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Abstract In this paper, we propose a framework that uses localization for multi-objective optimization to simultane-
ously guide an evolutionary algorithm in both the decision and objective spaces. The localization is built using a limited
number of adaptive spheres (local models) in the decision space. These spheres are usually guided, using some direction
information, in the decision space towards the areas with non-dominated solutions. We use a second mechanism to adjust
the spheres to specialize on different parts of the Pareto front by using a guided dominance technique in the objective
space. Through this interleaved guidance in both spaces, the spheres will be guided towards different parts of the Pareto
front while also exploring the decision space efficiently. The experimental results showed good performance for the local
models using this dual guidance, in comparison with their original version.
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1 Introduction

Evolutionary multi-objective optimization (EMO)
has been applied in numerous domains[1−4] with a wide
range of algorithms, such as the Vector Evaluated Ge-
netic Algorithm (VEGA)[5], the Strength Pareto Evo-
lutionary Algorithm version 2 (SPEA2)[6], Pareto Dif-
ferential Evolution (PDE)[7] and Non-dominated Sort-
ing Genetic Algorithm version 2 (NSGA-II)[8]. Multi-
objective evolutionary algorithms (MOEAs) are usu-
ally blind search techniques in the sense that they
do not usually use any auxiliary functions like deriva-
tives (as in traditional deterministic optimization tech-
niques). To reduce the effect of this “blindness”, there
has been an increasing number of attempts to incor-
porate various guidance capabilities into MOEAs. Ba-
sically, to do this, some sort of guidance is employed
to direct the search towards promising areas satisfy-
ing specific criteria, such as avoiding infeasible areas
or of approaching particular parts of the Pareto front.
Further, guidance can be done in either the decision
or objective space.

In this paper, we hypothesize that interleaving
guidance in both the decision and objective spaces can
help accelerating the search process. Our proposed
idea is to localize the search in the decision space

by using a framework of local models[9] that divides
the decision search space into a number of localized
search areas, where each area can be (but not limited
to being) seen as a hyper-sphere. In other words, we
transform searching in MOEAs on the original search
space into a sphere-oriented space, where each sphere
is running its own version of an MOEA. These spheres
move following some direction information to improve
their local non-dominated sets. These spheres then
tend to specialize and move towards different parts
of the Pareto Optimal Front (POF) by using a guid-
ance technique in the objective space called guided
dominance[10]. In general, the main contributions of
this paper are as follows.
• Analysis of the performance of guidance in the

decision space.
• Analysis of the performance of guidance in the

objective space.
• Introduction to a method of interleaved guidance

in evolutionary multi-objective optimization based on
local models.

The remainder of the paper is organized as follows.
Background information is presented in Section 2. The
methodology is given in Section 3. An experimental
study is carried out in Section 4, and the last section
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is devoted to the conclusion.

2 Background

2.1 Evolutionary Multi-Objective
Optimization

In a k-objective optimization problem, a vector
function f(x) of k objectives is defined as:

f(x) = [f1(x), f2(x), . . . , fk(x)] (1)

in which x is a vector of decision variables in the n-
dimensional space Rn; n and k are not necessarily the
same. Each individual is assigned a vector x and there-
fore the corresponding vector f . The decision to select
an individual is now partially dependent on all objec-
tives (as in (1)). This usually results in several trade-
off individuals. This makes it quite suitable for using
MOEAs, since they are population-based approaches.
MOEAs offer a set of solutions; where which solution
is to be selected at the end of the day is dependent on
the users’ decision.

An individual x1 is said to dominate x2 if x1 is bet-
ter than x2 when measured on all objectives. If x1

does not dominate x2 and x2 also does not dominate
x1, they are said to be non-dominated. If we use ¹
between x1 and x2 as x1 ¹ x2 to denote that x1 domi-
nates x2 and C between two scalars a and b as a C b to
denote that a is better than b (similarly, a B b to de-
note that a is worse than b, and a 7 b to denote that
a is not worse than b), then the (weak) domination
concept is formally defined as follows.

Definition 1 (Dominance). x1 ¹ x2 if the fol-
lowing conditions are held:

1) fj(x1) 7 fj(x2), ∀j ∈ [1, 2, . . . , k],
2) ∃j ∈ [1, 2, . . . , k] in which fj(x1) C fj(x2).
In general, if an individual in a population is not

dominated by any other individual in the population,
it is called a non-dominated individual. All non-
dominated individuals in a population form the non-
dominated set or the Pareto front (as formally de-
scribed in Definition 2). Note that these definitions
are extracted from the ones in [1].

Definition 2 (Non-Dominated Set). A set S is
said to be the non-dominated set of a population P if
the following conditions are held:

1) S ⊆ P ,
2) ∀s ∈ S, @x ∈ P |x ¹ s.
When the set P represents the entire search space,

the set of non-dominated solutions S is called the global
Pareto optimal set. If P represents a sub-space, S will
be called the local Pareto optimal set. There is only

one global Pareto optimal set, but there could be mul-
tiple local ones. However, in general, we simply refer
to the global Pareto optimal set as the Pareto optimal
set (or Pareto optimal front (POF) for the plot of this
set in the objective space).

The majority of existing MOEAs employ the con-
cept of dominance in their courses of action; therefore,
we focus on the class of dominance-based MOEAs only.
The key features of a dominance-based MOEA are as
follows: at each iteration, in order to select potentially
better solutions for the next generation, the objective
values are calculated for every solution and these are
then used to determine the dominance relationships
within the population. In this way, the population
should converge to the POF. Generally, the MOEA has
to overcome two major problems[1]. The first problem
is how to get close to the Pareto optimal front. This
is not an easy task, because converging to the POF is
a stochastic process. The second is how to keep diver-
sity among the solutions in the obtained set. These
two problems become common criteria for most cur-
rent algorithmic performance comparisons.

To date, many MOEAs have been developed. Gen-
erally speaking, there are many ways to classify
MOEAs. However, we follow the one used in [4]
where they are classified into two broad categories:
non-elitism and elitism. Within the elitism approach,
MOEAs employ an external set (the archive) to store
the non-dominated solutions after each generation.
This set will then be a part of the next generation.
With this method, the best individuals in each gen-
eration are always preserved, and this approach helps
the algorithms get closer to the POF. Algorithms, such
as SPEA2[6], PDE[7], and NSGA-II[8], are examples of
this category. In contrast, the non elitism approach
has no concept of elitism when it performs selection
of individuals for the next generation from the cur-
rent population[11]. Examples of this category include
VEGA[5] MOGA[12], NPGA[13], and NSGA[14] (note
that VEGA does not use the concept of dominance).

2.2 Non-Dominated Sorting Genetic
Algorithms Version 2 — NSGA-II

NSGA-II is an elitism algorithm[1]. The main fea-
ture of NSGA-II lies in its elitism-preservation oper-
ation. Note that NSGA-II does not use an explicit
archive; a population is used to store both elitist and
non-elitist solutions for the next generation. How-
ever, for consistency, we still consider it as an archive.
Firstly, its archive size is set equal to the initial pop-
ulation size. The current archive is then determined
based on the combination of the current population
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and the previous archive. To do this, NSGA-II uses
dominance ranking to classify the population into a
number of layers, such that the first layer is the best
layer in the population. The archive is created based
on the order of the ranking layers: the best rank be-
ing selected first. If the number of individuals in the
archive is smaller than the population size, the next
layer will be taken into account and so forth. If adding
a layer makes the number of individuals in the archive
exceed the initial population size, a truncation oper-
ator is applied to that layer based on the crowding
distance measure.

The crowding distance D of a solution x is calcu-
lated as follows: the population is sorted according to
each objective to find adjacent solutions to x; where
boundary solutions are assigned infinite values and the
average of the differences between the adjacent solu-
tions in each objective is calculated. The truncation
operator then removes the individual with the smallest
crowding distance, given by:

D(x) =
M∑

m=1

F
Im

x +1
m − F

Im
x −1

m

Fmax
m − Fmin

m

(2)

in which F is the vector of objective values, and Im
x

returns the sorted index of the solution x, according
to the m-th objective.

An offspring population of the same size as the ini-
tial population is then created from the archive by
using crowded tournament selection, crossover, and
mutation operators. Crowded tournament selection is
a traditional tournament selection method, but when
two solutions have the same rank, it uses the crowding
distance measure to break the tie.

2.3 Strength Pareto Evolutionary Algorithm
2 — SPEA2

SPEA2 is actually the development of an elitism
EMO algorithm called “The Strength Pareto Evo-
lution Algorithm”[11]. This subsection just concen-
trates on the main points of SPEA2. The initial
population, representation and evolutionary operators
are standard; with uniform distribution, binary rep-
resentation, binary tournament selection, single-point
crossover, and bit-flip mutation. However, the distinc-
tive feature of SPEA2 lies in being used its elitism-
preservation operation.

An external set is created for storing primarily non-
dominated solutions. It is then combined with the cur-
rent population to form the next archive that is then
used to create offspring for the next generation. The
size of the archive is fixed. It can be set to be equal to

the population size. Therefore, there exist two special
situations when filling solutions in the archive. If the
number of non-dominated solutions is smaller than the
archive size, other dominated solutions taken from the
remaining part of the population are filled in. This
selection is carried out according to a fitness value,
specifically defined for SPEA. That is the individual
fitness value defined for a solution, x, is defined as the
total of the SPEA-defined strengths of solutions which
dominate x, plus a density value.

The second situation happens when the number of
non-dominated solutions is over the archive size. In
this case, a truncation operator is applied. For that
operator, the solution which has the smallest distance
to the other solutions will be removed from the set. If
solutions have the same minimum distance, the second
nearest distance will be considered, and so forth. This
is called the k-th nearest distance rule.

2.4 Guided Approaches in the Objective
Space

The original motivation for using guided approaches
is that in practical problems we usually need a limited
number of sample points of the POF rather than the
whole POF[15]. In this sense, the objective space is
limited to the POF part of interest only. Based on
this idea, some work has been carried out to guide
the search to different parts of the POF[10,16−18]. A
further advantage of guided approaches is the ability
to distribute the computation effort to a number of
processors (instead of only one) where each processor
is designated to a sub-population and hence tracks a
part of the POF. In general, we categorize the different
approaches for guiding the search to different parts of
the POF into two categories, which we call soft and
hard guidance.
• Soft guidance: the solutions in other parts of the

POF are still considered, but with lower rank (or pri-
ority). Further, it allows some overlapping between
the parts. The guided dominance method[16] can be
seen as an example for this approach.
• Hard guidance: this approach is a straightfor-

ward one where the boundary of each part (sub-region
of the POF) is used as a constraint. Solutions that
are outside a sub-region are marked as having a con-
straint violation. An example of this approach is cone
separation[17].

Deb et al.[16] proposed a technique using guided
dominance to divide the POF into a number of parts,
where each part was tracked by a different subpopula-
tion. With guided dominance, the dominance relation
is determined from the transformed functions Ω of the
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Fig.1. Space transformation using guided dominance for two-objective problems. Dominated region of a solution A using conven-

tional dominance concept (a), guided dominance (b), and the POF part of interest (c).

original objective functions f , in which the points in
the POF area of interest dominate all others in the
remaining areas of the POF. Fig.1 is for the demon-
stration of how the dominance concept is changed via
showing changes of the area that the point A domi-
nates. The left graph shows the area being dominated
using a conventional dominance relation. In this case,
solutions B and C are not dominated by A; meanwhile
the middle one shows the dominated areas using the
transformed functions Ω . In more detail, in (3), we
give an example of how to calculate Ω from f in a 2D
space. (

Ω1

Ω2

)
=

(
1 a12

a21 1

)(
f1

f2

)
(3)

where a12 and a21 are predefined weights. Now (for
certain a12 and a21) B and C become dominated by
A. Under this transformation scheme, the equivalent
part of the POF is defined as in Fig.1(c) — the curve
between M and N . The square matrix in (3) is called
the weighted matrix. In order to divide the POF, an
equivalent number of weighted matrices is defined to
transform the original objective functions. In other
words, the dominance relation in each population is
defined by a separate weighted matrix. With the par-
tition of the POF in the objective space, the search
process is easily guided. The use of the weighted sum
method to transform the objective functions might be
less effective, in the cases of problems with non-convex
POFs.

Likewise, Branke et al.[17] also introduced an ap-
proach to dividing the POF into a number of parts,
where each part was tracked by an island in an island-
based evolutionary algorithm. This approach divided
the POF by a cone separation in which the targeted
POF area was within a 90◦ angle starting from a ref-
erence point. An example is given in Fig.2 where
the POF is divided into three parts by defining two
straight lines from the reference point where these lines

partition the angle at the reference point into three
equal sub-angles.

Fig.2. Demonstration of cone separation with three parts of the

POF.

Further, all the borders of the divided regions are
then used as constraints for the optimization problem.
This is the most straightforward method of dividing
the POF regardless of the convexity of the POF. Note
that the problems with a discontinuous POF need
careful consideration in advance (which is not always
possible in practice) in order to avoid unnecessary sep-
aration.

2.5 Framework of Local Models

In this subsection, we summarize the method of lo-
cal models that was proposed by Bui et al.[9] Techni-
cally, with the local models, the decision search space
S is divided into a number of non-overlapping spheres
where each sphere si is defined by a centroid and ra-
dius pair: S = [s0, s1, . . . sn] and si = (ci, ri) (see also
Definition 3). Initially, all ri are set to be the same
default value r.

Definition 3. A sphere is a local area in the de-
cision sphere and is associated with a pair of centroid
and radius.



48 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

As stated above, the initial spheres are non-
overlapping. Therefore, the distance between two
spheres will be used to guarantee that they are non-
overlapping. Let DB

A be the Euclidean distance be-
tween two centroids of arbitrary spheres A and B.
They can be guaranteed to not overlay when:

DB
A > 2r. (4)

Inside a sphere, points are generated uniformly and
are kept further apart from each other with a pre-
defined distance β away from each other, in which
β ≈ r/M and M is the number of solutions in each
sphere.

Let DB
A be the Euclidean distance between two cen-

troids of arbitrary spheres A and B, dj
i be the Eu-

clidean distance between two arbitrary points i and j
inside a sphere X, and cx be the centroid of sphere X.
The required condition is that:

dcX
i 6 r,

dcX
j 6 r,

dj
i > β. (5)

To initialize a sphere si, we use the spherical co-
ordinate system, since it easily guarantees to generate
points inside the sphere and therefore speeds up the
initialization process. Let x = (x1, x2, . . . , xn) be a
point in the Cartesian coordinate system. We can cal-
culate x from the parameters of an equivalent spherical
coordinate system including a radial coordinate r, and
n− 1 angular coordinates α1, α2, . . . , αn−1 as follows:

x1 = ci
1 + r cos(α1),

x2 = ci
2 + r sin(α1) cos(α2),

x3 = ci
3 + r sin(α1) sin(α2) cos(α3),

...

xn−1 = ci
n−1 + r sin(α1) · · · sin(αn−2) cos(αn−1),

xn = ci
n + r sin(α1) · · · sin(αn−2) sin(αn−1). (6)

Therefore, for a point x in the sphere, we generate ran-
domly a set of n− 1 angular values α and then apply
(6) to calculate Cartesian coordinate values for x.

Later, each sphere runs its own EMO algorithm and
over time, the spheres are moved and guided towards
the global Pareto front. Generally, the local models
are formally defined as in Definition 4.

Definition 4. Local models are defined as a system
of adaptive spheres in the decision space and are kept
under the control of a moving operator.

Also, the framework is formalized as follows.
Step 1. Define spheres:

- Number of spheres.
- Initial radius for spheres.
- Centroids of spheres complying with the rules in (4).
- Minimum distance β between two points.

Step 2. Initialize spheres: using the uniform distribu-
tion while following (6) and complying with the rules in
(5).

Step 3. Run one evolutionary cycle of the MOEA on
each sphere.

Step 4. Move spheres with a predefined strategy.

Step 5. If stop condition is not met goto Step 3, other-

wise stop the process.

It is obvious from the framework that the strat-
egy to control the movement of the spheres (Step 4)
plays an important role. For it, the authors propose
several techniques including both communication and
non-communication ones. For the non-communication
strategy (called RACING), the spheres are allowed to
move with their own paths without communication
among them. Hence, the centroid of a sphere is cal-
culated based on all non-dominated solutions in that
sphere. Formally, the centroid ci of a sphere si is re-
calculated as follows:

ci =

∑
(Xj

i )N
j=1

N
(7)

in which Xi is the set of obtained non-dominated in-
dividuals with the size of N .

Further, as soon as the centroid of a sphere si is
recalculated, the dominated individuals are discarded
and the radius of the sphere is also adjusted as in (8).
The effect of (8) is that the maximal distance (called
new r) from the centroid to any non-dominated indi-
vidual in that sphere is assigned to be the new radius
if it is greater than the default radius r. All new gener-
ated individuals are restricted to be within the sphere.
Also, over time, spheres can be overlapping.

ri =
{

new r , if new r > r,

ri, otherwise.
(8)

We can consider the case in Fig.3 as an exam-
ple of sphere movement. The current sphere is as
in the graph on the left side (Fig.3(a)). Next, ig-
noring the dominated individuals which will be dis-
carded, suppose that all the points in (Fig.3(b)) (the
middle graph) are non-dominated. The new centroid
(the big white dot) and new radius will be calculated;
hence forming a new sphere. All individuals outside
the new sphere are discarded and the remaining solu-
tions are used to generate offspring (the small black
dots in (Fig.3(c)) (the graph on the right side)); then
the entire new sphere is built and is ready for the next
round of evolution.
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Fig.3. Changing of the centroid to determine the direction of improvement (Suppose the problem of two objectives with maximiza-

tion of f1 (horizontal axis) and minimization of f2 (vertical axis)). (a) Current sphere where the big black dot is its centroid. (b)

Transition state in which the big white dot is the new centroid. (c) New sphere with newly generated offspring (small black dots).

Meanwhile, for the communication strategies, the
spheres are allowed to regularly communicate with
each other during the optimization process and their
movement is controlled by rules inspired from Particle
Swam Optimization (PSO)[19]. Two versions of this
technique were devised, called PSOV1 (that strictly
follows the rules from PSO) and PSOV2 (a modified
version from PSOV1, that is described in detail later
in the section of methodology).

In general, the unique property of this framework is
that it creates a system of local models based on local-
ization of the decision space and allows these spheres
to interact with each other following PSO-inspired
rules. In [9], it is shown that the local models pro-
vide a quick convergence to the global POF. Further,
they offer an effective approach to applying distributed
computing to evolutionary multi-objective optimiza-
tion.

3 Methodology

In our proposed framework, all the spheres are ini-
tialized following the conditions in (5). Centroids are
then recalculated for all spheres after every round of
evolution — a round is completed when all spheres fin-
ish one cycle of their own evolutionary process. The
new and old centroids are used to determine the di-
rection of improvement. We use PSOV2 (a strategy
to guide spheres in the decision space), which in sim-
ple terms, applies a weak stochastic pressure to move
the spheres towards the global optima. Details of how
the direction of improvement is implemented as well
as movement strategies are given in [9].

Note that the direction of improvement in the lo-
cal models exploits both local and global information.
However, in problems such as the ZDTs, the use of
global information might cause the spheres to quickly
move close to each other as they are approaching the

POF. Thus, the search time might be wasted since the
spheres search the same areas of the POF. Further,
when spheres converge, the interaction among spheres
might cause some unnecessary fluctuation. Therefore,
it seems better to instead guide each sphere to occupy
a different part of the POF, or at least reduce as much
as possible the overlapping of the POF’s parts that
are discovered by the spheres. For this, we use guided
dominance to specialize the spheres in the objective
space.

We call this method Interleaving Guidance in Evo-
lutionary Multi-objective Optimization. With this,
our conjecture is that the local models with movement
strategies in the decision space will speed up the con-
vergence of the system, while the guided dominance
will help to refine the obtained non-dominated set.

3.1 Strategy of PSOV2

For this strategy, the spheres are allowed to com-
municate after every some predefined number of gen-
erations. Before communication, the spheres move as
in RACING. However, when communication happens,
they each contribute non-dominated solutions to build
a global archive. Here, we focus in the case where com-
munication happens. The movement of each sphere si

depends on where its centroid ci is located. In or-
der to determine a new location for each ci, we need
to determine two components: the new local centroid
cl
i of sphere si and the global archive’s centroid cg

i .
The movement is modified to determine the new cen-
troid for sphere si, from the new local centroid and
the global one via its velocity vi (9).

vi(t + 1) = rand × (cg
i (t + 1)− cl

i(t + 1)),

ci(t + 1) = cl
i(t + 1) + vi(t + 1). (9)

We use a visual example, given in Fig.4, to demon-
strate this method. Suppose that we need to determine
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the new centroid D of a sphere. We assume that the
new local centroid is B and the global centroid is C.
For the RACING strategy, D and B are identical; and
for the strategy of PSOV1, D will be determined from
B and C based on the rules of Particle Swarm Opti-
mization (or in other words, the velocity and centroid
in (9) will be calculated strictly following the rules
from PSO). However, for PSOV2, D is just a random
location between B and C. Formally, let vectors OC
represent the vector to the global centroid and OB
represent that to a new found local centroid:

BD = rand × (OC −OB),

OD = OB + BD, (10)

OD is the vector of a new adjusted centroid for sphere
si, and rand is a random number between 0 and 1.
In this way, the technique is somewhat similar to the
Pareto Differential Evolution algorithm[7].

Fig.4. Changing of the centroid in PSOV2: using vectors to

indicate the recalculation of the new centroid.

3.2 Interleaving Guidance

To implement the idea of interleaving guidance, we
need to divide the POF into a number of parts. Each
part is then used to guide a sphere. In this way, we
use a number of global centroids instead of only one as
in the original PSOV2 (see (9)); each global centroid
is the center of the group of global non-dominated so-
lutions that belong to an associated POF part. The
number of parts, spheres, and global centroids are kept
equal. As stated above, we have selected the guided
dominance approach in [16] to guide the local models
in the objective space. This is a “soft ” division, in the
sense that the parts are allowed some overlapping, but
the overlapping is kept to a minimum.

In this approach, each sphere is associated with a
POF part, the one that it contributes the most non-
dominated solutions to, in comparison with the other
parts. Each POF part is assigned only one sphere.
When a sphere needs to be guided by global infor-
mation, the sphere’s centroid is determined from both
the new local centroid, which is calculated based on
all individuals of the sphere that belong to its asso-
ciated POF part and the associated global centroid.

In general, this task is done at Step 4 of the general
framework of the local models. The task can be fur-
ther described in steps as follows.

Step 1. Define spheres:
- Number of spheres (also the number of POF parts).
- Initial radius for spheres.
- Centroids of spheres complying with the rules in (4).
- Minimum distance β between two points.
- Specify the weight matrices for guided-dominance.

Step 2. Initialize spheres: using the uniform distribu-
tion while following (6) and complying with the rules in
(5).

Step 3. Run one evolutionary cycle of the MOEA on
each sphere.

Step 4. Make a move for each sphere
If (time for communication) {
Step 4.1. Select a sphere,
Step 4.2. Search for an available POF part, the one

it contributes the most non-dominated so-
lutions to, and assign the found part to the
sphere,

Step 4.3. Calculate its new centroid based on its lo-
cal new and the associated POF part’s cen-
troid,

Step 4.4. if not all spheres are assigned, goto step 1,

Step 4.5. Calculate new radix for spheres
} else {

Step 4.1. Calculate new centroid as in RACING,
Step 4.2. Calculate new radix for spheres

}.
Step 5. if stop condition is not met goto Step 3, oth-

erwise stop the process.

4 Experimental Studies

In order to validate the proposed method, we car-
ried out a comparative study on a set of test problems.
Note that the performance of the local models with
different controlling strategies (RACING, PSOV1 or
PSOV2) were thoroughly analyzed in [9]. In this pa-
per, we focus on the performance of
• local models with guidance in the decision space,
• guided dominance in the objective space,
• dual guidance in both spaces.
We selected NSGA-II as the algorithm to run in

each sphere of our models. Experiments were per-
formed and compared among for the following ap-
proaches.
• PSOV2: this approach is included in order to val-

idate the new proposed technique of dual guidance. It
has the same name as its strategy.
• GUIDED: the approach using only the strategy of

guided dominance to guide the search in the objective
space.
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Table 1. Lists of Test Problems Used for Experiments in This Paper

Problems Dim Range POF Features

BINH 2 xi ∈ [−5, 10] Convex

f1(x) = x2
1 + x2

2 Uniform

f2(x) = (x1 − 5)2 + (x2 − 5)2 Uni-modal

Connected

POL 2 xi ∈ [−π, π] Nonconvex

f1(x) = [1 + (A1−B1)2 + (A2−B2)2] Disconnected

f2(x) = [(x1 + 3)2 + (x2 + 1)2] Uniform

A1 = 0.5 sin 1.0− 2 cos 1.0 + sin 2.0− 1.5 sin 2.0

A2 = 1.5 sin 1.0− cos 1.0 + 2 sin 2.0− 0.5 sin 2.0

B1 = 0.5 sin x1 − 2 cos x1 + sin x2 − 1.5 sin x2

B2 = 1.5 sin x1 − cos x1 + 2 sin x2 − 0.5 sin x2

LAU 2 xi ∈ [−50, 50] Convex

f1(x) = x2
1 + x2

2 Disconnected

f2(x) = (x1 + 2)2 + x2
2 Uni-modal

Uniform

LIS 2 xi ∈ [−5, 10] Nonconvex

f1(x) = 8
√

x2
1 + x2

2 Uniform

f2(x) = 4
√

(x1 − 0.5)2 + (x2 − 0.5)2 Uni-modal

Disconnected

MUR 2 x1 ∈ [1, 4] and x2 ∈ [1, 2] Nonconvex

f1(x) = 2
√

x1 Uni-modal

f2(x) = x1(1− x2) + 5 Connected

Uniform

REN1 2 xi ∈ [−3, 3] Convex

f1(x) = 1
x2
1+x2

2+1
Uniform

f2(x) = 1
x2
1+3x2

2+1
Uni-modal

Connected

REN2 2 xi ∈ [−3, 3] Convex

f1(x) = x1 + x2 + 1 Uniform

f2(x) = x2
1 + 2x2 − 1 Uni-modal

Connected

KUR 3 xi ∈ [−5, 5] Nonconvex

Disconnected

f1(x) =
∑n−1

i=1 (−10 exp(−0.2
√

x2
i + x2

i+1)) Uniform

f2(x) =
∑n

i=1(|xi|0.8 + 5 sin(xi)
3)

FON 10 xi ∈ [−4, 4] Nonconvex

Connected

f1(x) = 1− exp(−∑n
i=1(xi − 1√

n
)2) Uniform

f2(x) = 1− exp(−∑n
i=1(xi + 1√

n
)2) Uni-modal

QUA 16 xi ∈ [−5.12, 5.12] Non-convex

f1(x) =
√

A1
n

Connected

f2(x) =
√

A2
n

Uniform

Multi-modal

ZDT1 30 xi ∈ [0, 1] Convex

f1(x) = x1, f2(x) = g × h Connected

g(x) = 1 + 9
n−1

∑n
i=2 xi Uniform

h(f1, g) = 1−
√

f1
g

Uni-modal

ZDT2 30 xi ∈ [0, 1] Nonconvex

f1(x) = x1, f2 = g × h Connected

g(x) = 1 + 9
n−1

∑n
i=2 xi Uniform

h(f1, g) = 1− ( f1
g

)2 Uni-modal

To be continued
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Continue from the previous page

Problems Dim Range POF Features

ZDT3 30 xi ∈ [0, 1] Convex

f1(x) = x1, f2 = g × h Disconnected

g(x) = 1 + 9
n−1

∑n
i=2 xi Uniform

h(f1, g) = 1−
√

f1
g
− f1

g
sin(10πf1) Uni-modal

ZDT4 10 x1 ∈ [0, 1] Convex

xi ∈ [−5, 5], i = 2..10 Connected

f1(x) = x1, f2 = g × h Uniform

g(x) = 1 + 10(n− 1) +
∑n

i=2(x2
i − 10 cos(4πxi)) Multi-modal

h(f1, g) = 1− ( f1
g

)2

ZDT6 10 xi ∈ [0, 1] Nonconvex

f1(x) = 1− exp(−4x1) sin6(6πx1), f2 = g × h Connected

g(x) = 1 + 9[
∑10

i=2 xi

9
]0.25 Non-uniform

h(f1, g) = 1− ( f1
g

)2 Uni-modal

• IGMOEA: the approach of using the strategy of
cone separation to guide the local models in the objec-
tive space. IGMORA stands for Interleaving Guided
Multi-Objective Evolutionary Algorithm.
• NSGA-II: it is used as a baseline for comparison.

An overview of NSGA-II was given in the previous
section.
• SPEA2: another representative MOEA. An

overview of SPEA2 was also given in the previous sec-
tion.

4.1 Test Problems

A summary of the collection of 15 test problems
that are used in this paper is given in Table 1. This
is not an exhaustive list, but the problems represent
different difficulties. We use these problems to observe
the behavior of the algorithms. This list is divided into
two sets.
• The first set includes 7 low-dimension problems

(from BINH to REN2) that have 2D decision search
space and the property of uni-modality.
• The second set (from KUR to ZDT6) contains

more difficult problems with larger search space. They
are either uni-modal or multi-modal problems.

Note that although guided-dominance approaches
have been identified as working well on problems with
convex POFs[16], for more information, we have still
tested them on problems with non-convex POFs.

4.2 System Settings

For all experiments, the total population size was
set as 200. In all tests of the proposed framework,
three spheres were used (although the number of
spheres was also tested from one to five with differ-
ent controlling techniques to test the sensitivity of the

framework to the number of local models). The global
archive size was set to half the total population size.
If the global archive size was too large, the centroid
may have been affected by many inferior solutions and
this would therefore affect the convergence speed. On
the other hand, if it was too small, the archive would
be too specialized and hence might lose some of the
information contributed by some spheres. This alters
the effect of the global information.

Further, the update frequency was kept quite small,
in these experiments, it was set as 5 generations. All
cases were tested in 30 separate runs for 30 different
random seeds. The results have been analyzed within
these 30 runs for each model and on each problem.

For GUIDED, we have also used 3 sub-populations
in all experiments and have followed the settings intro-
duced by its authors. In all experiments, for NSGA-II
and SPEA2, real-valued versions were implemented us-
ing SBX crossover and polynomial mutation (see [1]).
The crossover rate was 0.9 and mutation rate was 0.1.
The distribution indexes for crossover and mutation
operators were ηm = 20 and ηc = 15 as recommended
by its authors[20]. Further, all models ran with the
same number of evaluations in order to make a fair
comparison.

4.3 Performance Measurement Methods

Performance metrics are usually used to compare
algorithms in order to form an understanding of which
one is better and in what aspects. However, it is hard
to define a concise definition of algorithmic perfor-
mance. In general, when doing comparisons, a num-
ber of criteria are employed[11]. We will look at two
of these criteria. The first measure is the generation
distance, GD, which is the average distance from the
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set of solutions found by evolution to the POF[21].

GD =

√∑N
i=1 d2

i

N
(11)

where di is the Euclidean distance (in objective space)
from solution i to the nearest solution in the POF. If
there is a large fluctuation in the distance values, it
is also necessary to calculate the variance of the met-
ric. Finally, the objective values should be normalized
before calculating the distance.

As recommended in [21], it is considered better to
use the hyper-volume ratio, HR, which is measured by
the ratio between the hypervolumes of hyperareas cov-
ered by the obtained POF and the true POF, called
H1 and H2 respectively. HR is calculated as in (12).
For this metric, the greater the value of HR, the better
convergence the algorithm has.

HR =
H1
H2

. (12)

There are some discussions on how to determine the
reference point for the calculation of the hyper-volume,
for example, it can be the origin[21]. However, gener-
ally it is dependent on the area of the objective space
that is visited by all compared algorithms. In this pa-
per, as suggested elsewhere[1], the reference point is
the one associated with all the worst values of objec-
tives found by all the algorithms under investigation.

4.4 Results and Discussions

Convergence is one of the most important charac-
teristics of an optimization technique since its main
use is to assess the performance of the algorithm.
However, the way of looking at convergence of single
objective and multi-objective optimizations are quite
different[22]. If some measurements of the objective
function, with regard to the number of generations, are
experimentally considered as an indication for conver-
gence in single objective optimization, it is not a suit-
able method for multi-objective optimizations since
they do not involve the mutual assessment on all ob-
jective functions.

Further, the consideration of convergence is not
only on how close the obtained POF, after a period
of time, is in comparison to the true Pareto optimal
front, but also the rate of convergence which is con-
vergence over time. We consider both issues in this
subsection. For the closeness of the obtained POF, we
use the generation distance GD (as well as the hyper–
volume ratio HR). While GD is an indication for the
closeness of an obtained set of solutions to the true

POF, HR is for both closeness and diversity of the
obtained set.

Table 2. Predefined Level of the Hyper-Volume Ratio

That Algorithms Need to Reach Within a Time Limit

(They are kept as high as possible, but while still being

the one that the majority of approaches could reach.)

Problems Predefined Level

BINH 0.999

LAU 0.999

LIS 0.999

MUR 0.990

POL 0.995

REN1 0.995

REN2 0.999

KUR 0.940

FON 0.800

QUA 0.900

ZDT1 0.999

ZDT2 0.950

ZDT3 0.999

ZDT4 0.999

ZDT6 0.999

Firstly, the number of evaluations that each ap-
proach spends to reach a certain high level of hyper-
volume ratio (Table 2) was recorded. These were de-
rived from the highest level of HR that almost all algo-
rithms could achieve within an evaluation limit. This
measurement is to provide a quantitative indication of
how fast the algorithms are in converging to the true
POF (by using the same high level of HR). These val-
ues are reported in Tables 3, 4, and 5. t-tests with 0.05
level of significance were used to test the difference be-
tween results of the compared approaches.

We start with the performance of the system using
local models with guidance in the decision space alone
— PSOV2. From Table 3, we can see that PSOV2
was obviously quicker than (or equal to) NSGA-II in
the majority of problems. It was slower than NSGA-II
— spending more time exploring — in only two prob-
lems (MUR and REN1) and both of these problems
belong to the first set of simple problems (from BINH
to REN2) where the dimension of the search space is
2D and the problems are uni-modal.

Further, the set of more difficult problems (KUR
to ZDT6) showed a clearer picture. PSOV2 was no
worse than NSGA-II in any problems; particularly, it
was quicker in 5 problems and similar to NSGA-II in 3.
The use of localization as well as PSO-oriented rules
for controlling spheres gave the system much faster
speed of convergence to the POF in comparison with
NSGA-II.
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Table 3. The Number of Evaluations SPEA2, NSGA-II and
PSOV2 Needed to Reach the Predefined Levels of Hyper-
Volume Ratio (Mean and Standard Deviation from 30 Runs)

SPEA2 NSGA-II PSOV2

BINH 2067 ± 644 1833 ± 320 1863 ± 382

LAU 773 ± 282† 1047 ± 286 952 ± 172

LIS 8213 ± 3158† 6300 ± 2678 4916 ± 1229†
MUR 1540 ± 150 1800 ± 197 14397 ± 31344†
POL 700 ± 146 693 ± 208 932 ± 803

REN1 900 ± 155† 993 ± 98 1163 ± 331†
REN2 2547 ± 396 2747 ± 484 1843± 1296†
KUR 1460 ± 211 1473 ± 249 1428 ± 273

FON 2387 ± 210† 6073 ± 326 4726 ± 445†
QUA 92533 ± 26032† 62107 ± 26139 67517 ± 16493

ZDT1 19753 ± 746† 21080 ± 527 18108 ± 1360†
ZDT2 8947 ± 1415† 5913 ± 422 4678 ± 519†
ZDT3 24600 ± 842† 23407 ± 1110 21434 ± 1718†
ZDT4 18120 ± 1769 18633 ± 1889 19128 ± 2278

ZDT6 37973± 1346† 38807 ± 1099 4468 ± 314†
Note: Symbol † indicates that the difference between PSOV2
and NSGA-II is significant (using a t-test with 0.05 level of
significance). The texts in bold style show that the perfor-
mance of SPEA2 or PSOV2 is better than or equal to that
of NSGA-II.

A further comparison can be made between SPEA2
and NSGA-II where their performance was quite simi-
lar. SPEA2 was quicker than NSGA-II in 5 problems,
and slower in 4 problems (divided equally among the
two sets of test problems), and equal in the remain-
ing ones. Note that the predefined levels of HR was
set very high (> 0.99 for almost all problems). This
ensured that the algorithms converged to the POF.

Regarding the performance of GUIDED on the test
problems, we can also compare it with NSGA-II in Ta-
ble 4. In our experiments, it seems that GUIDED was
quite slow in converging to the POF. For example, al-
though it had a quicker convergence in some difficult
problems, such as QUA, ZDT4 or ZDT6, it was slower
in many others, and sometimes did not even reach the
predefined levels (such as REN2, KUR, or ZDT3). It
is interesting to note that GUIDED was inferior in all
problems with a non-convex POF (except QUA). This
is somehow expected because of the use of a weighted-
sum transformation which assumes convexity of the
POF (as stated in [16]).

In general, the above results imply that guidance in
the decision space (using the local models) gives the
system a quicker convergence rate in comparison with
guidance in the objective space (using guided domi-
nance).

Now we move to discussion on the performance of
IGMOEA. As shown in the previous section, IGMOEA
is an extended version of PSOV2 using dual guidance

Table 4. The Number of Evaluations NSGA-II and GUIDED

Needed to Reach the Certain Levels of Hypervolume Ratio

(Mean and Standard Deviation from 30 Runs)

NSGA-II GUIDED

BINH 1833 ± 320 2033 ± 916

LAU 1047 ± 286 647 ± 266†
LIS 6300 ± 2678 9507 ± 8417†
MUR 1800 ± 197 2367 ± 328†
POL 693 ± 208 720 ± 244

REN1 993 ± 98 3253 ± 1146†
REN2 2747 ± 484 NA ± NA †
KUR 1473 ± 249 NA ± NA †
FON 6073 ± 326 51273 ± 51621†
QUA 62107 ± 26139 33520 ± 32109†
ZDT1 21080 ± 527 24187 ± 1012†
ZDT2 5913 ± 422 9387 ± 1248†
ZDT3 23407 ± 1110 NA ± NA†
ZDT4 18633 ± 1889 17067 ± 429†
ZDT6 38807 ± 1099 39367 ± 1241

Note: Symbol † indicates that the difference between NSGA-
II and GUIDED is significant (using a t-test with 0.05 level
of significance). The texts in bold style show that the perfor-
mance of GUIDED is better than or equal to that of NSGA-
II.

Table 5. The Number of Evaluations PSOV2 and IGMOEA

Needed to Reach the Pre-Defined Levels of Hypervolume

Ratio (Mean and Standard Deviation from 30 Runs)

PSOV2 IGMOEA

BINH 1863 ± 382 2853 ± 1538†
LAU 952 ± 172 2387 ± 2200†
LIS 4916 ± 1229 12727 ± 20485†
MUR 14397 ± 31344 6680 ± 17338

POL 932 ± 803 1767 ± 1329†
REN1 1163 ± 331 1253 ± 364

REN2 1843 ± 1296 4733 ± 2425†
KUR 1428 ± 273 1853 ± 528†
FON 4726 ± 445 7767 ± 1770†
QUA 67517 ±16493 34580 ± 7530†
ZDT1 18108 ± 1360 18268 ± 27671

ZDT2 4678 ± 519 13480 ± 8895†
ZDT3 21434 ± 1718 11560 ± 1192†
ZDT4 21304 ± 495 16613 ± 523†
ZDT6 4468 ± 314 5300 ± 853†
Note: Symbol † indicates that the difference between PSOV2
and IGMOEA is significant (using a t-test with 0.05 level of
significance). The texts in bold style show that the perfor-
mance of IGMOEA is better than or equal to that of PSOV2.

in both spaces. Therefore, we recorded its convergence
rate and compared it with PSOV2. All results have
been reported in Table 5. With IGMOEA, we expect
it to inherit the quick convergence rate from PSOV2,
but with a better capability of refining the obtained
non-dominated set (we will measure the quality of the
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set to show how it refined the set). It is very interesting
that for problems where IGMOEA was quicker than
PSOV2 (MUR, REN1, ZDT1, ZDT3, and ZDT4), they
are all problems with a convex POF.

Further, in the other non-convex ones, IGMOEA
was better on problem QUA, which has a non-convex
POF and multiple local POFs. It might be the case
that the division of the population allowed IGMOEA
enough diversity to overcome the difficulty of multi-
modality.

From the above results, we can see that the ap-
proaches converged within 20 000 evaluations for al-
most all problems. Therefore, in order to measure the
quality of the obtained non-dominated set, we calcu-
lated GD and HR after a period of 20 000 evaluations
for all approaches, and have reported the mean and
standard derivation among 30 runs. All the results
were reported in Tables 6 and 7.

We consider the first set of simple problems (from
BINH to REN2) where the dimension of the search
space is 2D and the problems are uni-modal. The
performance of all approaches were quite similar with
small values of GD (Table 6) and large values of HR
(Table 7). For these problems, the use of dual guid-
ance did not help much in terms of convergence and
diversity, since with a population size of 200 individ-
uals, all techniques easily and quickly approached the
POF.

However, the set of more difficult problems (KUR
to ZDT6) showed a different story. In Table 6, IG-
MOEA was the best in almost all problems (except
KUR FON, and QUA). There was a significant im-

provement of PSOV2 with the use of dual guidance.
We can see that ZDT1 and ZDT3 are examples where
IGMOEA converged exactly to the POF (with zero
value of GD and an HR value of one).

There was inefficiency in the use of dual guidance
in some problems with non-convex POFs such as KUR
FON, or QUA. We attribute this inferior performance
to the weighted sum approach used in guided domi-
nance. Note that, for QUA, all approaches obtained
good values of GD, but not HR. This indicates that
they all converged to the POF, but did not cover all
parts of the POF. Furthermore, because of the multi-
modality in this problem, 20 000 evaluations are not
enough to obtain a diverse set of non-dominated solu-
tions. Table 5 shows that IGMOEA became the best
after 35 000 evaluations.

In this paper, we have used a simple mechanism for
tracking the convergence, by measuring GD and HR
over time, since it is consistent with the performance
measures used above. We can compare GD and HR of
all approaches; as for example in Figs. 5 ∼ 10, where
we have visualized the averaged GD and HR of 30 runs
for all approaches over a period of 20 000 evaluations
(100 generations) and for several problems.

As expected, for the first set of simple problems, all
approaches converged quickly to the POF (see Fig.5
for an example). It is also possible to see a regular
series of drops in the curve for GUIDED approaches.
These drops reflect some sort of loss of diversity in the
POF. This sometimes happens when the sphere’s mo-
tion changes (with the update frequency), and then the
sub-population has to adjust to that change. There-

Table 6. Generation Distance (Mean and the Standard Deviation from 30 Runs) Recorded After 20 000

Evaluations for all Methods

NSGA-II SPEA2 PSOV2 IGMOEA GUIDED

BINH 0.007±0.000 0.006±0.000† 0.009±0.001† 0.009±0.001† 0.007±0.000

LAU 0.089±0.002 0.093±0.001† 0.090±0.003 0.093±0.008† 0.073±0.003†
LIS 0.002±0.000 0.001±0.000† 0.002±0.000 0.001±0.000† 0.006±0.002†
MUR 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.001±0.000†
POL 0.002±0.005 0.002±0.003 0.003±0.007 0.003±0.005 0.001±0.003

REN1 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000

REN2 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.013±0.013†
KUR 0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.000† 0.060±0.045†
FON 0.001±0.000 0.000±0.000† 0.001±0.000 0.001±0.000 0.001±0.000

QUA 0.001±0.000 0.000±0.000 0.001±0.000 0.002±0.000† 0.001±0.001

ZDT1 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000† 0.001±0.000

ZDT2 0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.010 0.002±0.001†
ZDT3 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000† 0.002±0.001†
ZDT4 0.063±0.045 0.048±0.040 0.104±0.081† 0.031±0.022† 0.262±0.407†
ZDT6 0.022±0.004 0.015±0.003† 0.002±0.003† 0.002±0.003† 0.031±0.004†
Note: The texts in bold style are to show the better or equal performance to that of NSGA-II. Symbol † indicates that the
difference between NSGA-II and the others is significant (using t-test with 0.05 level of significance).
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Table 7. Hyper-Volume Ratio (Mean and the Standard Deviation from 30 Runs) Recorded After

20 000 Evaluations for All Methods

NSGA-II SPEA2 PSOV2 IGMOEA GUIDED

BINH 1.000±0.000 1.000±0.000 0.999±0.000† 0.999±0.000† 1.000±0.000

LAU 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

LIS 1.000±0.016 1.000±0.018 1.000±0.013 1.000±0.023 1.000±0.021

MUR 0.999±0.000 0.999±0.000 0.993±0.011† 0.994±0.006† 0.995±0.001†
POL 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

REN1 0.998±0.000 0.997±0.000† 0.998±0.000 0.998±0.000 0.994±0.001†
REN2 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.888±0.024†
KUR 1.000±0.000 1.000±0.000 0.999±0.000† 0.998±0.001† 0.850±0.066†
FON 0.962±0.004 0.990±0.001† 0.945±0.004† 0.948±0.011† 0.708±0.234†
QUA 0.872±0.014 0.860±0.011† 0.856±0.013† 0.868±0.015† 0.895±0.031†
ZDT1 0.999±0.000 0.999±0.000 0.999±0.000 1.000±0.001 0.998±0.000†
ZDT2 0.998±0.000 0.998±0.000 0.999±0.000† 0.971±0.025† 0.993±0.005†
ZDT3 0.998±0.000 0.998±0.000 0.999±0.000† 1.000±0.000† 0.994±0.002†
ZDT4 1.000±0.001 1.000±0.001 0.999±0.001† 1.000±0.001† 1.000±0.001

ZDT6 0.973±0.003 0.979±0.003† 1.000±0.000† 1.000±0.000† 0.968±0.004†
Note: The texts in bold style are to show the better or equal performance to that of NSGA-II. Symbol † indicates that the
difference between NSGA-II and the others is significant (using t-test with 0.05 level of significance).

Fig.5. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100 genera-

tions) for BINH.

Fig.6. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100 genera-

tions) for QUA.
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Fig.7. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100 genera-

tions) for ZDT1.

Fig.8. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100 genera-

tions) for ZDT3.

Fig.9. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100 genera-

tions) for ZDT4.
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Fig.10. Generation distance (left) and hypervolume ratio of differing approaches over time (up to 20 000 evaluations or 100

generations) for ZDT6.

Fig.11. Non-dominated sets that IGMOEA obtained for BINH, QUA, ZDT1, ZDT3, ZDT4 and ZDT6.
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fore, this is reflected in the drop-recovery cycles shown
in the figure, which seems to be part of the process of
first moving to a new better area in the search space,
followed by an exploration phase of that area. This
might be useful for IGMOEA in problems with a large,
multi-modal search space.

The convergence of the GUIDED approaches is
clearer in the second set of problems (some examples
are given in Figs. 6 ∼ 10). In the first few genera-
tions, IGMOEA (also PSOV2) was quite slow. This is
because localization starts with an exploration phase
which consumes time. However, the adaptive strate-
gies of IGMOEA and PSOV2 help the methods to ad-
just to move faster if the search space seems smooth
enough. It then becomes clearer to see that IGMOEA
converged very quickly to the optimal. In other words,
PSOV2 was improved with the use of dual guidance.

All in all, the dual guidance technique shows a good
ability to quickly approach the true POF. With the
above test problems, it was able to obtain converged
and diverse POFs (see Fig.11 as an example).

4.5 Analysis on the Division of the POF

In the previous section, we have shown the supe-
rior performance of IGMOEA over its counterparts
(PSOV2 and GUIDED) in converging to the POF.
Here, we make a further investigation on the effect

of dual guidance under different schemes of POF di-
vision. We used guided dominance with the division
of the POF into two, three, four and five parts. We
kept the population size fixed (200 individuals) and
the number of sub-populations equal to the number of
POF parts. Again, we recorded the number of evalua-
tions that IGMOEA needed to achieve the predefined
levels of HR (see Table 8).

It is clear that in many problems, especially the dif-
ficult ones, the performance of IGMOEA was reduced
when we increased the number of parts (or the number
of sub-populations). Specially, it required more time
to reach the predefined levels of HR. Again, IGMOEA
was quicker than NSGA-II in almost all problems of
the second set. It was slower only in two non-convex
problems: FON and ZDT2.

Furthermore, all of the values of GD after a pe-
riod of 20 000 evaluations were recorded and reported
in Table 9. Once more, the performance of IGMOEA
decreased when we increased the number of parts (or
the number of sub-populations). In comparison with
NSGA-II (the global model), IGMOEA-2 was worse
in terms of GD in one problem (BINH, a most sim-
ple one), and IGMOEA-5 was worse in 5 problems
(BINH, LAU, KUR, QUA, and ZDT4). Overall, IG-
MOEA had the best performance with two and three
sub-populations.

Table 8. The Number of Evaluations NSGA-II and Versions of IGMOEA Needed to Reach the Certain Levels

of Hypervolume Ratio (Mean and Standard Deviation from 30 Runs)

NSGA-II IGMOEA-2 IGMOEA-3 IGMOEA-4 IGMOEA-5

BINH 1833 ± 320 5320 ± 5925† 2853 ± 1538† 4529 ± 2757† 4902 ± 3418†
LAU 1047 ± 286 2667 ± 1734† 2387 ± 2200† 3822 ± 2057† 2240 ± 1709†
LIS 6300 ± 2678 9273 ± 3747† 12727 ± 20485 10866 ± 4812† 8282 ± 2693†
MUR 1800 ± 197 3467 ± 3587† 6680 ± 17338 4012 ± 5680† 2522 ± 2009

POL 693 ± 208 18333 ± 39334† 1767 ± 1329† 1632 ± 1226† 1466 ± 696†
REN1 993 ± 98 1100 ± 305 1253 ± 364† 1435 ± 413† 1331 ± 512†
REN2 2747 ± 484 7253 ± 5130† 4733 ± 2425† 5787 ± 3640† 3744 ± 932†
KUR 1473 ± 249 1633 ± 443 1853 ± 528† 2094 ± 497† 2259 ± 554†
FON 6073 ± 326 8393 ± 2435† 7767 ± 1770† 8418 ± 1642† 8480 ± 1175†
QUA 62107 ± 26139 25847 ± 7826† 34580 ± 7530† 40134 ± 13983† 48262 ± 9071†
ZDT1 21080 ± 527 19593 ± 28499 18268 ± 27671 13133 ± 1631† 14273 ± 1723†
ZDT2 5913 ± 422 17080 ± 7838† 13480 ± 8895† 11873 ± 9947† 7347 ± 6482

ZDT3 23407 ± 1110 10667 ± 1067† 11560 ± 1192† 12678 ± 1287† 14153 ± 1178†
ZDT4 18633 ± 1889 14520 ± 383† 16613 ± 523† 20387 ± 745† 22313 ± 704†
ZDT6 38807 ± 1099 5213 ± 900† 5300 ± 853† 5474 ± 961† 5690 ± 796†

Note: Symbol † indicates that the difference between NSGA-II and versions of IGMOEA is significant (using a t-test with 0.05
level of significance). The texts in bold style show that the performance of IGMOEA versions is better than or equal to that of
NSGA-II.
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Table 9. Generation Distance (Mean and the Standard Deviation from 30 Runs) Recorded

After 20 000 Evaluations for all Different Schemes of POF Division

NSGA-II IGMOEA-2 IGMOEA-3 IGMOEA-4 IGMOEA-5

BINH 0.007 ± 0.000 0.008 ± 0.000† 0.009 ± 0.001† 0.010 ± 0.001† 0.011 ± 0.001†
LAU 0.089 ± 0.002 0.092 ± 0.008 0.093 ± 0.008† 0.099 ± 0.012† 0.109 ± 0.012†
LIS 0.002 ± 0.000 0.001 ± 0.000† 0.001 ± 0.000† 0.002 ± 0.000 0.002 ± 0.000

MUR 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

POL 0.002 ± 0.005 0.001 ± 0.000 0.003 ± 0.005 0.003 ± 0.005 0.003 ± 0.006

REN1 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

REN2 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

KUR 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000† 0.002 ± 0.000† 0.002 ± 0.000†
FON 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

QUA 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000† 0.002 ± 0.000† 0.003 ± 0.000†
ZDT1 0.001 ± 0.000 0.000 ± 0.000† 0.000 ± 0.000† 0.001 ± 0.000† 0.001 ± 0.000

ZDT2 0.001 ± 0.000 0.002 ± 0.009 0.002 ± 0.010 0.001 ± 0.002 0.001 ± 0.000

ZDT3 0.001 ± 0.000 0.000 ± 0.000† 0.000 ± 0.000† 0.000 ± 0.000† 0.000 ± 0.000†
ZDT4 0.063 ± 0.045 0.008 ± 0.011† 0.031 ± 0.022† 0.062 ± 0.046 0.103 ± 0.074†
ZDT6 0.022 ± 0.004 0.001 ± 0.000† 0.002 ± 0.003† 0.001 ± 0.000† 0.001 ± 0.003†
Note: The texts in bold style are to show the best performance. Symbol † indicates that the difference between IGMOEA and
NSGA-II is significant (using t-test with 0.05 level of significance).

The above finding is understandable since the to-
tal population size was fixed when we changed the
number of sub-populations. When the number of sub-
populations increased, their size became small (espe-
cially the case of five sub-populations). Therefore, it
caused IGMOEA difficulties in searching the fitness
landscape and resulted in the downgrade of its perfor-
mance, particularly for multi-modal problem such as
ZDT4.

4.6 Population Size Effect

As we hypothesized above, the small sub-
population sizes might have caused the poor perfor-
mance of the local models, since they were unable to
capture the local fitness landscape well enough when
the problem is highly multi-modal, such as for ZDT4.
To test this hypothesis, we used the setting as follows.
• Five sub-populations since it showed the worst

performance in the previous section.
• Two different population sizes: previously, the

population size for each sub-population was set to 100
individuals (500 individuals overall). Therefore, here
we compare two cases of total population size: 200 and
500.
• The test problem was ZDT4, the most difficult

problem as shown in the previous results.
The generation distance and hyper-volume ratio

that each method achieved over time (up to 100 gen-
erations) was visualized in Fig.12.

It is clear from Fig.12 that in the case of 200 in-

dividuals, the performance of GUIDED and PSOV2
was worse than that of NSGA-II, while IGMOEA was
neutral (it converged quicker than NSGA-II, but was
not good at getting a diverse non-dominated set over
time). However, when the population size was in-
creased to 500, the situation became different. IG-
MOEA and PSOV2 were much faster than NSGA-II,
particularly IGMOEA was better than all the others
in terms of convergence and diversity. These figures
also showed a deficiency of GUIDED in refining the
non-dominated set over time. GUIDED was better
than NSGA-II and PSOV2 during early times (in both
cases of population size), but over time, it lost the lead
and became slower than the others.

5 Conclusion

This paper proposed a novel technique to guide a
localized MOEA using the framework of local mod-
els with a controlling strategy that we called PSOV2.
Each sphere (local model) was simultaneously focusing
on separate areas of the decision and objective space
following some guidance. We have called this the tech-
nique of dual guidance. A strategy was tested for the
guidance of the spheres in the objective space, called
guided dominance (GUIDED).

The system using the proposed technique (IG-
MOEA) was tested against its original version
(PSOV2), GUIDED, SPEA2, and NSGA-II over a
wide range of test problems. The obtained results
showed the superior performance of the technique
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Fig.12. Generation distance and hyper-volume ratio of the four techniques over time for ZDT4 with a total population size of 200

(above) and 500 (below) individuals and up to 100 generations.

using dual guidance in comparison with PSOV2,
GUIDED, also SPEA2 and NSGA-II in many prob-
lems (particularly, IGMOEA was the best in the sec-
ond set of test problems). The sensitivity of the system
to the POF division schemes and the population size
was also investigated. For future work, we intend to
investigate the performance of the approach with re-
gard to the property of scalability (in both the decision
and objective spaces).
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