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Abstract The engineering of distributed adaptive software is a complex task which requires a rigorous approach. Software
architectural (structural) concepts and principles are highly beneficial in specifying, designing, analysing, constructing and
evolving distributed software. A rigorous architectural approach dictates formalisms and techniques that are compositional,
components that are context independent and systems that can be constructed and evolved incrementally. This paper
overviews some of the underlying reasons for adopting an architectural approach, including a brief “rational history” of our
research work, and indicates how an architectural model can potentially facilitate the provision of self-managed adaptive
software system.
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1 Software Architecture Approaches

Distributed processing offers the most general, flex-
ible and promising approach for the provision of com-
puting services. It offers advantages in its potential
for improving availability and reliability through repli-
cation; performance through parallelism; and sharing
and interoperability through interconnection.

Studies in software maintenance for distributed sys-
tems have indicated that the general move to distribu-
tion contributed to the simplification of the primitive
software components used in distributed systems. How-
ever, this benefit is often overwhelmed by the increased
complexity of the overall system. There is therefore
a need to deal with issues such as component inter-
action and composition, design complexity, system or-
ganisation and reasoning. Rigorous use of a software
architecture offers much potential benefit in providing
a framework or skeleton with which to deal with these
issues.

Software architecture descriptions aim to specify sys-
tem structure at a sufficiently abstract level to deal with
large and complex systems yet be sufficiently detailed
to support reasoning about various aspects and proper-
ties. Architectures are generally defined hierarchically,
as compositions of interconnected components. A com-
ponent type is defined in a context-independent manner
in terms of its communication interface: the services it
provides to other components and the services it

requires in order to perform its functionality.
Composite components are defined in terms of their

constituent components (other primitive or composite
components) and the bindings between these. Services
provided internally are bound to an interface service
provision so as to be available externally. Service re-
quirements which cannot be satisfied internal to the
composite component are made visible at its inter-
face. Thus architectural descriptions support abstrac-
tion by hierarchical decomposition and encapsulation.
The purpose of an Architectural Description Language
(ADL) is to facilitate provision of precise software ar-
chitecture descriptions, and to provide associated rea-
soning and/or software construction support.

A software architecture can be used as a model in
much the same way as other engineers build models to
check particular aspects of a system design. We be-
lieve that an ADL should be essentially structural and
sufficiently abstract to support multiple views. These
views can be presented as elaborations of the shared
architectural structure. For instance, for behaviour
modelling and reasoning, these elaborations add the
particular component behaviour and interaction details
of interest to the underlying structure. It is essential
that the behaviour modeling is compositional so as to
support analysis of the system behaviour and verifi-
cation of its properties as the (parallel) composition
of its component behaviours. For system construc-
tion, the architecture is elaborated with the necessary
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implementation details. It can then be used to compose
component implementations so as to construct and in-
terconnect the particular distributed system. Thus the
same instantiated architecture can be used for multiple
aspects such as both behaviour modelling and system
construction. Having a common architectural structure
helps to preserve consistency between the various mod-
els and the system itself. Another important aspect of
the ADL is the need to support variation in the form of
system families. An architecture is a general descrip-
tion which, on instantiation, is tailored to produce a
system instance which represents a member of the ar-
chitectural family.

2 Rigorous Architectural Approach: A Brief
History

As described in [1], our work can be divided into
three overlapping phases. Firstly, the use of a declar-
ative explicit architecture characterises our work on
configuration programming. The prototype distributed
system Conic[2,3] included the ability to specify, con-
struct and dynamically evolve a distributed software
system[2,4], using a configuration language to explicitly
compose software components[5,6]. Work on the general
purpose ADL, Darwin[7−9], and its industrial instanti-
ation, Koala[10], followed, providing a sound structural
language and facilities for variations respectively. The
second phase focused on modelling in an architectural
framework. The aim is to analyse systems as struc-
tural compositions of their constituent components’ be-
haviour. This led to work with labelled transition sys-
tems (LTS), the process algebra, FSP (Finite State
Processes)[11] and construction of the model checker,
LTSA[12−15]. Model animation and model synthesis
from scenarios[16] has enriched this vein of research.

It is our experience that software architecture de-
scriptions at an appropriate level of abstraction seem
to be crucial even during the requirements specifica-
tion process. Requirements are often not fully elabo-
rated or even understood before a (hypothetical) solu-
tion architecture is developed. The architecture often
helps to raise new issues and requirements. It is impor-
tant that the architecture should be stable, represent-
ing the essential core aspects of the system structure
which do not change radically during software devel-
opment. System evolution is then seen as a combina-
tion of minor changes to or replacement of primitive
components, or major changes to composite compo-
nents and hence the system structure. We believe that
pure top-down design and refinement are essentially
impractical except for very constrained well-understood
parts of application domains. Design decomposition

and compositional analysis and reasoning go hand-in-
hand. They should be performed iteratively and in-
crementally, with automated compositional modelling
techniques being used to provide the necessary feed-
back to designers to help correct errors and raise confi-
dence in their designs. This experience has been gained
over many years, working initially with industry such as
British Coal and British Petroleum, and more recently
with Philips and others.

However, some software systems are particularly dif-
ficult to construct, manage and analyse as they tend to
be highly dynamic. Current ADL descriptions tend to
be largely static and can describe only restricted forms
of dynamically changing structures. In such circum-
stances, architectures should impose constraints on the
kinds of components that can be integrated into the sys-
tem and on the interactions that can take place. This
is a difficult area that requires further research and ex-
perimentation, but is crucial if we are to be able to
manage and reason about systems such as those of the
scale, diversity, complexity and dynamism constructed
from Web services. The goal is to provide support for
dynamic, self-managing and adaptive systems that au-
tomatically reconfigure themselves to accommodate dy-
namically changing context and requirements without
human intervention.

3 Self-Managed Adaptive Software

The challenge is to provide software systems in such
a way that they are robust in the presence of major
issues such as change and complexity.

Change is inherent, both in the changing needs of
users and in the changes which take place in the opera-
tional environment of the system. Hence it is essential
that our systems can adapt as necessary to continue
to achieve their goals. Change is also induced by fail-
ures or the unavailability of parts of the system. It is
therefore necessary to envisage dynamically changing
configurations of software components so as to adapt
to the current situation. Dynamic change, which oc-
curs while the system is operational, requires that the
system evolves dynamically, and that the adaptation
occurs at run-time.

Complexity requires that we use rigorous techniques
to design, build and analyse our software and thereby
avoid unnecessary design flaws. This implies the need
for analytical techniques which cope with changing
goals and the changing compositions of adaptive soft-
ware.

Since the complexity and response times required
by the changes may not permit human intervention,
we must plan for automated management of change.
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The systems themselves must be capable of determin-
ing what system change is required, and in initiating
and managing the change process wherever possible.
This is the aim of self-managed systems.

Self-managed systems are those that are capable
of adapting as required though self-configuration, self-
healing, self-monitoring, self-tuning, and so on, which
are also referred to as self-∗ or autonomic systems.

The aim of self-configuration is that the components
should either configure themselves such that they sat-
isfy the specification of the goals, properties and con-
straints that you expect your system to achieve or be
capable of reporting that they cannot. If the system
suffers from changes in its requirements specification
or operational environment such as changes in use,
changes in resource availability or faults in the envi-
ronment or in parts of the system itself, then the aim
of self-adaptation and self-healing is that the system
should reconfigure itself so as to again either satisfy
the changed specification and/or environment, or pos-
sibly degrade gracefully or report an exception. Note
that the specifications should include not only func-
tional behaviour, but also those non-functional prop-
erties such as response time, performance, reliability,
efficiency and security, and that satisfaction of a speci-
fication may well include optimisation.

Different research communities are engaged in rele-
vant research, investigating and proposing approaches
to various aspects of self-management for particular do-
mains. For instance, in the networking, distributed sys-
tems and services community, there has been the Au-
tonomic Computing conferences[17] and more recently,
the SelfMan Workshop 2006[18] to discuss and analyse
the potential of self-∗ systems for managing and control-
ling networked systems and services. Dobson et al.[19]

provide a recent survey on autonomic communications,
and propose an autonomic control loop (a phased ap-
proach) of actions collect (monitoring), analyse, decide
and act, a cycle which naturally appears in many pro-
posed approaches.

In the software engineering community, there has
been a series of workshops which started in the dis-
tributed systems community with the CDS (Con-
figurable Distributed Systems) conferences[20−22] and
more recently with WOSS (Workshop on Self-Healing
and Self-Managed Systems)[23,24] and SEAMS (Soft-
ware Engineering for Adaptive and Self-Managing
Systems)[25]. Other interested research communities
include the intelligent agent, machine learning and
planning communities. Huebscher and McCann[26] pro-
vide an excellent and comprehensive survey on auto-
nomic computing.

However, although research has provided much that
is useful in contributing towards self-management, the
general and fundamental issues of providing a compre-
hensive and integrated approach remains.

Not surprisingly, we believe that an architecture-
based approach offers potential benefits such as gen-
erality, where the underlying concepts and principles
should be applicable to a wide range of application do-
mains, each with its own peculiar architecture. Archi-
tectures are also designed to handle issues of scalability
and complexity — by supporting abstraction and sep-
aration of concerns.

Many others also advocate the use of a component-
based architectural approach. For instance, Oreizy et
al.[27] provide a general outline of an architectural ap-
proach which includes adaptation and evolution man-
agement; Garlan and Schmerl[28] describe the use of ar-
chitecture models to support self-healing; Dashofy, van
der Hoek and Taylor propose the use of an architecture
evolution manager to provide the infrastructure for run-
time adaptation and self-healing in ArchStudio[29]; and
Castaldi et al.[30] extend the concepts of network man-
agement to component-based, distributed software sys-
tems to propose an infrastructure for both component-
and application-level reconfiguration using a hierarchy
of managers.

As mentioned, our own work has concentrated
on the use of ADLs for software design and im-
plementation from components[9], including limited
language support for dynamic change[10], a general
model for dynamic change and evolution[4], associated
analysis techniques[31] and initial steps towards self-
management[32].

4 An Architectural Model for
Self-Management

A self-managed software architecture is one in which
components automatically configure their interaction in
a way that is compatible with an overall architectural
specification and achieves the goals of the system. The
objective is to minimise the degree of explicit manage-
ment necessary for construction and subsequent evolu-
tion whilst preserving the architectural properties im-
plied by its specification. More details of our approach
can be found in [33, 34]; we provide a summary below.

Based on the work by Gat[35] in robotics, we pro-
pose the use of a three-layer reference architecture (see
Fig.1). This provides the necessary separation of con-
cerns for a rigorous engineering approach in which low-
level actions can be clearly and formally related to high-
level goals that are precisely specified. In addition to
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the separation of concerns, one of the criteria for placing
functionality in different layers in our self-managed sys-
tems architecture is that of time. Immediate feedback
actions are at the lowest level and the longest actions
requiring deliberation are at the uppermost level.

Fig.1. Three-layer architecture model for self-management.

4.1 Component Control

The bottom layer is Component Control, which con-
sists of the set of interconnected components that ac-
complish the application function of the system. It in-
cludes facilities to report the current status of compo-
nents to higher layers, to adjust the operating parame-
ters of components and for modification by component
creation, deletion and interconnection. An important
characteristic of this layer is that, when a situation
arises that the current configuration of components is
not designed to deal with, this layer detects this failure
and reports it to higher layers.

The main research challenge at this level of a self-
managed architecture is concerned with preserving safe
application operation during change. The algorithm
outlined in [4], which includes the component respon-
sibilities of change management, tries to ensure stable
conditions for change by ensuring that components are
passive or quiescent before change. For example, a com-
ponent can be safely removed from a system if it is iso-
lated (no bindings to or from) and passive (cannot ini-
tiate transactions). The challenge is to find scalable al-
gorithms that minimize disruption to the system during
change and ensure that system safety properties are not
violated. An associated challenge is to verify that safety
properties are not violated during change[31], a problem
promisingly addressed by Zhang and Cheng[36].

4.2 Change Management

The middle layer is Change Management which is
responsible for effecting changes to the underlying com-
ponent architecture in response to new states reported

by that layer or in response to new objectives required
of the system introduced from the layer above. It con-
sists of a set of reactive plans, each giving an action
or sequence of actions to handle the new situation. It
changes the component configuration from one architec-
ture to another by recognizing which components are
needed to accomplish the current plan of actions, where
action(s) indicate which component is appropriate and
required (i.e., provides a mapping from plan actions
to components). This layer can introduce new compo-
nents, recreate failed components, change component
interconnections and change component operating pa-
rameters. The layer can respond quickly to new situ-
ations by executing what are in essence pre-computed
plans. If a situation is reported for which a plan does
not exist then this layer must invoke the services of the
higher planning layer. In addition, new goals for a sys-
tem will involve new plans being introduced into this
layer.

One of the major research challenges at this level
is dealing with distribution and decentralization. Dis-
tribution is the most general situation raising issues of
latency, concurrency and partial failures, and is likely to
be the case (at least for parts of the system) in large and
complex applications. Coping with distribution and ar-
bitrary failure leads to the need for some level of local
autonomy while preserving global consistency.

4.3 Goal Management

The uppermost layer is Goal Management which is
responsible for change planning. This takes the cur-
rent state and a specification of a high-level goal and
attempts to produce a plan to achieve that goal. This
layer produces change management plans in response
to requests from the layer below and in response to the
introduction of new goals.

There are many research issues at this layer, such as
how to provide a precise domain model in which for-
mulate plans, how to represent high level system goals,
how to synthesize change management plans from these
goals and how general or domain specific this layer
should be. The initial problem is to have a precise
specification of the domain which is sufficiently general
yet provides the constraints introduced by the environ-
ment. The goals required of the system need to en-
compass both application goals and system goals con-
cerned with self-management. It is likely that the re-
finement of very high-level goals to precisely specified
goals that can be processed by machines will require hu-
man assistance as is current practice in goal-oriented re-
quirements engineering[37]. The challenge is to achieve
goal specification such that it is both comprehensible
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by human users and machine readable. The likelihood
is that the more domain specific this layer is, the more
automated plan synthesis can be, even if this is at the
expense of generality and flexibility.

5 Conclusion

We have presented our background experience and
views as to why architectural concepts seem to pro-
vide a promising basis for an approach to the provision
of self-managed adaptive software systems. We have
also presented an outline of our three-layer architec-
ture model. We would emphasize that we do not con-
sider this an implementation architecture but rather
a conceptual or reference architecture which identifies
the necessary functionality for self management. It also
provides a context for discussing some of the main re-
search challenges which self-management poses. There
has been much progress towards providing self-managed
systems, but much remains to be done to provide an in-
tegrated and comprehensive solution, supported by an
appropriate infrastructure.

The approach must be amenable to a rigorous soft-
ware development approach and analysis, so as to en-
sure preservation of desirable properties and avoid un-
desirable emergent behaviour. Furthermore, we have
not discussed non-functional properties such as per-
formance modelling. It would seem that, in order to
perform realistic performance modelling, there needs to
be sufficient detail as to the actual performance of im-
plemented components, their allocation, resource con-
flicts and interaction properties and delays. This may
well mean that anything other than crude response
estimates and performance analysis is just not possi-
ble at an abstract architectural level. However even
such crude indications of feasibility are useful. We are
currently interested in extending our architectural be-
haviour models to handle probabilistic models.

Nevertheless, we believe that a layered architectural
approach offers a suitable separation of concerns and a
promising framework for working on each of the rele-
vant research issues.
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