∅.

As an example, for the dataset in Fig.2, G1 =
{t1, t2, t3, t4}, and G2 = {t5, t6, t7, t8}.

Now we are ready to formulate Ambiguity.
Definition 3.3 (Ambiguity). Given a dataset T that

consists of m QI-attributes and the sensitive attribute
S, assume T is partitioned into n QI-groups. Then Am-
biguity produces m auxiliary tables (ATs) and a sensi-
tive table (ST). In particular,

1) Each QI-attribute QI i (1 6 i 6 m) corre-
sponds to a duplicate-free auxiliary table AT i of schema
(QI i,GID). Furthermore, for any QI-group Gj (1 6
j 6 n) and any tuple t ∈ Gj, there is a tuple
(t[QI i], j) ∈ AT i, where j is the ID of the QI-group
QI j.

2) The sensitive attribute S corresponds to a sensi-
tive table ST of schema (GID , S,Count). Furthermore,
for any QI-group Gj (1 6 j 6 n) and any distinct sen-
sitive value s of S in Gj, there is a tuple (j, s, c) ∈ ST,
where j is the ID of the QI-group QI j, and c is the
number of tuples t ∈ Gj such that t[S] = s.

Fig.2 shows an Ambiguity scheme of the dataset in
Fig.1(a). It consists of a sensitive table and three aux-
iliary tables for three QI-attributes Age, Gender and
Zipcode respectively.

4 Privacy Model

In this section, we formally define privacy models of
both presence privacy and association privacy. First, to
address presence privacy, we define α-presence. We use
Pr(t ∈ T ) to denote the adversary’s belief probability
of the individual record t in the original dataset T .

Definition 4.1 (α-Presence). Given a dataset T ,
let T ∗ be its anonymized version. We say T ∗ satisfies
α-presence if for each tuple t ∈ T ∗, Pr(t ∈ T ) 6 α.

Next, for association privacy, we define β-association
as adversary’s belief of the association between indi-
viduals and sensitive values. We use (t, s) to denote
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the association between an individual t and a sensitive
value s. Since the inference of any private association
of a specific individual is based on the assumption of
the presence of his/her record in the original dataset,
we define the association privacy probability as condi-
tionally dependent on the presence privacy probability.
Specifically, we use Pr((t, s) ∈ T | t ∈ T ) to denote the
adversary’s belief probability of the association (t, s) in
T with the assumption that the record of the individual
t exists in T .

Definition 4.2 (β-Association). Given a dataset T ,
let T ∗ be its released version. We say T ∗ satisfies β-
association if for any sensitive association (t, s) ∈ T ∗,
Pr((t, s) ∈ T | t ∈ T ) 6 β.

Based on both α-presence and β-association, we are
ready now to define (α, β)-privacy.

Definition 4.3 ((α, β)-Privacy). Given a dataset
T , let T ∗ be its released version. We say T ∗ is (α, β)-
private if it satisfies both α-presence and β-association.

Given a dataset T and two privacy parameters α and
β, our goal is to construct an (α, β)-private scheme T ∗

of T . Both α and β values are pre-defined by the data
owners when they sanitize the dataset. We assume that
the data owner uses the same value pairs of α and β
for all individual records in his/her dataset. It is an
interesting direction of future work to consider varying
α and β values for different individual records.

5 Privacy of Ambiguity

In this section, we elaborate the details of quantify-
ing both presence and association privacy of an Ambi-
guity scheme.

5.1 Measurement of Presence Privacy

To analyze the privacy guarantee of Ambiguity for
both presence privacy and association privacy, we have
to understand the attack first. By accessing the pub-
lished ST and AT tables, the attacker can try to rea-
son about the possible base tables that would yield the
same tables as ST and AT by using the same view def-
initions. Note that hiding the view definitions from the

attacker does not help, so we should consider the case
where the view definitions are known to the attacker.
We formalize this idea next, and identify each possible
database as a possible world.

Definition 5.1 (Possible Worlds). Given the
original dataset T and the Ambiguity tables T ∗ =
{AT 1, . . . ,ATm,ST}, then the possible worlds PW of
T = {T ′ | T ′ is a relation of the same schema as D,
ΠQI,S(T ′) = ΠQI ,S(./m

i=1 AT i ./ ST ).}
Fig.4 shows a subset of possible worlds of the Ambi-

guity tables in Fig.2. Out of all these possible worlds,
only a subset contains the correct tuples as in the orig-
inal dataset. This subset of possible worlds can help
the attacker infer the existence of individuals and their
private information. We call these worlds interesting
worlds. The formal definition is as follows:

Definition 5.2 (Interesting Worlds). Given the
original dataset T and the Ambiguity tables T ∗ =
{AT 1, . . . ,ATm,ST}, let PW be the possible worlds
constructed from T ∗. The interesting worlds IW t of
an individual tuple t ∈ T is defined as IW t = {T ′ |
T ′ ∈ PW , and t ∈ T ′.}

By the definition, only possible worlds 1 and 3 in
Fig.4 are the interesting worlds of Alan (Age = 45,
Gender = M, Zipcode = 11000). We assume that every
possible world and interesting world are equally likely.
Then for any individual tuple, we define its presence
probability and association probability as follows:

Definition 5.3 (Presence Probability). Given the
original dataset T and the Ambiguity tables T ∗ =
{AT 1, . . . ,ATm,ST}, let PW be the possible worlds of
T ∗. For each individual QI-value t ∈ T , let IW t be
the interesting worlds of t, then the presence probability
Pr(t ∈ T ) = |IW t|/|PW |.

We next discuss how to infer |IW t| and |PW |, the
size of possible worlds and interesting worlds. Intu-
itively the adversary will infer the presence of a tuple
in the original dataset if all of its QI-values in the ex-
ternal public database exist in the released Ambiguity
tables. We first define cover to address this. We use
tQI to denote the QI-values of the tuple t.

Age Gen. Zip Disease

45 M 11000 diabetes

20 M 12000 flu

50 M 23000 diarrhea

60 M 12000 stroke

20 F 54000 leukemia

50 F 23000 diabetes

60 F 23000 leukemia

60 F 21000 dyspepsia

(a)

Age Gen. Zip Disease

45 M 23000 diarrhea

20 M 11000 diabetes

50 M 12000 flu

60 M 12000 stroke

20 F 23000 diabetes

50 F 54000 leukemia

60 F 23000 leukemia

60 F 21000 dyspepsia

(b)

Age Gen. Zip Disease

45 M 11000 diabetes

20 M 12000 flu

50 M 12000 stroke

60 M 23000 diarrhea

20 F 21000 dyspepsia

50 F 23000 diabetes

60 F 23000 leukemia

60 F 54000 leukemia

(c)

Fig.4. Example of possible worlds. (a) Possible world 1. (b) Possible world 2. (c) Possible world 3.
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Definition 5.4 (Cover). Given a dataset T and an
Ambiguity table T ∗ (AT 1, . . . ,ATm,ST ), we say a tu-
ple t ∈ T is covered by T ∗ if tQI ∈./m

i=1 AT i, where ./
is an equal-join operator.

Based on the semantics of equal join, it is straight-
forward that a tuple is covered if every piece of its QI
values is contained in at least one auxiliary Ambiguity
table. We use t[QIi] to indicate the i-th QI-value of the
tuple t.

Lemma 1 (Cover). Given a dataset T and an Am-
biguity table T ∗ (AT 1, . . . ,ATm,ST ), let AT i (1 6 i 6
m) be the auxiliary table that contains the i-th QI at-
tribute QI i. Then a tuple t ∈ T is covered by T ∗ if and
only if there exists a QI-group Gj s.t. for each QI-value
QI i of t, (t[QI i], j) ∈ AT i. In particular, we say t is
covered by the QI-group Gj.

For example, Alice’s record is covered by the sec-
ond QI-group in the Ambiguity scheme in Fig.2. In the
join result of the auxiliary tables in Fig.2 of group ID
2 (i.e., the group that covers Alice’s record), there are
3 × 1 × 3 = 9 combinations of QI-attributes, some of
them are false match and do not exist in the original
dataset. Furthermore, the frequency count in the sen-
sitive table ST infers that there are four individuals in
this QI-group. Therefore there are

(
9
4

)
choices to choose

4 individuals from these 9 combinations (i.e., the pos-
sible worlds), out of which

(
8
3

)
choices contain Alice’s

record (i.e., the interesting worlds). Thus the probabi-
lity that Alice’s record exists in the original dataset is(
8
3

)
/
(
9
4

)
= 4/9. We use |G| to denote the number of

tuples in QI-group G, and |GAT i
| as the number of tu-

ples of QI-group G in the auxiliary table AT i. Then in
general:

Theorem 1 (Presence Probability). Given a dataset
T and an Ambiguity table T ∗(AT 1, . . . ,ATm,ST ), for
any individual tuple t ∈ T that is covered by T ∗, let G
be the QI-group that covers t. Then the presence prob-
ability Pr(t ∈ T ) = |G|/(Πm

i=1|GAT i
|).

Proof. Given the tuple t, the number of possi-
ble worlds |PW | equals

((Πm
i=1|GATi

|)
|G|

)
. Out of these

possible worlds, the number of interesting worlds of
t, |IW t| equals

((Πm
i=1|GATi

|−1)

(|G|−1)

)
. Thus Pr(t ∈ T ) =

|IW t|/|PW | = |G|/(Πm
i=1|GAT i

|). ¤
Theorem 1 shows that the presence probability can

be improved by increasing |GAT i
|, the size of QI-group

in AT i, and/or reducing |G|, the size of QI-group.
We follow this principle when we design the Ambigui-
ty scheme of low information loss. More details are in
Section 7.

5.2 Measurement of Association Privacy

Definition 4.2 has defined the association privacy
as a conditional probability Pr((t, s) ∈ T | t ∈ T ).

It is straightforward that Pr((t, s) ∈ T | t ∈ T ) =
Pr((t,s)∈T∩t∈T )

Pr(t∈T ) . We discussed how to measure Pr(t ∈
T ) in Subsection 5.1. Next, we discuss how to compute
Pr((t, s) ∈ T ∩ t ∈ T ).

Join of the auxiliary tables and the sensitive ta-
ble on group IDs will result in a table of schema
(QI 1, . . . ,QI m, S,GID), where QI i is the i-th QI-
attribute (1 6 i 6 m), and S is the sensitive attribute.
Due to lossy join on group IDs, in this table, each QI-
value is associated with all sensitive values in the same
QI-group. For example, by matching Alice’s QI-values
with the released Ambiguity tables in Fig.2, the adver-
sary knows that if Alice’s record is present in the origi-
nal dataset, it must exist in the second QI-group. First,
the join of the auxiliary tables and the sensitive table
on group ID 2 will construct 3×1×3× (2+1+1) = 36
tuples. Second, the frequency count in the sensitive
table ST indicates that there are four tuples in this
group. Therefore, there are

(
36
4

)
choices to choose four

tuples as the possible worlds. If the adversary as-
sumes Alice’s record is present in the original dataset
and he/she is interested with the association (Alice,
leukemia), since the frequency count of leukemia is 2,
there will be

(
2
1

) × (
35
3

)
choices that contain (Alice,

leukemia). Without additional knowledge, the prob-
ability Pr((Alice, leukemia) ∈ T ∩ (Alice ∈ T )) is(
2
1

) × (
35
3

)
/
(
36
4

)
. This is formally explained in the next

lemma. Again, we use |G| to denote the number of tu-
ples in QI-group G, and |GAT i | as the number of tuples
of QI-group G in the auxiliary table AT i.

Lemma 2. Given a dataset T and an Ambiguity
scheme T ∗(AT 1, . . . ,ATm,ST ), for any individual tu-
ple t ∈ T that is covered by T ∗, let G be the QI-group
that covers t. Let c be the frequency count of the sen-
sitive value s in G. Then the probability Pr((t, s) ∈
T ∩ t ∈ T ) = c/(Πm

i=1|GAT i
|).

Proof. Given the tuple (t, s), the number of possible
worlds |PW | equals

((Πm
i=1|GATi

|×|G|)
|G|

)
. Out of these pos-

sible worlds, the number of interesting worlds of (t, s)

|IW (t,s)| equals
((c

1)×(|G|×Πm
i=1|GATi

|−1)

(|G|−1)

)
. Thus Pr(t ∈

T ) = |IW t|/|PW | = c × |G|/(Πm
i=1|GAT i | × |G|) =

c/(Πm
i=1|GAT i

|). ¤
Now we are ready to measure the association privacy.

We use the same notations as above.
Theorem 2. (Association Privacy). Given a

dataset T and an Ambiguity scheme T ∗ (AT 1, . . .,
ATm,ST ), for any tuple t ∈ T ∗, let G be its covered
QI-group. Then the association privacy Pr((t, s) ∈ T |
t ∈ T ) = c/|G|, where c is the frequency count of the
sensitive value s in G.

Proof. Lemma 2 has shown that Pr((t, s) ∈ T ∩ t ∈
T ) = c/(Πm

i=1|GAT i |), and Theorem 1 has proven that
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Pr(t ∈ T ) = |G|/(Πm
i=1|GAT i

|). Thus Pr((t, s) ∈ T |
t ∈ T ) = Pr((t,s)∈T∩t∈T )

Pr(t∈T ) = c/|G|. ¤
Theorem 2 shows that for the association between

any individual and a sensitive value s, its association
probability is decided by the frequency of the sensitive
value s and the sum of frequency counts of all distinct
sensitive values in the QI-group that the individual be-
longs to. For instance, given the Ambiguity tables in
Fig.2, Pr((Alice, leukemia) ∈ T | Alice ∈ T ) = 2/4 =
1/2.

6 Information Loss of Ambiguity

In this paper, as the same as in [8, 18], we consider
the error of count queries as information loss. Specifi-
cally, let Q be a count query, Q(T ) and Q(T ∗) be the
accurate and approximate result by applying Q on the
original dataset T and the released Ambiguity table T ∗.
The relative error Error = |Q(T )−Q(T∗)|

|Q(T )| . Next, we ex-
plain how Ambiguity estimates Q(T ∗).

Given the released Ambiguity scheme (AT 1, . . .,
ATm, ST ), for any count query Q = count(σC(AT 1 ./
· · · ./ ATm ./ ST )), where C is a selection condi-
tion statement, we approximate Q(T ∗) by applying es-
timation on every individual table AT i. Before we ex-
plain the details, we first define the notions. Given the
Ambiguity scheme (AT 1, . . . ,ATm,ST ), and a count-
ing query Q with the selection condition C, we use Ci

(1 6 i 6 m) and CS to denote the results of apply-
ing projection of the scheme of table AT i and ST on
the selection condition C. We only consider Ci and
CS that are not null. For example, for C = “Age >
55 and Disease=stroke” on the Ambiguity scheme in
Fig.2, C1 (on AT 1) = “Age > 55”, and CS (on ST) =
“Disease=stroke”.

The pseudo code in Fig.5 shows the details of how

Input: Ambiguity tables (AT 1, . . . ,ATm,ST), que-

ry Q;

Output: the estimated answer of Q.

GID ← ΠGIDσCS (ST );

n ← 0, i ← 1;

For i 6 m

l ← 0, k ← 0;

For Group ID j ∈ GID

c ← count(σ(CS ,GID=j)ST );

l ← count(σ(Ci,GID=j)AT i);

k ← count(σ(GID=j)AT i);

n ← n + c× l/k

i ← i + 1;

Return n.

Fig.5. Algorithm: estimation of answers of counting queries.

to approximate the result of counting queries. First, we
locate all the QI-groups that satisfy CS . Second, for
for every returned QI-group Gj , we estimate the count
result. In particular, we compute the count result c,
i.e., the number of tuples in Gj that satisfies CS in the
sensitive table ST. Then for every selection condition
Ci on the AT table AT i (1 6 i 6 m), we calculate the
percentage p of tuples in Gj that satisfy Ci, and adjust
the count result accordingly by multiplying c with p.
Last, we sum up the adjusted counts for all QI-groups.

Note that the generalization-based technique uses
the same approach to estimate the results of count
queries. Their percentage p is defined as the size of
the range of the generalized tuples that satisfy the se-
lection condition C over the size of the whole range. An
example is given in Section 1.

We explain how to use the algorithm in Fig.5 to esti-
mate the results of count queries by using the Ambiguity
scheme in Fig.2. For query Q2:

SELECT count(*) from Released-data

WHERE Age>50 AND Zipcode=23000

AND Disease=diabetes;

Both QI-groups 1 and 2 satisfy the condition Dis-
ease = diabetes on ST. For QI-group 1, the count is
estimated as 1 × 2

4 × 1
3 = 1

6 , where 2
4 corresponds to

2 ages (out of 4) that satisfy Age > 50 in table AT 1,
and 1

3 corresponds to 1 zipcode (out of 3) that satisfy
Zipcode = 23000 in table AT 2. Similarly, for QI-group
2, the count is estimated as 1 × 2

3 × 1
3 = 2

9 . The final
answer is 1

6 + 2
9 = 7

18 .
Estimation of query answers brings information loss.

With QI-groups of fixed size, it is straightforward that
the fewer tuples in every auxiliary table that satisfy the
queries, the worse the information loss will be. How-
ever, no matter how worse it is, the information loss by
the Ambiguity technique is always less than that by the
generalization-based approach. We have:

Theorem 3 (Information Loss: Ambiguity vs. Gen-
eralization). Given a dataset T , let TG be the table of T
anonymized by generalization. Then there always exists
an Ambiguity scheme TA such that for any count query
Q, the relative error of answering Q by using TA is less
than that by TG.

Proof. We construct TA by following: for any QI-
group Gi in TG, we construct the corresponding Am-
biguity auxiliary tables and sensitive tables. Then we
prove that the union of these auxiliary tables and sen-
sitive tables construct the Ambiguity scheme TA that
always achieves less information loss than TG. For each
auxiliary table AT i (1 6 i 6 m), and for each QI-group
Gj in AT i, let kij be the cardinality of Gj in AT i and
lij be the count result by applying selection condition
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Ci on Gj in AT i. Let nj be the count result by applying
CS on the QI-group Gj in the sensitive table ST. Then
the estimation result on Gj in AT i is (nj× lij)/kij . As-
sume the data values in Gj of AT i are generalized to
Rij . Let rij be the size of the generated range R. Then
the estimation result on Gj in AT i is nj× lij/rij . Since
for each Gj of AT i, it is always true that Gj ⊆ Rij , i.e.,
the generalized range of the QI-group always consists
of all the tuples in the group, it is straightforward that
rij > kij . Therefore for every QI-group in each Ambi-
guity auxiliary table, its estimated result is larger than
that by generalization. It follows that Q(TA) > Q(TG).
Consequently the relative error by Ambiguity is always
less than that by generalization approaches. ¤

We also have experimental results to prove that our
Ambiguity approach always wins generalization-based
approaches with regard to information loss. More de-
tails can be found in Subsection 9.3.

7 Ambiguity Algorithm

In this section, we explain the details of our Ambigu-
ity algorithm. The purpose of the algorithm is to con-
struct an (α, β)-private scheme with small information
loss (α and β are two given privacy parameters). The
essence of the algorithm is to partition the dataset T
into multiple non-overlapping QI-groups, each of which
meets α-presence (by Theorem 1) and β-association (by
Theorem 2). Since the amount of information loss in-
creases when the size of QI-groups grows, to reduce the
information loss, we construct the QI-groups that are of
sizes as small as possible. Next, we discuss the details
of the Ambiguity algorithm. Our algorithm consists of
three steps.

Step 1. Bucketize on QI and Sensitive Values. The
first step of Ambiguity is to bucketize the values into
smaller units, so that the following construction proce-
dure will be more efficient on a smaller search space.
Intuitively for each attribute, its values will be buck-
etized, so that every bucket contains the tuples that
are of the same value. The buckets can be constructed
by hashing the tuples by their sensitive values. Each
hashed value corresponds to a bucket. We require that
for n distinct values, there exists n hashed buckets, so
that different values will not be hashed into the same
bucket. After the bucketization, we sort the buckets on
the sensitive attributes in descending order by the size
of the buckets, i.e., the number of tuples in the buckets.
The reason for sorting is to put higher priority on sensi-
tive values of large number of occurrences, so that in the
later steps of QI-group construction, these values will be
picked earlier and scattered more sparsely across multi-
ple QI-groups, and thus the occurrence of these values
in each QI-group is minimized. Since small frequency

occurrences incur both small presence privacy proba-
bility and association privacy probability, such design
enables earlier termination of construction of (α, β)-
privacy QI-groups with smaller sizes. Consequently the
amount of information loss is reduced. Fig.6 shows the
bucketized result of Fig.1. The integer numbers on the
right side of → indicate the bucket IDs.

60 → 4, 7, 8 23000 → 3, 6, 7 Diabetes → 1, 6

50 → 3, 6 M → 1,2, 3, 4 11000 → 1 Leukemia → 5, 7

20 → 2, 5 F → 5, 6, 7, 8 12000 → 2, 4 Flu → 2

45 → 1 59000 → 3 Diarrhea → 3

54000 → 5 Stroke → 4

Age Gender 21000 → 8 Dyspepsia → 8

Zipcode Disease

Fig.6. Bucketization.

Based on the bucketization result, we can compute
the presence probability as follows: for QI-group G, let
ki and n be the number of buckets that G covers for the
i-th QI-attribute QI i and the sensitive attribute. Then
following Theorem 1, the presence probability equals
n/Πm

i=1ki, where m is the number of QI-attributes. For
example, the QI-group in Fig.2 that contains both tu-
ples 1 and 2, which covers 2 buckets for Age, 1 for Gen-
der, 2 for Zipcode, and 1 for Disease, will result in the
presence probability of 1/(2×1×2) = 1/4. The pseudo
code in Fig.8 shows more details. We use HQI i

and Hs

to denote the hashed buckets on QI-attribute QI i and
the sensitive attribute S. The reason why we only com-
pute the presence privacy but not association privacy
is that we can make the QI-groups meet β-association
requirement by controlling the sizes of QI-groups. More
details are in step 2 and step 3.

Step 2. Construct (α, β)-Private QI-Groups from
Hashed Buckets. It is straightforward that for each QI-
group, the more buckets it covers, the smaller the pre-
sence probability will be. Therefore, when we pick the
tuples and add them into the QI-group, we always pick
the ones that cover the maximum number of buckets,
i.e., produce the minimum presence probability. The
pseudo code in Fig.7 shows more details.

Given two privacy parameters α and β, we construct
QI-groups in a greedy fashion: starting from the buck-
ets consisting of the largest number of unpicked tuples,

max ← 100000; picked ← null;

For all unpicked tuple t ∈ T {
m ← No. of hash buckets in HS that G ∪ {t} covers;

If m < max

max ← m; picked ← t;}
Return picked.

Fig.7. pick(G, HS): pick a tuple that will cover the max. num-

ber of buckets with the tuples in G ∪ {t} by using hash buckets

HS.
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we pick d1/βe tuples from d(1/β)e buckets on the sensi-
tive values, a tuple from a bucket. We pick the tuples by
calling pick() function (Fig.7), so that the picked tuples
will cover the maximum number of possible buckets,
i.e., produces the minimum presence probability. We
calculate the presence probability of the picked d1/βe
tuples. If the presence probability does not satisfy the
α-presence requirement, we keep picking tuples follow-
ing the same principle, until the presence probability
reaches the threshold. By this greedy approach, the α-
presence requirement will be met early and QI-groups of
smaller size will be constructed, which will result in the
information loss of smaller amount. We repeat the con-
struction of QI-groups until there are less than d1/βe
non-empty buckets, i.e., there are not enough tuples to
construct a QI-group of size d1/βe.

Step 3. Process the Residues. After step 2, there
may exist residue tuples that are not assigned to any
QI-group. In this step, we assign these residue tuples to
the QI-groups that are constructed by step 2. Adding
tuples to the QI-groups will influence both presence and
association probabilities. Thus for every residue tuple
t, we add it to the QI-group G if: 1) the sensitive value
of tuple t is not included in G originally, and 2) the pre-
sence probability of the QI-group G ∪ {t} is less than
α. We have:

Theorem 4. Given a dataset T , let T ∗ be the Am-
biguity scheme that is constructed by Ambiguity algo-
rithm. Then T ∗ is (α, β)-private.

Proof. Since the construction of QI-groups termi-
nates only when the α-presence is satisfied, and adding
residue tuples is also aware of α-presence requirement,
the constructed QI-groups always satisfy α-presence.
The proof of β-association is the following. Since each
bucket corresponds to a unique sensitive value, by our
construction approach, every sensitive value in every
QI-group has only one occurrence, which results that
the sum of frequency counts in every QI-group must be
at least d1/βe, i.e., step 2 always produces QI-groups
that satisfy β-association. Furthermore, adding residue
tuples of unique sensitive values to QI-groups by step

3 only decreases the association probability. Thus the
QI-groups still meet the β-association requirement. ¤

Following our construction procedure, the Ambiguity
scheme has the following privacy property.

Theorem 5. (Ambiguity vs. l-Diversity). Given
a dataset T , let T ∗ be the Ambiguity scheme that is
constructed by our algorithm. Then T ∗ satisfies d1/βe-
diversity.

Proof. In our Ambiguity algorithm, since in each
QI-group G, every sensitive value only has 1 number of
occurrence, and there are at least d1/βe tuples in G, G
consists of at least d1/βe distinct sensitive values, i.e.,
G satisfies d1/βe-diversity. ¤

8 Extension: PriView

As shown in Section 6, the information loss by Am-
biguity is always less than that by the generalization-
based anonymization technique. However, due to lossy
join of multiple released auxiliary tables and the sen-
sitive table, the information loss may still be high. In
this section, we discuss PriView, an extension to Am-
biguity, that incurs smaller information loss. In par-
ticular, instead of publishing multiple auxiliary tables,
each containing a single QI-attribute, we release only
two view tables, each containing multiple QI-attributes.
Fig.9 shows an example of PriView tables of the original
dataset shown in Fig.1(a). Formally:

Definition 8.1 (PriView). Given a dataset T that
consists of m QI-attributes QI and the sensitive at-
tribute S, PriView includes an auxiliary table (AT) and
a sensitive table (ST). In particular:

1) the auxiliary table AT is of schema (QI ,GID),
where QI ⊂ QI,

2) the sensitive table ST is of schema (GID ,QI ′,S,
Count), where (i) QI ′ ∪ QI = QI, and (ii)
QI ′ ∩QI = ∅.

8.1 Privacy Analysis

Similar to Ambiguity, PriView protects both pres-
ence and association privacy by lossy join of the AT

ki ← No. buckets that G covers for HQIi
;

n ← No. buckets that G covers for HS;

Return n/Πm
i=1ki.

Fig.8. CalPPro(G): calculation of presence

probability of QI-group G.

Age Gender GID

45 M 1

20 M 1

50 M 1

60 M 1

20 F 2

50 F 2

60 F 2

60 F 2

(a)

GID Zipcode Disease Count

1 11000 diabetes 1

1 12000 flu 1

1 23000 diarrhea 1

1 12000 stroke 1

2 54000 leukemia 1

2 23000 diabetes 1

2 23000 leukemia 1

2 21000 dyspepsia 1

(b)

Fig.9. Example of PriView tables. (a) Auxiliary table AT . (b) Sensitive table ST.
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and ST tables. Then by the similar reasoning as in
Theorem 1 and Theorem 2, we have:

Theorem 6 (Presence and Association Probabili-
ties). Given the original dataset T and the PriView
tables {ST ,AT}, for each individual tuple t ∈ T , let G
be the QI-group that covers t. Then the presence prob-
ability Pr(t ∈ T ) = 1/|G|, and Pr((t, s) ∈ T |t ∈ T ) =
c/|G|, where c is the frequency count of the sensitive
value s in G.

Proof. First, we explain the details of how to infer
Pr(t ∈ T ). It is straightforward that the total num-
ber of possible worlds constructed from QI-group G
equals

(|GAT |×|GST |
|G|

)
, where |GAT | and |GST | are the

sizes of the QI-group G in AT and ST tables. Out
of these possible worlds, the total number of interest-
ing worlds of QI-value t equals

(|GAT |×|GST |−1
|G|−1

)
. Thus

Pr(t ∈ T ) = |G|/(|GAT | × |GST |). Since |GAT | = |G|,
Pr(t ∈ T ) = 1/|G|. Similarly, for the association
probability Pr((t, s) ∈ T | t ∈ T ), the total number
of possible worlds equals

(
c×|GAT |×|GST |

|G|
)
, and the to-

tal number of interesting worlds of QI-value t equals(
c×|GAT |×|GST |−1

|G|−1

)
, thus Pr((t, s) ∈ T ) = c/|G|. ¤

8.2 Information Loss of PriView

As in Ambiguity, we still consider the accuracy of
count queries as the utility for PriView. The only dif-
ference between Ambiguity and PriView is that PriView
only considers the join of two tables, while Ambiguity
may consider more than two tables. Thus we adapt
Fig.5 in Section 6 to PriView by changing the input to
two tables {AT ,ST}. And we have:

Theorem 7. (Information Loss: PriView vs. Am-
biguity). Given a dataset T , let TA be the released Am-
biguity tables of T . Then there always exists a PriView
scheme TP such that for any count query Q, the relative
error of answering Q by using TP is no more than that
by TA.

Proof. Given the Ambiguity table TA, we construct
the PriView scheme TP by following: first, we pick an
auxiliary table in TA to join with the sensitive table in
TA. Let the join result be ST. Second, we join the rest of
unpicked auxiliary tables in TA and let the join result be
AT . Then {AT , ST} is the PriView scheme TP that we
are looking for. Compared with Ambiguity, to evaluate
count queries on join of tables, PriView only needs one
lossy join, while Ambiguity contains m − 1 > 1 lossy
joins, where m is the number of QI-attributes. Thus
PriView always produces smaller information loss than
Ambiguity. ¤

Our experimental results also show that PriView

always incur much less information loss than Ambigu-
ity, More details can be found in Section 9.

8.3 Algorithm

Intuitively, given m QI-attributes, PriView has 2m−
2 possible schemes. However, due to the fact that the
more QI-attributes being put into the same table, the
less the information loss incurred by lossy join, we do
not need to consider all possible schemes. Thus we
only need to consider the schemes in which the AT ta-
ble contains m−1 QI-attributes, while ST contains the
remaining one QI-attribute. In other words, we only
have m possible PriView schemes to consider. This op-
timization dramatically reduces the search space. Out
of these m schemes, we pick the one that potentially
returns the smallest information loss. To achieve this
goal, we follow the same principle as Ambiguity algo-
rithm: we construct the QI-groups that of sizes as small
as possible. Thus we adapt the Ambiguity algorithm
(Section 7) to PriView. In particular, instead of bucke-
tizing on each individual QI-attribute QI i, we bucketize
on (QI i,S), where S is the set of sensitive attributes.

9 Experiments

We ran a battery of experiments to evaluate the ef-
ficiency and effectiveness of Ambiguity technique. In
this section, we describe our experiments and analyze
the results.

9 Experimental Setup

Setup. We implement the Ambiguity algorithm in
C++. We use a workstation running Linux RedHat
version 2.6.5 with 1 processor of speed 2.8GHz and 2GB
RAM. We use the multi-dimension k-anonymity gener-
alization algorithm implemented by Xiao et al.[8]①.

Dataset. We use the Census dataset that contains
personal information of 500 000 American adults②.
The details of the dataset are summarized in Fig.10.

Attribute Number of Distinct Values

Age 78

Gender 2

Education 17

Marital 6

Race 9

Work Class 10

Country 83

Occupation 50

Salary-Class 50

Fig.10. Summary of attributes.

①The source code is downloaded from http://www.cse.cuhk.edu.hk/∼taoyf/paper/vldb06.html
②http://www.ipums.org/
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From the Census dataset, we create two datasets, Occ
and Sal, with the Occ set using Occupancy as sensitive
attribute and Sal using Salary. For each set, we ran-
domly pick 100 K, 200K, 300 K, 400 K and 500 K tuples
from the full set and construct tables as Occ-n and Sal -
n (n = 100 K, 200 K, 300 K, 400 K, 500 K).

To study the impact of distributions to anonymiza-
tion, we also generate a set of files with various dis-
tributions. We construct 10 datasets Occ-100K-d and
Sal-100K-d (1 6 d 6 5), each of 100K tuples. The
parameter d is used to specify that the sensitive values
are distributed to (100/d)% of tuples. In other word,
d controls the degree of density. The larger the d, the
denser the dataset.

Queries. We consider the count queries of the form.

SELECT QT1, . . . , QTi, count(*)

FROM data

WHERE S = v
GROUP By QT1, . . . , QTi;

Each QT i is a QI-attribute, whereas S is a sensi-
tive attribute. We randomly pick QT 1, . . . ,QT i, vary
the value v and create three batches of query workload
Query − i (1 6 i 6 3), where i = 1, 2 and 3 correspond
to the query selectivity of 1%, 5% and 10%.

9.2 Performance of Generating Ambiguity
Scheme

First, we vary the values of α and β for the α-
presence and β-association requirements. Fig.11 shows
the result of Occ datasets with size 500k. It demon-
strates that the performance is not linear to either α or
β. This is because the time complexity of the Ambiguity
algorithm equals tc ×m, where tc is the time comple-
xity of function CalPPro() (Fig.8) and m is the number
of QI-groups. Smaller QI-groups will result in smaller
tc but larger m, i.e., tc × m is not linear to the size
of QI-groups. Therefore although α and β decide the
size of QI-groups, they cannot decide the performance.
We examine the other Occ datasets with different sizes
as well as Sal datasets and got the similar results. For
simplicity, we omit the results.

Second, we examine the performance on datasets of

Fig.11. Performance: various α and β values.

different distributions. Fig.12 shows the result of Occ
datasets. We observe that the sparser the dataset is,
the better the performance will be. This is because with
sparser datasets, the QI-groups will cover more distinct
values and as a result will yield better presence prob-
ability. Therefore it will meet the α-presence require-
ment earlier without additional computation to search
for appropriate tuples to be added into QI-groups. The
same phenomenon also hold for Sal datasets.

9.3 Information Loss

We process each query workload Query−i (i = 1, 2, 3
correspond to the query selectivity of 1%, 5% and 10%)
on the resulting tables and measure the average of the
relative errors. As explained in Section 6, for each
query, its relative error equals (|act | − |est |)/|act |,
where act is its actual result derived from the dataset,
and est the estimate computed from the Ambiguity,
PriView, and generalized table. The details of mea-
surement of |est | for both generalized tables and Ambi-
guity technique are explained in Section 6. The answer
estimation measurement on the PriView scheme is the
same as that of Ambiguity.

The first set of this part of experiments compares the
accuracy of query results of PriView, Ambiguity tech-
nique and generalization technique regarding different
query configurations. Fig.13(a) shows the comparison
result for queries of different selectivity. We observe
that the information loss decreases when the queries
are more selective. We also measure the accuracy of
queries involving 3, 4 and 5 attributes in the selection
conditions. The attributes are chosen randomly. The

Fig.12. Performance of Ambiguity: various distributions, Occ dataset. (a) β = 0.1. (b) β = 0.05. (c) β = 0.025.
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Fig.13. Information loss. (a) Different queries. (b) Various num-

bers of attributes in queries.

results are shown in Fig.13(b). It is not surprising that
the information loss will increase when there are more
attributes in queries. For both sets of experiments,
as expected, PriView always wins the other two ap-
proaches, while Ambiguity always produces better ac-
curacy of query results than the generalization-based

approach.
Second, we measure the impact of β values to in-

formation loss. Fig.14 shows that when β increases,
all three approaches have decreasing information loss.
This is because larger β results in smaller QI-groups,
which decreases the size of QI-groups for both Ambi-
guity and PriView, and the size of generalized ranges
for generalization-based approaches. However, since
the generalized ranges always grow faster than the
number of distinct tuples, our Ambiguity and PriV-
iew techniques have much better accuracy than the
generalization-based approach.

We also measure the impact of the data distribu-
tion to the information loss of Ambiguity and PriView.
Fig.15(a) shows that for Ambiguity, the denser datasets
deliver worse accuracy. The reason is that the dense
datasets will produce QI-groups of larger size, which
consequently results in worse accuracy of query results.
The same results also hold for PriView (Fig.15(b)).

As a brief summary, we showed that our Ambigu-
ity technique allows more accurate analysis of aggre-
gate queries. Its information loss is always smaller than
generalization. Moreover, the extension PriView incurs
smaller information loss than Ambiguity.

10 Conclusion

Storing private databases in the cloud of computers
and sharing them with third-party service providers

Fig.14. Information loss; various β values. (a) β = 0.025. (b) β = 0.05. (c) β = 0.1.

Fig.15. Information loss; various datasets. (a) Ambiguity. (b) PriView.
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raise serious concern of privacy. We considered two
kinds of privacy leakage, presence leakage, which is to
identify an individual in (or not in) the dataset, and
association leakage, which is to identify whether an in-
dividual is associated with some sensitive information,
e.g., a specific disease. In this paper, we defined α-
presence and β-association to address these two kinds of
privacy leakage in a unified framework. We developed a
novel technique, Ambiguity, that protects both presence
privacy and association privacy. We investigated the
information loss of Ambiguity and proved that Ambigu-
ity always yields better utility than the generalization-
based technique. We elaborated our algorithm that ef-
ficiently constructs the Ambiguity scheme that not only
satisfies both α-presence and β-association but also pro-
duces small amounts of information loss. We also pro-
posed PriView that better preserves the correlations
between data values than Ambiguity. In the future, we
plan to adapt both Ambiguity and PriView to the dy-
namic datasets.
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