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Abstract Detecting duplicates in data streams is an important problem that has a wide range of applications. In general,
precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, and, on the other
hand, the elements in data streams are always time sensitive. These make it particular significant approximately detecting
duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper, we present a novel
data structure, Decaying Bloom Filter (DBF), as an extension of the Counting Bloom Filter, that effectively removes stale
elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm
to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors, but not false
negative errors as in many previous results. We analyze the time complexity and detection accuracy, and give a tight upper
bound of false positive rate. For a given space G bits and sliding window size W , our algorithm has an amortized time
complexity of O(

√
G/W ). Both analytical and experimental results on synthetic data demonstrate that our algorithm is

superior in both execution time and detection accuracy to the previous results.

Keywords data stream, duplicate detection, bloom filter, approximate query, sliding window

1 Introduction

Recently, online monitoring of data streams has
emerged as an important problem in Data Stream Man-
agement Systems (DSMS)[1,2]. One interesting problem
in data monitoring is to find duplicate elements, which
was studied by several researchers[3,4]. Duplicate detec-
tion over data streams has applications in a wide range
of areas. For example, recently, Metally et al.[3] pro-
posed duplicate detection in click streams. In a web
advertising scenario, advertisers pay web site publish-
ers for clicks on their advertisements. However, a phe-
nomenon called click inflation[5] shows that there is an
incentive for publishers to falsely increase the number
of clicks generated from their sites. Hence a third party,
the advertising commissioner, has to detect those false
clicks by monitoring duplicate click IDs. Each click ID
is represented by a pair of a customer ID and an adver-
tisement ID. When calculating the publishers’ commi-
ssions, traditionally the advertising commissioner runs
queries to capture duplicate clicks within a short period

of time, a day for example. Another network
monitoring application is URL Crawling[6,7], where
search engines regularly crawl the web to enlarge their
collections of web pages. Given the URL of a web page,
which is often extracted from the content of a crawled
page, a search engine must probe its archive to find out
if the URL is in the collection and if fetching the URL
from a remote site can be avoided. In addition, du-
plicate detection can also be used to query distinct IP
addresses. In network monitoring and accounting, it is
often important to understand the traffic and to iden-
tify the customers on the network[4,8]. For example,
these queries may be interesting to network monitors:
who are the customers on the network within the past
12 hours? Where they go? The results could be helpful
in analyzing customer profiles, interests and network
traffic.

According to the way the stream is handled, there
are two basic variants of duplicate detection over data
streams[3]: Duplicate Detection over a Landmark Win-
dow asks for duplicate elements that have occurred
since the occurrence of a specific landmark which can
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be defined in terms of either the number of elements or
time units; Duplicate Detection over a Sliding Window
asks for duplicate elements that have occurred in the
last W elements.

Since the elements in a data stream are always time
sensitive and the available memory space to buffer ele-
ments is limited, detecting duplicates over a sliding win-
dow covering the latest W elements of the stream makes
more sense than over a landmark window. Certainly,
the window size can be expressed either in terms of the
number of elements or time units. To find duplicates
over sliding windows in a data stream, a straightfor-
ward way is to store all elements over a sliding window
in a buffer, and when observing a new element, we just
compare it to all the elements in the buffer. The new
element is identified as distinct if it is not found, and
duplicate otherwise. When the buffer is full, a newly
arrived element may evict another element out of the
buffer before it is stored. The main disadvantage of
this solution to processing a window of size W is that
it requires O(W ) comparisons to tell whether a newly
observed element is a duplicate, or not.

Although building an index on the elements can re-
duce the search cost to O(log W ) per element, it would,
on the other hand, increase the element insertion cost
to O(log W ) instead of just appending an element in
constant time. In addition, take click streams for an
example, each Click ID is represented by 64 characters.
Thus, keeping all IDs in a sliding window of size W en-
tails keeping 64 × W bytes, which could be infeasible
for a large window.

The solution described above solves the problem
exactly, but suffers from slow processing of the data
stream. On the other hand, exact duplicate detection
requires to store the entire current window, so if the size
of sliding windows is too large, it may be infeasible to
store the entire window with the limited main memory.
To cope with high stream rates, providing fast answers
in an on-line fashion in a reduced storage space and
an acceptable error rate is clearly more desirable than
a precise one that is slow. Therefore, we only consider
the problem of approximate detection of duplicates over
sliding windows.

The contributions of this paper are:
1) an efficient solution to detecting duplicate ele-

ment over sliding windows without false-negative
error;

2) analysis of time requirements of our proposed so-
lution as well as the false positive rate;

3) a set of experiments to evaluate the performance
of our proposed solution as well as its comparison
with other methods.

The rest of this paper is organized as follows. Section
2 reviews previous work on duplicate detection over
data streams. In Section 3, we give the problem state-
ment and some background knowledge on Bloom Fil-
ters. In Section 4, we introduce a novel data structure
that is the foundation for solving our problem. In Sec-
tion 5, we present our duplicate detection algorithm.
We report the results of our experiments in Section 6,
followed by the conclusions in Section 7.

2 Related Work

A straightforward exact solution to detecting du-
plicates in a streaming environment is the buffering or
caching method, which has been studied in many fields
such as database systems, operating systems and more
recently URL caching in Web crawling[7]. The prob-
lem of exact duplicate elimination is well studied, and
many efficient algorithms have been developed (e.g., see
[9] for details). Another branch of duplicate detection
techniques focuses on fuzzy duplicates detection[10−13],
which targets at identifying multiple representations of
real-world objects stored in a data source, and is a cri-
tical task in data cleaning, data mining, and data inte-
gration.

For the problem of approximately detecting dupli-
cates in a streaming environment, Metwally et al.[3]

considered different window models and respectively
proposed different solutions based on Bloom Filters
(BF)[14]: landmark windows, jumping windows and
sliding windows.

For the landmark window model, they applied the
original Bloom filters to duplicates detection, and thus
did not consider the situation that the BF becomes
“full” (which will be discussed in the next section). Re-
cently, Deng and Rafiei[4] proposed Stable Bloom Fil-
ter, a data structure that continuously evicts elements
in the landmark window with a probability that is re-
lated to their arriving order to make room for those
newly arrived elements.

For the jumping window model, [3] split a large
jumping window into multiple sub-windows, and pre-
sented both the jumping window and the sub-windows
with Bloom Filters of the same size. Thus, a jumping
window can “jump” forward by updating (adding new
and removing old) sub-window BFs.

For the sliding window model, which is the scenario
we consider, [3] used Counting Bloom filters (CBF)[15]

to allow removing stale (old) elements out of the filter.
However, this can be done only when the element to
be removed is known, which is not possible in many
streaming cases. For example, if the oldest element
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needs to be removed, one has to know which counters
are touched by the oldest element, but this informa-
tion cannot be found in CBF. Moreover, the CBF has
two other major drawbacks in detecting duplicates over
sliding windows when the input stream is skewed as will
be discussed in the next section.

In addition, for the problem of approximate mem-
bership query in a non-streaming environment, sev-
eral improvements[15,16] have been proposed over the
original Bloom Filter. Cohen et al.[17] extended the
Bloom Filter to answering multiplicity queries. In [18]
an extension of Bloom Filter was used to count dis-
tinct elements. Cheng et al.[19] studied the problem of
time-decaying counters and proposed the time-decaying
Bloom Filter as an extension of CBF.

In this paper, we propose a more efficient solution
to approximately detecting duplicates over sliding win-
dows. On the CBF basis, we introduce first a data
structure called Decaying Bloom Filter (DBF), and
then an efficient algorithm for approximately detect-
ing duplicates and dynamically updating DBF to rep-
resent the newly arrived elements in the current win-
dow. Unlike Metwally’s solution[3], which uses CBF to
remember multiplicities of distinct elements in sliding
windows and extra space to keep the arrival informa-
tion of these elements in order to remove them from
CBF when they slide out of sliding windows, our data
structure, DBF, can dynamically represent this infor-
mation without needing extra space. Then, we give the
Decaying property of DBF. This property shows that it
is unnecessary to reflect the multiplicities of elements
which are required by CBF in solving our problem.

Although our data structure uses a similar name to
that in [19], there are several essential differences be-
tween them: the counters in the Time-Decaying Bloom
Filter (TDBF)[19] are used for maintaining the time-
decaying counters over a landmark window. When a
new element arrives, TDBF adds its mapped counters
by 1, and then decreases the values of all counters by a
user-specified decaying function every fixed time unit.
In contrast, the counters in our DBF are used for main-
taining the arrival information of elements in a slid-
ing window. When a new element arrives, we set its
mapped counters to W (the size of sliding window),
and decrease all positive-value counters in the DBF by
1. Clearly, the value of an element’s mapped counters
in DBF gives an estimate on the element’s expiration
time (expiry, i.e., remaining life time) in the current
window, whereas that in TDBF stands for an estimate
on the multiplicity (time-decaying counter) of this ele-
ment. Because of this essential difference, TDBF does
not support dynamically maintaining membership of el-

ements over sliding windows as DBF does. Therefore,
they are oriented forwards different data stream appli-
cations. While DBF is concerned with the problem of
online analysis over data stream — detection of dupli-
cates — which has a strict limitation on the amortized
time complexity for processing each element and mem-
ory space, TDBF targets at the problem of maintaining
time-decaying counters in data streams. Furthermore,
since in DBF blocking and delaying techniques are ap-
plied in the update process, DBF requires much less
time for the update than TDBF.

Our algorithm operates on the DBF at the block
level by dividing a data stream into non-overlapping
blocks and processing a block instead of a single data
element. It also incorporates a delaying technique to
postpone the update to DBF as needed. Thus, it up-
dates a smaller number of DBF counters than that in
Metwally’s result to CBF[3] when the current window
slides, so runs more efficiently.

On the DBF basis, for an approximate membership
query the false-positive rate of the answer from our so-
lution can be controlled at a lower level than that in
Metwally’s result[3] based on CBF.

3 Problem Statement and Background to
Bloom Filters

3.1 Problem Statement

There are two kinds of sliding windows: time-sliding
window and element-based sliding window. We only
discuss the latter and the situation of time-sliding win-
dows can be easily deduced from that.

We define a data stream as a sequence of numbers:
SN = e1, . . . , ei, . . . , eN , where N is the size of the
stream. Without loss of generality, the value of N can
be infinite. Generally, a stream can be a sequence of
records, and it is not hard to transform each record to
a number (e.g., through hashing or fingerprinting).

We formulate the problem as follows: given a
data stream SN , memory space of G bits and slid-
ing window size of W bits，we want to find out
whether each current element ei in SN has duplicates
in emax(i−W,1), . . . , ei−1 or not. For SN , there are two
constraints: answers must be provided in an on-line
fashion and G is not large enough to store all distinct
elements in emax(i−W,1), . . . , ei−1. Therefore, it is dif-
ficult to solve the problem precisely. Our goal is to
develop a fast approximate solution that has a small
error rate.

To address this problem, we first review the tech-
niques of Bloom Filter and its variants that have been
previously used in different situations for detecting
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duplicates over data streams. We discuss their
disadvantages for approximately detecting duplicates
over sliding windows.

3.2 Bloom Filter and Its Variants

Bloom Filter (BF) was proposed by Burton Bloom
in 1970[14] and used for detecting approximate mem-
bership of elements. A BF uses k hash functions
h1, h2, . . . , hk to hash each element of set S into a bit
array of size m, where S comes from a universe U . All
bits in BF are initially set to 0. For each element e ∈ S,
the bits at positions h1(e), h2(e), . . . , hk(e) in the filter
are set to 1. BF only allows for membership queries.
For example, given a newly arrived element u ∈ U ,
whether u is a duplicate in S can be determined by the
bits at positions h1(u), h2(u), . . . , hk(u). If any of these
bits is zero, we know u is a distinct element. Otherwise,
it is regarded as a duplicate with a certain probability
of error. This method has a small probability of pro-
ducing a false-positive error, i.e., a distinct element is
wrongly reported as duplicate.

If the hash functions are perfectly random, the prob-
ability of a false positive (false positive rate) Pr(FP) =
(1−P0)k = (1− (1− 1/m)kn)k ≈ (1− e−kn/m)k, where
P0 is the probability that a specific bit is still 0 after in-
serting n distinct elements. The expression on the right
is minimized when k = m ln 2/n, in which case the error
rate is Pr(FP)min = (1 − 1/2)k = (0.6185)m/n, where
m is the number of bits in BF.

Although BF is simple and space efficient, it does
not allow deletions. Deleting elements from a BF can-
not be done simply by changing them back to zeros,
as a single bit may correspond to multiple elements.
Therefore, in the data stream environment, if we apply
BF in detecting duplicates, when more and more new
elements arrive, the fraction of zeros in BF will decrease
continuously, and the false positive rate will increase ac-
cordingly, and finally reach the limit one. At this time
every distinct element will be reported as duplicate, in-
dicating that BF fails completely. We call such a state
of BF “full”.

For the purpose allowing deletion of stale elements,
Counting Bloom Filter (CBF) was proposed[15]. A CBF
uses an array of m integer counters (C1, C2, . . . , Cm)
instead of bits; the counters track the number of ele-
ments currently hashed to that location. If a CBF rep-
resents a total of M data elements, including repeated
values, the sum of the values of all counters equals∑m

i=1 Ci = k×M . Deletion can now be safely done by
decreasing the values of relevant counters. A BF can

be derived from a CBF by setting all non-zero counters
to one. Since the usual data structure representing the
CBF consists of a static data set where counters have
a fixed size over time, counters must be chosen large
enough to avoid overflow. It was shown that four bits
sufficed for most non-streaming applications[15].

Though CBF was used for detecting duplicates for
data streams over sliding windows in [3], it has three
major drawbacks: 1) false negative errors — when the
input stream is highly skewed, an insertion of a new el-
ement may result in a counter overflow, and then dele-
tion operations to elements that are hashed to these
corresponding counters can no longer be reflected; 2)
memory waste when the input stream is skewed — in
CBF all counters have the same number of bits decid-
ing the maximum number of elements hashed to them;
3) extra space required to maintain the oldest element
which is needed for the deletion (counter) operation.

Recently Stable Bloom Filter (SBF)[4] was proposed
based on CBF[15] for approximately detecting dupli-
cates over landmark windows with limited space. Since
recent data are more important, SBF continuously
evicts elements in the current window with a probabi-
lity that is related to this importance so that SBF has
room for those newly arrived elements. Because this
importance decays over time, the probability of dele-
tion of a new element is smaller than that of an old
element. This is useful in many streaming scenarios
over landmark windows. However, SBF is not feasible
to be applied over sliding windows because of its high
probability of false negative errors.

4 Decaying Bloom Filter Architecture

In this section, we first introduce a data structure,
Decaying Bloom Filter (DBF), which is an extension of
Counting Bloom Filter (CBF), and a series of opera-
tions over it. We then show the decaying property of
DBF and point out that DBF can represent elements
over sliding windows with no additional space needed
to keep the arrival information of elements and with no
risk of counter overflow. Finally, we analyze the perfor-
mances of DBF when it is used for detecting duplicates
over sliding windows.

4.1 Decaying Bloom Filter Design

Definition 1 (Decaying Bloom Filter (DBF)).
Given memory space G bits, a DBF consists of an array
of counters DBF[1], . . ., DBF[m], each being allocated
to d (= dlog(W + 1)e)① bits with a minimum value

①Note that throughout this paper we assume log to be log2.
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zero and maximum value W , where W is the size of the
sliding window and G = m× d.

When using a DBF to detect duplicates over slid-
ing windows, the initial values of all counters are set to
zero. For each newly arrived element in the stream, we
execute the following three operations in order:

1) as in Bloom Filter, the element is mapped to k
counters by some uniform and independent hash func-
tions. Whether the element has duplicates can be de-
termined by probing whether all the k counters it is
hashed to are non-zero;

2) for all counters with values greater than zero, de-
crease their values by one;

3) set (the values of) the same k counters as in the
first operation to W .

Each execution of these three operations is called an
iteration which contains the entire process for a newly
arrived element. We call the first operation the dupli-
cate detection process, and the next two operations the
update process.

Concretely speaking, we use the values of counters in
DBF to approximately represent the expiry of elements
which are hashed to the counters. For every element
that is inserted into a DBF, we set its mapped counters
to W , and then we decrease all positive-value counters
by one. A counter is decremented to 0 only if all the
elements that are hashed to this counter slide out of
the current window, which is equivalent to deleting all
those obsolete elements from the DBF. Thus, it is pos-
sible to update the DBF as new elements are added to
the sliding window, and as aged elements are deleted.

4.2 Decaying Property

A sliding window can be described by a decay func-
tion in many stream scenarios[20,21]. Given a window
size W , the function is defined as f(e) = 1 if e is in
the latest W elements and f(e) = 0 otherwise. On the
DBF basis, we can find an important property which
meets this sliding window decay function. We call it
the decaying property.

Theorem 1 (Decaying Property). For a contin-
uous and unbounded data stream, if in each iteration
the counters that new elements are hashed to are set to
W , the DBF represents only the latest W elements at
the present time.

Proof. When the number of elements in the stream
seen so far is smaller than W , because all counters
mapped by the elements are impossible to decrease to
0 during l iterations (l < W ) , no elements are removed
from the DBF. It is trivial that DBF represents the
latest W elements.

Next, we consider the situation that the number of
elements in the stream seen so far is greater than or
equal to W . Let us first consider the situation that two
data sets are represented by two identical Bloom Fil-
ters. If the two sets are the same, then values of the
corresponding bits in these Bloom Filters are the same.
However, the converse may not be true. Suppose a data
stream Si+W−1 = {e1, e2, . . . , ei+W−1} (i > 1) and the
set of the latest W elements over the data stream at the
present time is S (= {ei, ei+1, . . . , ei+W−1}). Let us in-
sert Si+W−1 into a DBF, and S into a Bloom Filter in
which the size of array and the set of hash functions
are the same to that in the DBF. Since all non-zero
counters in the DBF were set at least once during iter-
ations i and i + W − 1, the elements before ei has no
impact on the DBF at the present time. By taking all
non-zero counters as one-value bits and all zero coun-
ters as zero-value bits, we can easily see that the DBF
representing the set is equivalent to the original Bloom
Filter. Therefore, the DBF only represents the latest
W elements at the present time. ¤

Fig.1 shows an example of how a DBF is used
for keeping a sliding window of size W with k =
4. DBF i+W−1 denotes the current state of the
DBF after the latest element ei+W−1 is inserted,
and its corresponding Bloom Filter represents the set
{ei, ei+1, . . . , ei+W−1} from data stream. When a new
element ei+W arrives, through updating DBF i+W−1 to
DBF i+W , we have another corresponding Bloom Fil-
ter which represents the set {ei+1, ei+2, . . . , ei+W }. In
Fig.1, ei has not been removed from DBF, because none
of the k counters mapped by ei is reduced to zero. In
practice, ei is removed from DBF since all of its mapped
counters are set by other elements after ei.

Fig.1. Insert and delete elements in a DBF.

The decaying property guarantees that the current
window represented by DBF slides as new elements ar-
rive. Thus, the DBF can keep a fixed-size sliding win-
dows (we will introduce variable-size sliding windows in
Section 5). Therefore, unlike CBF, we do not need addi-
tional space to keep the arrival information of elements
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in the current window, and thus consequently save a
lot of memory space. In addition, the number of bits
assigned to each counter is only related to W and inde-
pendent of the input stream. Therefore, in comparison
with CBF, it is unnecessary to worry about counter
overflow when a new element is inserted, and memory
waste if we assign too many bits to each counter.

4.3 Performance Analysis

4.3.1 False Positive Rate

In the DBF, false positive is the only type of errors.
The probability of false positive (FP) can be easily com-
puted,

Corollary 1. There could be only false positives in a
DBF, and the probability of false positive (false positive
rate (FPR)) is

Pr(FP) = (1− (1− 1/m)kw)k ≈ (1− e−kw/m)k

6 (1− e−kW/m)k,

where k is the number of hash functions, m is the num-
ber of counters in the DBF, and w is the number of
distinct elements in sliding widows.

Proof. According to Theorem 1 and because w 6 W ,
FPR of DBF can be easily derived from the deduction
of FPR of the corresponding Bloom Filter. ¤

The upper bound of FPR can be reached when the
stream elements in the current window are distinct to
each other. In order to minimize the upper bound,
we set k = m × ln 2/W = G × ln 2/(W × log W ).
In this case the error rate is Pr(FP) 6 (1/2)k =
(1/2)G×ln 2/(W×log W ) = (0.6185)G/(W×log W ).

4.3.2 Time Complexity

Since our goal is to minimize the FPR given a fixed
amount of space, we do not consider space complex-
ity, but just focus on time complexity. There are three
operations within each iteration in DBF for process-
ing a newly arrived element: probing k cells to detect
duplicates, decreasing all m counters by 1, setting the
same k cells as probed in the first step to W . Suppose
all these operations are time-equal, thus, the amortized
time complexity of each iteration is O(m + 2k). Since
k is negligible compared to m (m À k), the amortized
time complexity of each iteration is O(G/ log W ).

DBF has good performances in saving space and
avoiding counter overflow compared with CBF. How-
ever, it is still infeasible to directly use DBF to solve
our problem. From the analysis of time complexity, the
update process of a DBF is too slow and intolerable for

real-time applications. In addition, the number of bits
allocated to each counter is too large for many practical
applications. For example, Given the fixed amount of
memory space G = 20× 220 bits, an application which
asks for the duplicate elements that occurred in the last
220 elements needs 21 bits for every counter in a DBF
and decreases about 220 counters within each iteration.

5 Duplicate Detection Based on DBF

In this section, we present an efficient detection algo-
rithm based on DBF mentioned above. The basic idea
is to update DBF at the block level.

We divide the stream into non-overlapping blocks of
the same size. In order to fix the size of each block,
we introduce a threshold T , where T is an integer and
W À T . As depicted in Fig.2, blocks are numbered
by 0, 1, 2, . . . and smaller number blocks contain older
elements. We assume that both W and T are powers
of 2 to simplify expression, so there are at least W/T
blocks and at most W/T + 1 blocks covered by a win-
dow when the number of elements seen in a data stream
exceeds W . Similar to [22], at any given point of time,
we assign each block to one of the following five states,
depending on T , the number of elements seen so far and
the current window size.

Expired. if all its elements are older than the last W
elements.

Under Destruction (UD): if some of its elements are
older than the last W elements, and all the remaining
elements belong to the current window.

Active: if all its elements belong to the current win-
dow.

Under Construction (UC): if some of its elements
belong to the current window, and all the remaining
ones are yet to arrive.

Inactive: if none of its elements has arrived.

Fig.2. Blocks used in our algorithm.

Each block goes through the sequence of states In-
active, UC, Active, UD, and Expired. The process is as
follows: for each newly arrived element, if there is no
UC block, we create a UC block, and then we insert
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the new element into the UC block; when the number
of the elements inserted to the UC block reaches T , we
change the state from UC to Active; and if there is a
UD block, change the state from UD to Expired, i.e.,
remove it from the current window. At the same time,
when an element belonging to an Active block slides
out of the current window, we mark this block as a UD
block. We call the time interval for a UC block from
its set up changing into an Active block a UA interval.
Note that each UA interval covers T elements.

Although the process of dealing with all blocks is
complex, practically, we only need to deal with the
blocks in the current window because the elements in
Expired blocks and Inactive blocks have no impact on
our query result. Therefore, we formalize the process
as follows.

We give these elements belonging to the same block
in the current window the same expiry between 1 and
W/T + 1 in order to group them. The expiry assigned
to elements belonging to the latest block is W/T +1, to
elements belonging to the next latest block is W/T , and
so on. Since new blocks continuously arrive and stale
blocks are removed at the same time, we need to assign
a new expiry to elements belonging to existing blocks
by decreasing the previously assigned expiry by one. If
the expiry of an element is reduced to 0, the element is
removed from the current window. This process is very
similar to the update process of DBF if we take a block
as an element.

We modify the update process of DBF to simulate
the above process by decreasing all counter values after
a new block arrives (i.e., a UA interval) instead of a
new element. We can learn the arrival of a new block
by T and the current data size of the stream. As shown
in Algorithm 1, we keep a variable Iteration to denote
the current data size of the stream. If Iteration mod
T = 0, we are sure that a UC block becomes an Active
block, i.e., a new block arrives. When the current win-
dow slides to remove an Expired block, we only decrease
all counters by 1 according to Theorem 1.

In order to distinguish the data structure used in
our algorithm from DBF, we call the data structure
block Decaying Bloom Filter (b DBF). Since there are
at most W/T + 1 blocks in b DBF covered by the slid-
ing window instead of W elements in DBF, the max-
imum value of a counter is set to W/T + 1 instead of
W and the number of bits allocated to each counter is
dlog(W/T + 2)e instead of dlog(W + 1)e. The detail of
our algorithm is given in Algorithm 1.

Algorithm 1. Approximately Detect Duplicates over

Sliding Windows Using b DBF

Input: the threshold T and a sequence of elements
S = e1, e2, . . . , eN , . . .

Output: a sequence of “Yes/No” corresponding to each
input element.

Initialize DBF [1] . . .DBF [m] = 0 and Iteration = 1

for each ei ∈ S do {
Probe k counters DBF [h1(ei)], . . . ,DBF [hk(ei)]

if none of the above k counters is 0 then

IsDuplicate = “Yes”

else

IsDuplicate = “No”

end if

if (Iteration mod T ) = 0 then

for each counter DBF [j] ∈ {DBF [1], . . . ,DBF [m]}
do

if DBF [j] > 0 then

DBF [j] = DBF [j]− 1

end if

end if

for each counter∈ {DBF [h1(ei)], . . . ,DBF [hk(ei)]}
do

DBF [h(ei)] = W/T + 1

Output IsDuplicate

Iteration = Iteration + 1

}

5.1 Analysis

We now study the properties of b DBF.
Let W ′ denote the number of elements represented

by a b DBF. It is not hard to find that if the number of
elements in a stream seen so far is smaller than W , then
W ′ < W ; otherwise, W 6 W ′ 6 W + T , where W is
the size of sliding windows. Since the stream has an un-
bounded length, we only discuss the situation that the
number of elements in the stream seen so far is greater
than W .

Theorem 2. When the number of elements in a
stream seen so far is greater than or equal to W in a
b DBF, if there is a UC block which contains NUC ele-
ments in the current window, W ′ = W +NUC 6 W +T ,
where T > NUC > 1; otherwise, W ′ = W . These W ′

elements represented by the b DBF are always the lat-
est.

Proof. When the number of elements in the stream
seen so far is greater than W in a b DBF, if a b DBF
has a UC block, there are W/T −1 Active blocks, a UD
block and a UC block in the b DBF, and consequently
W ′ = (W/T − 1 + 1)T + NUC = W + NUC 6 W + T .
Otherwise, there are only W/T Active blocks in the
b DBF, and consequently W ′ = (W/T ) × T = W . In
addition, because all blocks in the sliding window are
always the latest, we can easily deduce that these W ′

elements represented by the b DBF are always the lat-
est. ¤
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Corollary 2. When the number of elements in the
stream seen so far is greater than or equal to W (the
size of sliding window), there are at least W/T blocks
and at most W/T +1 blocks in a b DBF, and the b DBF
keeps a variable-size sliding window where the window
size is a variable.

Proof. According to Theorem 2, a b DBF has
W/T + 1 blocks if it contains a UC block and W/T
blocks otherwise. In addition, the number of elements
represented by the b DBF is W ′, and the value of W ′

is variable and dependent on the number of elements
in a UC block. From Theorem 2, W 6 W ′ 6 W + T .
Therefore, the b DBF keeps a variable-size sliding win-
dow. ¤

Corollary 3. Given a b DBF for detecting dupli-
cates over W-width sliding windows, possible errors that
may occur are only false positives.

Proof. According to Theorem 2 and Corollary 2, a
b DBF keeps a variable-size sliding window to represent
the newly arrived W ′ elements, W ′ > W . Therefore,
for a duplicate element, i.e., when the number of ele-
ments between it and its nearest predecessor is smaller
than or equal to W , it must be reported as a dupli-
cate. However, for a distinct element ei, i.e., when it
has no predecessor or the number of elements between
it and its nearest predecessor is greater than W , it is
regarded as a duplicate with a certain probability of
error. Therefore, there may be only false positives but
no false negatives in b DBF. ¤

In practice, by inheriting the decaying property of
DBF, the b DBF uses a variable-size sliding window to
simulate a fixed-size sliding window. On one hand, in
order to avoid false negatives, the b DBF always rep-
resents the newly arrived W ′ (> W ) elements. On the
other hand, in order to limit the false-positive rate, we
require that W ′ does not exceed W + T .

5.2 False Positive Rate

A false positive (FP) occurs in a b DBF when a dis-
tinct element is wrongly reported as duplicate over the
current window. We call the probability false positive
rate.

Theorem 3. Given a b DBF with m counters,
assume every element is inserted into the b DBF by
k hash functions. The false positive rate (FPR) for
detecting duplicates over a W-width sliding window
when the block size 2 6 T < W is not greater than
T/(2×W ) + (1− e−k(W+T )/m)k.

Proof. If an element ei has a predecessor, we de-
note Gei

as the number of elements between ei and its
nearest predecessor ei−Gei

(= ei). Let Aei,l denote the

event that Gei
= l and let Āei

denote the event that
ei has no predecessor or Gei

> W + T . The probabil-
ity of the event that a false positive occurs, denoted by
Pr(FP), is

Pr(FP) =
∞∑

l=1

[Pr(FP |Aei,l)Pr(Aei,l)] (1)

=
W+T∑

l=1

[Pr(FP |Aei,l)Pr(Aei,l)]

+ Pr(FP |Āei
)Pr(Āei

) (2)

=
W∑

l=1

[Pr(FP |Aei,l)Pr(Aei,l)]

+
W+T∑

l=W+1

[Pr(FP |Aei,l)Pr(Aei,l)]

+ Pr(FP |Āei)Pr(Āei). (3)

It is easy to see that

W∑

l=1

[Pr(FP |Aei,l)Pr(Aei,l)] = 0. (4)

We have (4) because when W > Gei
> 1, ei−Gei

is in
the current window, and hence, according to Corollary
3, we can easily get Pr(FP |Aei,l) = 0 (Gei = l). When
W +T > Gei

> W , ei−Gei
must be in a UD block or an

Expired block depending on W , T and the position of ei

in the stream. If Gei > W + (i mod T ), then ei−Gei
is

in an Expired block; otherwise, ei−Gei
is in a UD block.

Let Aei,U denote the event that ei−Gei
is in a UD block

and Aei,E the event that ei−Gei
is in an Expired block.

Therefore, when W + T > l = Gei
> W , we get

Aei,l = Aei,U + Aei,E

Pr(Aei,U ∩Aei,E) = 0,

and
Pr(FP |Aei,U ) = 1. (5)

So we have

W+T∑

l=W+1

[Pr(FP |Aei,l)Pr(Aei,l)]

=
W+T∑

l=W+1

[Pr(FP |Aei,U )Pr(Aei,U )

+ Pr(FP |Aei,E)Pr(Aei,E)]

=
W+T∑

l=W+1

Pr(Aei,U ) +
W+T∑

l=W+1

[Pr(FP |Aei,E)Pr(Aei,E)].
(6)
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We call

Pr(FPActive) = Pr(FP |Āei
)Pr(Āei

)

+
W+T∑

l=W+1

[Pr(FP |Aei,E)Pr(Aei,E)] (7)

Active error rate, and

Pr(FPUD) =
W+T∑

l=W+1

[Pr(FP |Aei,U )Pr(Aei,U )]

=
W+T∑

l=W+1

[Pr(Aei,U )] (8)

UD error rate.
By simple probabilistic calculation, we have

Pr(FPActive) = Pr(FP |Āei
)Pr(Āei

)

+
W+T∑

l=W+1

[Pr(FP |Aei,E)Pr(Aei,E)]

= (1− (1− 1/m)kw)k, (9)

where w is the number of distinct elements currently
represented by the b DBF, m is the number of counters,
and k is the number of hash functions. Consequently,

Pr(FP) = Pr(FPUD) + Pr(FPActive)

=
W+T∑

l=W+1

Pr(Aei,U ) + (1− (1− 1/m)kw)k.

(10)

When W > T , (see the Appendix for detail)

Pr(FPUD) =
N+T∑

l=N+1

Pr(Aei,U ) < T/(2×W ). (11)

In addition, since (1− (1− 1/m)kw)k is monotonically
increasing as w increases and w 6 W + T ,

Pr(FP) 6T/(2×W ) + (1− (1− 1/m)k(W+T ))k

≈T/(2×W ) + (1− e−k(W+T )/m)k.
(12)

This completes the proof. ¤
From (10), we can see that for a distinct ele-

ment ei (it has no predecessor or the number of
elements between it and its nearest predecessor is
greater than W ), it may be reported as a duplicate
for two reasons. First, it is likely that the counters
{DBF [h1(ei)], . . . ,DBF [hk(ei)]} are set by elements

other than ei. We call this kind of errors Active er-
ror and its probability Active error rate. Second, the
nearest predecessor of ei is out of sliding windows but
still in a UD block. We call this kind of errors UD error
and its probability UD error rate.

Furthermore, we can see that when T = 1, the UD
error rate is 0 and Pr(FP) = (1 − (1 − 1/m)kw)k, the
FPR of a b DBF is equal to that of a DBF under the
same conditions. Therefore, DBF is only a special case
of b DBF when T = 1.

Corollary 4. Given a b DBF with m counters to
detect duplicates over a W-width sliding windows, the
Active error rate and the UD error rate are monotoni-
cally increasing as the block size T increases.

Proof. When the number of counters in a b DBF
is fixed, the number of bits allocated to each counter
is also fixed. If the block size T increases, the number
of distinct elements represented by b DBF can also in-
crease, and from (9), we can conclude that Pr(FPActive)
is increasing. In addition, according to (11), it is not
hard to prove that the probability of event Aei,U will
also increase. Therefore, Pr(FPActive) and Pr(FPUD)
are monotonically increasing as the value of T increases.

¤
In practice, given the size of sliding window W and

the memory space G bits, the smaller the value of
d(= dlog(W/T + 2)e) is, the larger the value of T is
and consequently the larger the UD error rate is ac-
cording to Corollary 4. Conversely, the larger the value
of d is, the smaller the number of counters m (= G/d)
is and consequently the smaller the Active error rate is.
The following theorem gives the proper value of d that
minimizes the upper bound of FPR.

Theorem 4. Given memory space G (= m × d)
bits and the size of sliding window W , if the block size
2 6 T < W , the upper bound of Pr(FP)in b DBF
can be minimized to (1/2)

√
G×ln(2)/W−1 when d = k =√

G× ln(2)/W .
Proof. Since d = dlog(W/T + 2)e > 2, W/(2d−1 −

1) > T > W/(2d − 2). On one hand, the upper
bound of UD error rate Pr(FPUD) = T/(2 × W ) 6
1/(2d − 2) ≈ (1/2)d. On the other hand, since the UD
error rate is independent of k, we can minimize the Ac-
tive error rate by setting k = m × ln(2)/(W + T ) =
G × ln(2)/(W × d + T × d) ≈ G × ln(2)/(W × d), and
the Active error rate

Pr(FPActive) = (1− e−k(W+T )/m)k

=(1/2)G×ln(2)/(W×d+T×d)

≈ (1/2)G×ln(2)/(W×d).
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Therefore, the upper bound of FPR

Pr(FP) = T/(2×W ) + (1− e−k(W+T )/m)k

≈ (1/2)d + (1/2)G×ln(2)/(W×d).

From derivation on d, we can obtain that the upper
bound of FPR will be minimized to (1/2)

√
G×ln(2)/W−1

when d = k =
√

G× ln(2)/W . This proves the theo-
rem. ¤

From Theorem 4, we can conclude that the upper
bound of FPR is only dependent on the ratio between
the amount of space and the size of sliding window. In
order to confirm our conclusion, we use MATLAB 7.0
to calculate the upper bound of FPR for various d val-
ues when G = 227 bits, W = 220, and the number of
hash functions is constrained to k = G× ln(2)/(W ×d).
The result is illustrated in Fig.3. Compared with DBF
where d = 21 and Pr(FP) ≈ 5.3%, the upper bound of
FPR of b DBF is only about 0.39% when d = 9. Let
γ = G/W , note that in the optimal case, d =

√
γ ln(2).

Fig.3. Upper bound of FPR of b DBF for various d, with

G = 227, W = 220, k = G× ln(2)/(W × d).

5.3 Setting of Parameters T and k

Up on the above discussion, to choose a proper value
of T , we need to consider the performances of b DBF.
In terms of time complexity, T should be set as large
as possible, since the larger the value of T is set, the
smaller the number of decreases of all counters and the
number of bits assigned to each counter will be; in ad-
dition, k should be set as small as possible, since the
smaller the value of k is set, the smaller the number of
hashing operations will be. However, for the false posi-
tive rate (FPR), since the upper bound of FPR is min-
imized when d = k =

√
γ ln(2) according to Theorem

4, the value of T should be set between W/(2d−1 − 1)
and W/(2d−2). It seems that T and k should be prop-
erly set to balance the performances of our algorithm.

Since our goal is to minimize the error rate, we first set
d = k =

√
γ ln(2).

It is easy to find that a DBF can be derived from a
b DBF by setting T = 1. Therefore, when W/(2d−2) 6
1, i.e., G > W × log(W + 2)/ ln(2), we can get T = 1.
Below we only discuss the special circumstances when
W/(2d − 2) > 1 and γ < 20 (if higher time cost can
be tolerated, larger values of γ can be applied). We
set k = d =

√
γ ln(2) to guarantee the minimum up-

per bound of FPR according to Theorem 4, and T the
minimum value that meets d = dlog(W/T + 2)e, i.e.,
T = W/(2d − 2), to reduce the practical FPR accord-
ing to Corollary 4. Then, the minimum upper bound
of FPR is (1/2)

√
G×ln(2)/W−1 and the amortized time

complexity for processing each element, denoted by τ ,
is

m/T + 2k =(m× d)/(T × d) + 2d

=G/(W × d/(2d − 2)) + 2d

= γ/(d/(2d − 2)) + 2d.

Since d =
√

γ ln(2), τ = O(
√

γ × 2
√

γ ln(2)).
In comparison with DBF, b DBF reduces τ from

O(G/ log W ) to O(
√

γ × 2
√

γ ln(2)), the number al-
located to each counter from O(log W ) bits to
O(

√
γ ln(2)) bits, and the upper bound of FPR from

(1/2)γ×ln(2)/ log W to (1/2)
√

γ×ln(2)−1.
However, in normal circumstances where r > 20

(containing the circumstance that T = 1), this means
that we use a larger space to minimize the upper bound
of FPR against the size of sliding windows. Then, we
cannot choose T like in special circumstances. Since it
may be hard to tolerate a high amortized time cost, we
will introduce an optimization algorithm in Subsection
5.5 which can further reduce the amortized time com-
plexity while maintaining the minimum upper bound of
FPR.

5.4 Resolving Time-Bottleneck by Averaging
Counter Decreases

Algorithm 1 may have limitation in some stream sce-
narios, since the number of operations fluctuates largely
in different iterations. If a UC block becomes an Active
block within one iteration, we will decrease all counters
of the array and consequently the iteration needs m+2k
operations; otherwise, the iteration only needs 2k op-
erations. This may cause a time-bottleneck in some
high-rate stream scenarios. Therefore, we improve Al-
gorithm 1 by averaging counter decreases. Below is
the detail. We divide all counters of the array into
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non-overlapping parts and all the parts have the same
number of counters except for the last part. As in Fig.4,
we divide an m-size array into T (equal to the block
size) parts (P1, P2, . . . , PT ). Let SPi

(T > i > 1) de-
note the number of counters in Pi, SPi

= dm/T e when
T > i > 1 and SPT

= m− (T − 1)×dm/T e. Therefore,
m =

∑T
i=1 SPi .

Fig.4. Averaging counter decreases by dividing all counters of a

b DBF into T parts.

When a new element ei arrives, we only decrease all
counters in Pλ, where λ = (i + 1) mod T . Thus, by
decreasing all counters in one of the parts within each
iteration, we can amortize the time cost of decreasing
all m counters, and each iteration needs no more than
dm/T e+ 2k operations.

In order to distinguish the parts that are decreased
during a UA interval, we need a mark to divide them.
At the same time, we also need to change the operation
of setting k counters. If a new element e is mapped
to a counter DBF[hi(e)] (k > i > 1) in Pj where
mark > j > 1, we set DBF[hi(e)] = W/T ; otherwise,
we set DBF[hi(e)] = W/T + 1.

Although the optimization does not reduce the over-
all space complexity, time complexity and error rate,
it can extend b DBF to more rigorous stream appli-
cations that require processing each element in a very
short time.

5.5 Reducing Time Complexity by Delaying
Decreasing

Algorithm 1 cannot demonstrate its superiority
when γ > 20 because of its high time cost. The time
consumption of each iteration in b DBF mainly de-
pends on the process of decreasing all counter values
of DBF. Although the decreasing process has been de-
layed by a block size in Algorithm 1, the process can be
further delayed in order to avoid the slowness in updat-
ing. Hence, we propose such an optimization scheme
that delays the decreasing process in b DBF.

We introduce another threshold Th = c × W/T to
denote the number of delay intervals, where each inter-
val is equal to a UA interval and c is a constant that
is very close to 1. In addition, we define a variable VT

which is used for judging whether a new element is a
duplicate and when to decrease all counter values.

In order to minimize the upper bound of FPR, we set
d = k =

√
γ ln(2) (= dlog(W/T + Th + 2)e) as in spe-

cial circumstances. Unlike in special circumstances, we
set T = dW/(2d−1 − 1)e instead of W/(2d − 2) to make
room in each counter to store the number of delay inter-
vals. Furthermore, the minimum and maximum values
of each counter are 0 and W/T + Th + 1(= 2d − 1)
respectively. Thus, Th = c × W/T = 2d−1 ≈ W/T ,
where c = 2d−1/(W/T ) ≈ 1.

The details follow Algorithm 2. The initial values
of the counters are all zero. For each newly arrived el-
ement in the stream, there are also three operations:
first, a newly arrived element can check if it is dupli-
cate by probing whether none of the k counters it is
hashed to has a value smaller than VT; second, delay
decreasing all counters until the value of VT reaches Th;
third, set the same k counters as in the first operation
to W + V T + 1.

Algorithm 2. Optimization by Delaying Decreasing

Input: the threshold T , Th and a sequence of elements
S = e1, e2, . . . , eN , . . .

Output: a sequence of “Yes/No” corresponding to each
input element.

Initialize DBF [1], . . . ,DBF [m] = 0, Iteration = 0 and

VT = 0

for each ei ∈ S do {
Probe k counters DBF [h1(ei)], . . . ,DBF [hk(ei)]

if none of the above k counters has a value smaller

than VT then

IsDuplicate = “Yes”

else

IsDuplicate = “No”

end if

if (Iteration mod T ) = 0 then

VT = (VT + 1) mod Th

if VT = 0 then

for each counter DBF [j] ∈ {DBF [1], . . .,

DBF [m]} do

if DBF [j] 6 Th then

DBF [j] = 0

else

DBF [j] = DBF [j]− Th

end if

end if

end if

for each counter ∈ {DBF [h1(ei)], . . . ,DBF [hk(ei)]}
do

DBF [h(ei)] = W/T + VT + 1

Iteration = Iteration + 1

Output IsDuplicate

}
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According to Theorem 4, since d = k =
√

γ ln(2),
this optimization algorithm, unlike Algorithm 1, main-
tains the upper bound of FPR at minimum. Most im-
portantly, it has good performances in amortized time
complexity.

Theorem 5. Given the ratio between the size of
memory space and the size of sliding windows, γ, when
maintaining the minimum upper bound of the false pos-
itive rate, the amortized time complexity for processing
each element is τ = O(

√
γ).

Proof. Since we decrease all counters every Th × T
iterations, and Th = c ×W/T , the average number of
operations in one iteration is the sum of the average
number of operations of updating b DBF and the aver-
age number of operations of detection process, i.e., τ =
m/(T ×Th)+2k = G/(W (c×d))+2k = γ/(c×d)+2k.
Because d = k =

√
γ ln(2), τ = O(

√
γ) = O(

√
G/W ).

¤
Theorem 5 states that the amortized time complex-

ity τ increases monotonically as G increases, which
seems illogical since G is the size of memory space used.
This is because the more memory is used, the more hash
functions need to be employed for mapping elements,
so the higher τ will be resulted. This is in fact true
for all BF based schemes. We now explain this in de-
tail. In the original Bloom Filter (BF), when given
the size of bit array G (memory space), the number
of hash functions k, and the number of distinct ele-
ments n, τ = O(k) and the false positive rate of BF is
Pr(FP) = (1−(1−1/G)kn)k ≈ (1−e−kn/G)k. Pr(FP) is
minimized to Pr(FP)min = (1/2)k = (0.6185)G/n when
k = G ln(2)/n[14]. Clearly, τ = O(G/n) when Pr(FP)
is maintained at minimum, which is monotonically in-
creasing as the memory space G increases. On the other
hand, if set k to be a constant, in this case the false pos-
itive rate of BF is not minimized and τ becomes O(1).

Our b DBF shares the same property as BF — its
amortized time complexity for processing each element
is τ = O(m/(T × Th) + 2k) and false positive rate is
Pr(FP) = T/(2×W )+ (1− e−k(W+T )/m)k, where m is
the number of counters in b DBF, k is the number of
hash functions, T is the size of block and Th is the num-
ber of delay intervals. The false positive rate is mini-
mized to Pr(FP)min = (1/2)

√
G×ln(2)/W−1 when the

number of bits in each counter d = k =
√

G× ln(2)/W
and T × Th ≈ W . Since in this case m = G/d =
G/

√
G× ln(2)/W =

√
G×W/ ln(2), τ = O(

√
G/W ).

Therefore, when the false positive rate is maintained at
minimum, this time complexity also monotonically in-
creases as memory space G increases, though at a lower
rate than BF. Otherwise, if k is set to be a constant, τ
becomes O(1) when T × Th ≈ m and O(m/(T × Th))

otherwise which also increases monotonically as G in-
creases.

In most streaming scenarios, duplicate detection
usually requires large sliding widows because the
amount of data arriving in unit time is quite large from
a data stream. Our work follows Metwally’s work[3] to
target at the problem of detecting duplicates over large
windows using small memory space in data streams.
When memory space G is very large and the size of
sliding window is very small, e.g., W = 1, we can han-
dle this situation simply by buffering or caching instead
of applying our method (or any other BF-based meth-
ods) as stated in the introduction of the paper.

6 Experimental Results

In this section we discuss the results of our syn-
thetic experiments on the proposed algorithm. The
goals of the experiments of using b DBF are to exploit
the tradeoffs between space and time, on one hand, and
between space and error rate, on the other hand. The
larger memory space used to test for duplicates, the
smaller the probability of producing false positive er-
rors. However, the number of operations increases dra-
matically as the space usage of b DBF increases when
the size of sliding window is given. Throughout the
experiments, we use the ratio between the size of the
space and the size of sliding window as the independent
axis in our graphs, and report the results accordingly.
From them, the tradeoff between the space usage and
the error rate can be seen. To evaluate our work, we
have compared our b DBF with CBF (Counting Bloom
Filter) to detect duplicates over sliding windows.

In addition, the experiments validate our arguments
in Subsection 5.2 and Subsection 5.3. As we mentioned
above, we expect that the practical error rate for dupli-
cate detection is close to the upper bound of the theo-
retical error rate calculated. The experiments support
this proposition.

6.1 Data Sets

It is infeasible to test our approach over sliding win-
dows with real data streams, since measuring the accu-
racy of our approach would require exact identification
of all duplicates for every window. For example, if the
stream size is 5 × 220, and the window size is fixed to
220 elements, then the number of windows that cover
the given stream is 5 × 220 − 220 + 1 ≈ 4 × 220. Thus,
to check the error rate for our solution, we run the ex-
act solution about 4× 220 times, and compare it to the
results of the approximate solution. To overcome this
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problem, we limit the experiments to only a small size
of sliding windows and only run experiments on a syn-
thetic data stream. This is in line with many previous
studies[3,4].

There is another reason for using such a synthetic
stream. The fraction of duplicates in the data stream
is a dominant factor affecting the error rates, because
FNs are only generated by duplicates and FPs by dis-
tincts. For example, a data stream full of duplicates will
cause many FNs, while a stream consisting of all dis-
tincts causes no such errors at all. Since CBF and our
algorithm could have FPs (false positives) but no FNs
(false negatives), it is difficult and unnecessary to com-
pare b DBF with CBF over a large real data stream
with duplicates. To fairly and effectively compare our
method with CBF, we use a special synthetic stream of
10 × 220 elements for our sliding window experiments.
The elements are all distinct. Thus, all the duplicates
output by the algorithm are erroneous. We use integers
as data values.

6.2 Comparisons

Two sets of tests were conducted over the 212-width
sliding windows. These tests were implemented us-
ing hash functions of modulo/multiply type from [17]:
given a value v, its hash value H(v), 0 6 H(v) 6 m, is
computed by H(v) = dm(av mod 1)e, where a is taken
uniformly at random from [0, 1].

In the first set of tests, we compare the FPR of our
algorithm with that of CBF. In order to implement a
fair comparison, we assign the same space to the two al-
gorithms. Since CBF requires additional space to keep
the arrival order information of elements represented by
it, this space could be used, instead, to reduce the FPR
within our algorithm. We suppose the additional space
is equal to the space required by CBF. In addition, for
simplicity, we assign the same number of bits as for the
counter in b DBF to each counter in CBF and do not
consider the counter overflow. Fig.5 shows comparisons
of the FPR obtained by using the additional memory to
increase the size of the array of b DBF within our algo-
rithm versus that by using it to keep the order informa-
tion within CBF while the ratio between the size of the
space and the size of sliding window increases. From
Fig.5, it is clear that the FPR of b DBF is much lower
than that of CBF and the practical FPR of b DBF ap-
proaches the upper bound of theoretical FPR as the
ratio between the size of space and the size of sliding
window increases.

In the second set of tests, we observe the number
of operations for each new element within CBF and

b DBF for various ratios between the size of space and
the size of sliding window. From Fig.6, we can find the
time complexity of b DBF is much lower than that of
CBF.

Fig.5. Comparisons of FPR between b DBF and CBF for various

ratios between the size of space and the size of sliding window

using a synthetic data stream.

Fig.6. Comparisons of number of operations between b DBF and

CBF for various ratios between the size of space and the size of

sliding window using a synthetic data stream.

7 Conclusions

In this paper, we studied the problem of approxi-
mately detecting duplicates over sliding windows. We
introduced a data structure, namely, Decaying Bloom
Filter (DBF), and a simple and efficient algorithm for
duplicate detection. Our DBF avoids counter overflow
and guarantees that all stale elements sliding out of the
sliding window will be deleted. Thus, it avoids using
additional space to keep the arrival information of ele-
ments in the current window as did in Counting Bloom
Filter, resulting in a significant reduction in memory
space. Based on DBF, our duplicate deletion algorithm
works by dividing a data stream into non-overlapping
blocks and processing a block instead of a single data
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element. Experimental results have verified our theo-
retical analysis and showed that the proposed method
achieves better performances in both deletion accuracy
and execution time than previous results.
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Appendix

Proof of Upper Bound of UD Error Rate
We start by assuming that there is a multiple set

M , which comes from a universe U , and elements are
orderly and uniformly distributed in this multiple set.
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We divide the set M into B (> 2) blocks of the same
size T and number them by 1, 2, . . . , B. Clearly,
|M | = B×T . For any element e ∈ U , let Ai denote the
event that e has a duplicate in block i (1 6 i 6 B), and
Pr(Ai) denote the probability of Ai. Since elements in
M are uniformly distributed, Pr(Ai) is a constant and
Pr(Ai) = Pr(Aj) (1 6 i, j 6 B).

Now let us consider the event A that e has a du-
plicate in block B but no duplicate in blocks whose
numbers are smaller than B. Thus, the probability of
this event is

Pr(A) = (1− Pr(Ai))B−1 × Pr(Ai).

By derivation on Pr(Ai), we find that the Pr(A) can
be maximized to (1−1/B)B−1× (1/B) when Pr(Ai) =
1/B. Therefore,

Pr(A) 6 (1− 1/B)B−1 × (1/B).

Since B > 2, (1 − 1/B)B−1 is no more than 1/2 and
monotonically decreases as B increases. We have

Pr(A) 6 1/(2×B) = T/(2× |M |).

If we take |M | as the size of sliding windows, then
we can conclude that Pr(FPUD) is no more than
T/(2× |M |).

When B > 100, since (1 − 1/B)B−1 ≈ e−1 = 0.37,
the UD error rate is no more than 0.37%. Fig.7 de-
picts the values of Pr(A) for different Pr(Ai) values
with B = 100, which shows that Pr(A)is maximized
to 0.37% when Pr(Ai) is about 0.01.

Fig.A1. Comparisons of the UD Error Rate for various Pr(Ai)

with B = 100.


