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Abstract Designing efficient estimation of distribution algorithms for optimizing complex continuous problems is still
a challenging task. This paper utilizes histogram probabilistic model to describe the distribution of population and to
generate promising solutions. The advantage of histogram model, its intrinsic multimodality, makes it proper to describe
the solution distribution of complex and multimodal continuous problems. To make histogram model more efficiently
explore and exploit the search space, several strategies are brought into the algorithms: the surrounding effect reduces
the population size in estimating the model with a certain number of the bins and the shrinking strategy guarantees
the accuracy of optimal solutions. Furthermore, this paper shows that histogram-based EDA (Estimation of distribution
algorithm) can give comparable or even much better performance than those predominant EDAs based on Gaussian

models.
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1 Introduction

Evolutionary algorithms (EA) are of a class of
stochastic black-box methods that explore the search
space for optimal solutions by iteratively sampling and
evaluation. Practical applications and theoretical re-
search have shown that EA is an effective technology
to optimize parameters or make decisions in the situ-
ation where there is little prior information about the
objective model or the mathematic model is so com-
plicated that conventional optimization methods often
fail. Estimation of distribution algorithms (EDA) have
recently become the hot topic in the field of evolu-
tionary computation!’=3l. The EDAs provide a novel
macroscopical evolutionary paradigm, in which with-
out any conventional operators, the population evolves
by iteratively learning and sampling the probabilistic
distribution model that describes the movements of
population.

The core of EDAs is the probabilistic model. For 0-
1 domain, since the probabilistic model built to sample
the population is simple, the EDA has brought a great
success. However, it is still a challenging problem for
EDAs to be applied in continuous domain, even tho-

evolutionary algorithm, estimation of distribution algorithm, histogram probabilistic model, surrounding

ugh several attempts have been made to extend the
research results from discrete to continuous problems.
Nowadays, most of the work concentrates on Gaussian
probabilistic model. These include PBILc, UMDAC,
EMNA, EGNA, IDEA and so on*~9. Histogram-
based EDAs was first put forward by Tsutsui S et
al.'% which is like an extension of PBIL, splitting
the searching space into a number of bins.

The predominant probabilistic model used in con-
tinuous EDAs is Gaussian probabilistic model. How-
ever, for complex optimization problems with multiple
and distributed local optima, the inherent shortcom-
ing of Gaussian-based EDAI%7 is that the unimodal
model is too rough and thus is likely to mislead the
search to a local optimum. To conquer such shortcom-
ings of single-Gaussian model, multi-Gaussian model
is adopted[*539] For the multi-Gaussian model, it is
usually necessary to set the number of Gaussian distri-
bution in the model and the weights of each Gaussian
model in advance. However, for practical problem with
multiple local optimums, it is often hard to predict
these parameters and the computational complexity
increases remarkably. In comparison, histogram prob-
abilistic model is able to represent multiple local op-
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tima by different bins with different heights and thus
be able to build a more correct probabilistic model
compared to the Gaussian-based model in general.

Although the HEDA has those advantages as have
been mentioned, however, there are still some severe
drawbacks in the previous HEDA, which block the fur-
ther development of the HEDA. The initial population
should be large enough to sample the variables with
a lot of bins, otherwise, many bins will never get a
chance to be sampled; the solution accuracy is greatly
determined by the width of bins and highly accurate
solutions can only be achieved by setting enough num-
ber of bins.

To improve these drawbacks, several strategies are
brought into our new algorithms: the surrounding ef-
fect shares the height to the surrounding bins which
facilitates the algorithm to search for a wider span of
good solution clusters and proves to lessen the needed
size of population in estimating the model with a cer-
tain number of the bins; the shrinking strategy shrinks
the search space and improves the accuracy of the op-
timal solution with small size of bins. Furthermore,
this paper shows that histogram-based EDA with sur-
rounding effect and shrinking strategy can give compa-
rable or even much better performance than the pre-
dominant EDAs based on Gaussian models in the ex-
periments.

The paper is organized as follows. In Section 2, re-
lated work of histogram based EDAs are introduced.
Section 3 elaborates the surrounding and shrinking
strategies in histogram based EDA. In Section 4 the
experiments verify the performances of HEDA. The
conclusion is given in Section 5.

2 Retrospect of HEDA
2.1 Related Work on Histogram Based EDAs

The role of probabilistic model in EDA is to de-
scribe the distribution of the promising population and
to generate new populations. In continuous domain,
histogram model is a straight method to graphically
summarize the distribution of data. The most com-
mon form of the histogram is obtained by splitting
the range of the searching space into equal-sized bins
(called classes). Then for each bin, the qualities of
the points belong to it decide the height of the bin.
Although histograms are very simple, they are very
flexible and can model complex properties like multi-
modality with a relatively small number of parameters.
Furthermore, one does not need to assume any specific
form for the underlying density function: given enough
bins, a histogram estimator adapts to any kind of den-

J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

sity as general as possible[!].

Histogram model has already been used in previous
work. Tsutsui S et al. proposed EDAs based on his-
togram model. A few data points were selected from
the population and the height of each bin was simply
a counter of the points belonging to it!'%'%. Yuan
Bo et al. improved the algorithm by utilizing all in-
dividuals’ information and incorporating their fitness
values!'®l. Ding Nan et al’s accumulate strategy in
HEDA considered both historical and current infor-
mation of populations and they introduced the muta-
tion and elitist strategy into the HEDAI!.  All the
researches are the extensions of the PBIL algorithm,
which does not take the interaction relationship be-
tween variables into account. Although Bosman and
Thierens!!%] developed histogram based IDEA that can
model the conditional probability of each variable, it
needed exponential computation as the problem di-
mension increases. Moreover, since the learning of the
relationship was based on the biased information of an
incomplete sample of the space, whether the cost of
such learning was worthwhile was suspicious. Due to
those reasons, this paper only studies the histogram
based EDA in which no dependencies between vari-
ables are considered.

2.2 Brief Description of the Original HEDA

This work is the extension of the previous work, es-
pecially the HEDAM, The general description of the
HEDA is as follows.

2.1.1 Process of HEDA

1) Initialize the histogram model in which the bins
are equal-sized and the model is normalized.

2) Generate population P(t) using sampling
method.

3) Evaluate and rank the population P(t). Save the
elitist.

4) Update the histogram model using accumulation
learning strategy.

5) If the termination conditions have not been sat-
isfied, go to step 4).

2.1.2 Accumulation Strategy

The histogram model is updated according to two
kinds of information: historical and current informa-
tion. For each variable i, the selected individuals will
be used to construct a histogram model H. If the
old histogram for variable i is denoted as HY, then
the height of a certain bin j of the renewed histogram
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for variable 7 will be:
H'(j) = aHy(j) + (1 — a) e HH(5) (1)

and

> HEG) =1 @

H 10 is learned according to relative ranking among the
qualities of the different individuals. If N best indi-
viduals of the population are selected, the k-th best
individual (k < N) will make an increment of the cor-
responding bin which it belongs to by:

(N —k+1) 5
N l_2(N—k+1)' (3)
2i=l= N(N +1)

Ahi =

So, HL(j) = Yop_i AR e i where 8% = 1 for
{0k € {1,2,..., N} Amin} < v}, < max}}, otherwise
5;k| = 0. v}, denotes the value of variable i of the k-
th best individual, min} and maxj denote the bottom
and upper bounds of bin j of variable . Updating H},
based on the ranking information helps improve the
convergence property of the HEDA.

2.1.3 Sample with Mutation

In order to enhance the diversity of population, mu-
tation strategy is used. In the HEDA, the mutation
strategy means that each variable of an individual has
a probability to be generated uniformly in the whole
searching space rather than according to the proba-
bilistic model has been learned.

2.3 Remained Drawbacks in Original HEDAs
and the Motivation of New HEDAs

Experiments!'¥ show the HEDA have strong abil-
ity to find the bin composing the optimum; however,
there is an obvious drawback: the choice of the width
of the bins is a great contradictory. If the width is set
too small, it needs very large population to guarantee
all the subspace can be sampled; if the width of the bin
is set too large, the accuracy of the solutions would be
very bad because the accuracy utterly depends on the
width of histogram bin. So we have to think whether
it is possible for the size of population to be reduced
when estimating a model with a definite number of
the bin and still have the ability to sample the whole
space; and whether the accuracy of the solution can
be achieved using a comparably small number of the
bins. In the next section, the two strategies will be
proposed to achieve our expectations, and the experi-
ments will show that these strategies make the HEDA
perform excellently.
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3 sur-HEDA and shr-HEDA

3.1 Surrounding Effect in Model Learning in
sur-HEDA

The sur-HEDA (the HEDA using surrounding ef-
fect) tries to expand the impact of a selected individual
on the bin to which it belongs, to the bins next to its
bin.

After all the H.(j) have been calculated, before ac-
cumulation, we calculate the surrounding effects on a
certain bin j according to:

Hsur(j) =p3- [Hc(] - 1) + Hc(j + 1)] (4)

where (3 is called the surrounding effect factor which is
equal to 1 — gen/ MAXGEN in the sur-HEDA, where
gen is the current generation and MAXGEN is the
maximum of generation. And the new

Hc/(j) :Hc(j)+Hsur(j)' (5)

After the normalization of H.(j), which makes
Zj H.(j) = 1, the height of bin j in the renewed
histogram model is calculated by accumulation stra-
tegy:

H(j) = aHu(j) + (1 — a)He(5) (6)

as mentioned in the last section.

We note that the surrounding effect can make the
height of the bins be affected by its surrounding bins.
This method will have a remarkable advantage to the
problem where the population is small compared to
the number of the bins. If the population is not large
enough, after the first generation, many bins have
not been sufficiently searched. In the original HEDA,
those bins with few samples at first will hardly get an-
other chance to be sampled regardless of the quality
of its individuals, since the bin’s height is zero. Here,
we assume that in many cases, the clusters of good
individuals can span several bins, using surrounding
effect, only if there is one bin in this span is sampled
and performs a high-quality target value, those bins
beside it will also get the heights and thus have more
possibility to be sampled in the next run. Gradually,
those bins in the same span but with few samples will
all get the heights and better chance to be sampled af-
ter next several generations. As a result, we can have
more individuals sampled in that span and thus have
better opportunity to find the best solution in that
span.

The surrounding effect is like other heuristic
method, which purposes to guide the searching
through some good place that it has never been to.
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Interestingly, the surrounding effect also has a poten-
tial property of hill-climbing. We build a simple 1-
dimension parabola function to certify that.

Table 1. Simple Problem to Test the Hill-Climbing
Ability of the sur-HEDA

Domain Optimum

[0, 10]

Formulation Dim
2

y=x 1

Type
Max 100

A 100-bin histogram model is used and the popula-
tion of the sur-HEDA is set to be 2, MAXGEN = 200.
Below is the figure of the result. The X-axis is the
generation, and the Y-axis is the solution of the algo-
rithm.

100

90
80}
70}
60 |

Solutions

50t
40
30}
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Fig.1. Hill-climbing ability of the sur-HEDA.

From Fig.1, we can find that the solution of algo-
rithm is keeping climbing to the optimum of the prob-
lem. The force that makes it climb is from the fact
that the upper bin always contains better individuals
than the current bin. Because of the surrounding ef-
fect, the upper bin will have a chance to be sampled,
and then a better solution from it can be found. After
all the iterations, the solution gradually climbs to the
optimum of the problem as a result.

3.2 Shrinking Strategy in the HEDA

Large quantities of the bins are needed for the
demand of accuracy for the optimum in the original
HEDA. Although the sur-HEDA is able to estimate
the histogram model composed of a large quantity of
the bins with a comparably small population, it is still
not efficient enough for the HEDA and is still necessary
to develop other cheaper way to achieve the high accu-
racy of the algorithm. The new way is called shrink-
ing strategy and the HEDA using shrinking strategy
is called the shr-HEDA.
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In the process of the shr-HEDA | the searching span
of every variable will minimize in some steps. After
the new model has been built, if the highest bin of a
variable is over the shrinking threshold 7" and also the
elitist belongs to that bin, the span of the highest bin
will substitute the old searching span and become the
new searching span. And it will be then divided into
the certain number of bins as initial step of the HEDA.

The framework of the shrinking strategy is as fol-
lows.

1) Find the highest bin H of variable i.

2) Judge if the height of H is higher than the shrink-
ing threshold T' and if the elitist belongs to it.

3) If the two cases are satisfied, the searching span
w(i) is substituted by the span of H: w(i) «— (H);
then, divide and initialize w(%).

The shrinking strategy makes the searching process
run from roughness to delicateness and be able to get
an accurate value with a respectively small number
of bins. The width of the bins becomes smaller and
smaller during the search with the rate:

w(n) =w(0) e % (7)

Here, w(n) denotes the width of a bin after the n-th
shrinking has been made, B is the number of the bins
of the variable.

Furthermore, in order to guarantee the algorithm
not to lose the optimum if the searching span of the
algorithm is unfortunately chosen out of the position
of the optimum, each sampled individual will have a
mutation rate. Namely, there is a possibility of p,, for
each variable of each individual to be generated ran-
domly in the original searching space and a possibility
of 1 — p,, for it to be generated according to the his-
togram model. Clearly, it is just an extension of the
mutation mechanism in the original HEDA.

The situation becomes somewhat more compli-
cated, if an individual generated by mutation, that is,
at least one variable of the individual is out of the cur-
rent span of the histogram model, is good and chosen.
In this case, these variables which are out of the space
of the models have to be reset to the original histogram
model (spanning the whole space). The heights of the
bins of the reset model will be generated according to
the selected individuals. Note that although this mu-
tation step might reduce the efficiency of the shrink-
ing strategy in this case, however, it helps avoid being
trapped in local optima so as to improve the global so-
lution of the algorithm. Thus, the global performance
of the algorithm can be improved as a whole.
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3.3 Combination of Surrounding Effect and
Shrinking Strategy with HEDA

The surrounding effect reduces the needed popula-
tion in a model and the shrinking strategy changes the
span of the model from wide to narrow. The two im-
proved methods are not mutually incompatible. Thus,
as the experiments in the next section will show that,
the combination of the surrounding effect and shrink-
ing method in HEDA will bring some wonderful perfor-
mances on many continuous problems. In the follow-
ing experiment, we will call the HEDA without using
surrounding effect and shrinking method, the sHEDA;
the HEDA simply using surrounding effect, the sur-
HEDA; the HEDA simply using shrinking method, the
shr-HEDA; and the HEDA using both the surrounding
effect and the shrinking method, the sur-shr-HEDA.

There is another thing we have to mention here.
Since the surrounding effect will make the bins next to
the selected bins grow, after normalization, the height
of the highest bin will reduce greatly compared to the
height if surrounding effect is not taken account. Thus,
if the surrounding effect is too big in the whole pro-
cess of the algorithm, it will make the sur-shr-HEDA
unable to shrink, since the threshold value is hardly to
reach for any bin. Thus, the surrounding effect factor
should be set to reduce so as to avoid the barrier of
the shrinking strategy.

In the sur-shr-HEDA, the surrounding effect is re-
lated to the age of the searching span of the model of
each variable i.

B(i) = B(ModN (i)
B 1 —ModN(i)/K, 1< ModN (i) < K,
N { 0, otherwise, (8)

in which K is the factor of the limited age to have
surrounding effect and [ is the strength of the impact.
The age denotes the number of generations that the
searching span has experienced.

4 Experimental Results and Analysis

Two groups of experiments are carried out: one is to
verify the ability of the HEDA in finding the right bin
which contains the global optimal solution; the other
is to compare the performance of our histogram-based
algorithms with several advanced Gaussian-based al-
gorithms in solving some typical continuous problems.

4.1 Ability of Searching Optimal Area

As mentioned, the shrinking strategy is powerful in
getting the precise optimum if the algorithm can cor-
rectly find the bins. So, it is important for the HEDA
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to find the bin that composes of the optimum. This
experiment is to compare the ability of the sHEDA and
the sur- HEDA in finding the area where the optima
locate.

4.1.1 Experimental Settings

Several well-known continuous test functions, in-
cluding the Schwefel function, the Griewank function,
and the two-peak function, are used to test the per-
formance of sHEDA and sur-HEDA. Table 2 lists the
parameters of the three test functions and their re-
spective optima. The description of these problems
can refer to [10, 14].

Table 2. Test Functions

Dim Domain Type Optimum
Schwefel(1) 5 [-2,2] Min 0
Griewank 10 [-5,5] Min 0
Two-Peak(!) 10 [0,12] Min 0

Note: The superscript on Schwefel™ and Two-peak(1> is
used to distinguish from those homonymous functions in
Subsection 4.2.

The width of the bin is set to 0.1, and the opti-
mal area refers to the bin which the optimal solution
belongs to. We say it is successful detection of the op-
timal area if one or more individuals are sampled in
the optimal area within the given number of function
evaluations. The population size is set to 10, 50, 100
and 200 for each problem and 20 independent runs
are performed for each parameter setting. Each run
continues until the global optimal area is found or a
maximum of 50,000 function evaluations is reached.
In both algorithms, the initial population is generated
uniformly. The parameter settings of sSHEDA and sur-
HEDA are the same: the width of bin is set to 0.1,
mutation rate is set to 0.05, accumulation rate 0.2,
50% of population is selected for model updating and
elitist strategy is used.

4.1.2 Experimental Results

Table 3 shows the experimental results of the com-
parison of the sHEDA and the sur-HEDA. #OPT is
the number of runs in which algorithm succeeds in
finding the global optimal area and MNE denotes the
mean number of function evaluations (MNE) to find
the global optimal area in those successful runs.

4.1.3 Experimental Analysis

Our purpose here is to observe the difference be-
tween the relationships of population and the abili-
ties of achieving a given accuracy for sHEDA and sur-
HEDA. After an overlook of the result of the experi-
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Table 3. Comparison Between HEDA and sur-HEDA in Finding Optimal Area
Population Size
10 50 100 200
OPT# MNE OPT#  MNE OPT# MNE OPT# MNE

Schwefel(1) 10 21056.3 20 4741.3 20 2607.5 20 39221.4

sHEDA Griewank 19 8625.3 20 9005.7 20 6164.3 20 5709.4
Two-Peak(?) 8 16 596.5 20 6140.0 20 6330.1 20 4213.1

Schwefel(1) 20 421.2 20 651.4 20 1193.1 20 1914.3

sur-HEDA Griewank 20 1199.0 20 2574.2 20 4251.2 20 5212.7
Two-Peak(®) 20 26 500.3 20 4180.7 20 5432.2 20 8556.1

ment, it is clear that sur-HEDA always performs bet-
ter than sHEDA when the population is comparably
small. Furthermore, the numbers in bold font in Ta-
ble 3 mean the fewest average function evaluations for
the certain algorithm needed to get a full 20-success
in solving a certain problem. The sur-HEDA performs
best when the population is 10 or 50; the sHEDA per-
forms better when the population is 100 or 200.

When the population gets larger, the stabilities and
the speed of the sHEDA to find the optimal area is
remarkably increasing. No full success of the three
problems is made when the population is 10, but all
the other 3 bigger sizes of population get the full suc-
cess. The reason that the sHEDA sometimes fails in
a small population is because its inability to estimate
the bins where there has been no individual sampled,
and this experimental result is conformed to our dis-
cussion in Section 2 on the drawback of sHEDA. Thus,
it is concluded that sHEDA requires a comparably big
population to ensure its stability in finding the right
optimal area.

On the other hand, the sur-HEDA performs greatly
when the population is 10 on both Schwefel and
Griewank problems, whereas, performs worse with
population 50 on the Two-peak problem. However,
as a whole, we still find the sur-HEDA is much more
powerful than the sHEDA in searching the optimal
area stably with a small number of individuals com-
pared to the number of the bins. It is because the sur-
HEDA has the ability to estimate the bins surrounding
the bin of the selected individuals, which remarkably
improve the learning efficiency of the sHEDA when the
population is small.

Since the sur-HEDA performs nicely with compara-
bly small population, in the next experiment of search-
ing for the optima, we can use only 1/10 number of the
individuals as the sHEDA for each generation, which
means the number of the generations of the sur-HEDA
can be 10 times of that of the sHEDA when the num-
ber of the function evaluation is fixed. In fact, the dif-
ference of the population and generation makes some
exciting results of the sur-HEDA in the next experi-

ment. Furthermore, the second strategy — shrinking
strategy will be introduced in both sHEDA and sur-
HEDA in the next experiment.

4.2 Ability of Searching Optimum

4.2.1 Experimental Settings

Two HEDA approaches, the shr-HEDA and the
sur-shr-HEDA, and two Gaussian EDA approaches,
UMDA and CEGDA are used on the five test func-
tions chosen from [16] for comparison purposes. Table
4 lists the settings for those five functions. We choose
these five functions because they have different charac-
teristics on the number of optima. In those functions,
the Sumcan function, Two-peak function, Three-peak
function are non-separable. The Sphere function and
the Schwefel function are separable.

Table 4. Test Functions

Dim Domain Type Optimum
Sphere 30 [—100, 100] Min 0
Sumcan 10 [-0.16,0.16] Max 10°
Two-peak(?) 5  [~100,100] Max 10.1053
Three-peak 5 [—100, 100] Max 10.1053
Schwefel(?) 30  [—500,500] Min —12569.5

Note: The superscript on Schwefel? and Two-peak(®) is
used to distinguish from those homonymous functions in
Subsection 4.1.

For each algorithm, the parameter settings on the
five functions are unchanged. All the results are made
after 30 independent runs and the maximal evaluation
number for the unimodal functions is 2 x 10° and for
the multimodal functions 4 x 10° respectively. The
initial population is generated uniformly at random in
the specified domain of each function. For the shr-
HEDA and the sur-shr-HEDA, mutation rate is set to
0.05, accumulation rate is 0.2, the number of the bins
is set to 99, the threshold value is set to 0.9, and elitist
strategy is used. The population size in the shr-HEDA
is set to 1000, while the population size in the sur-shr-
HEDA is 100. For the purpose of fair comparison,



Nan Ding et al.: Histogram-Based EDA

the results obtained by Gaussian-based algorithms re-
ported in [16] on these problems are directly used, and
their detailed experimental settings can refer to [16].

4.2.2  Experimental Results

All of the results are summarized in Tables 5-9.

Table 5. Experimental Results for the Sphere Function

Best Mean Std.
UMDA, 1.88 x 016 324 x 107016 559 x 10-17
CEGDA 3.38x 1078  3.41x107%  840x 1077
shr-HEDA 4.3624 x 10~2 3.147 2.815
sur-shr-HEDA  1.87 x 10~ 225 x 10711 3.54 x 10~12

Table 6. Experimental Results for the Sumcan Function

Best Mean Std.
UMDA. 698.72 221.771 116.101
CEGDA 99834.5 99748.1 63.2197
shr-HEDA 12912.1 1426.9 4136.6
sur-shr-HEDA 100 000 100 000 0

Table 7. Experimental Results for
the Two-Peak(?) Function

Best Mean Std.
UMDA. 10.1053 9.6327 0.1073
CEGDA 10.1053 10.0999 5.92 x 1073
shr-HEDA 10.1053 6.3526 3.4585
sur-shr-HEDA 10.1053 10.1053 0

Table 8. Experimental Results for
the Three-Peak Function

Best Mean Std.
UMDA. 5.1877 4.7331 0.7406
CEGDA 10.1053 10.104 8 7.99 x 10~4
shr-HEDA 6.6848 4.246 2 1.3622
sur-shr-HEDA  10.1053 8.9503 2.206 3

Table 9. Experimental Results for the Schwefel(®) Function

Best Mean Std.
UMDA. —5928.24 —5424.81 202.437
CEGDA —8712.31 —5922.54 1893.51
shr-HEDA —12569.5 —12560.2 10.512
sur-shr-HEDA —-12569.5 —12568.6 0.723
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4.2.3 Experimental Analysis

These five test functions can be divided into three
groups: the Sphere function and the Sumcan function
are unimodal functions, the Two-peak and the Three-
peak functions are multimodal functions with a few
optima, and the Schwefel is multimodal function with
many optima.

1. Unimodal Functions

The results of the Sphere function and the Sum-
can function are listed in Tables 5 and 6. Basically,
these two functions are easy to solve, especially for the
Sphere function, three of the four algorithms performs
quite well. The UMDA performs badly in the Sumcan
function. Lu et al.l'®! analyzes the reason for that and
believes that the Sumcan function has strong variable
interdependencies which is ignored by the UMDA.

Furthermore, the shr-HEDA performs really badly
in solving the Sphere and the Sumcan problems,
whereas the sur-shr-HEDA performs quite well. The
reason is that the sur-shr-HEDA has the ability of hill-
climbing and all individuals of different locations can
do the local hill-climbing search simultaneously. It
helps the sur-shr-HEDA to immediately capture the
bin which the optimum belongs to and gets ready for
the shrinking strategy. For the shr-HEDA, however,
the learning of the height of the bins is simply based
on sampled individuals. It means if the optimal area
of one variable is only with a very small number of in-
dividuals, it is likely to be overwhelmed by other bins
since the other variables of the individuals might not
be good enough to combine together a strong individ-
ual as a whole.

2. Multimodal Functions with a Few Optima

Tables 7 and 8 demonstrates the results of the T'wo-
peak function and the Three-peak function. These two
functions have deceptive local optima to mislead the
algorithm. In all the four algorithms, the CEGDA
performs best and the sur-shr-HEDA can also find the
optimum in some runs. The UMDA cannot find the
optima from time to time because there is only one
Gaussian distribution made for each variable which
can be easily misled by the deceptive peak. In com-
parison, the reason that the CEGDA outperforms the
UMDA is clear: the CEGDA has the ability to cluster
firstly the individuals to recognize the small number of
the optima and then search for each optimum respec-
tively just as doing two or three unimodal problems.

In this time, we again notice the different perfor-
mances of the sur-shr-HEDA and the shr-HEDA. In
fact, the reason is still the ability of hill-climbing for
the sur-shr-HEDA. For example, for the Two-peak
function, two groups of the individuals are separated in
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the beginning of the algorithm to the belonging of the
two peaks. Then each group makes the hill-climbing
to their own peaks and then the highest will win the
competition in the end. For the Three-peak function,
we notice that all the failure results are all because
the sur-shr-HEDA is misled into a wrong peak. It is
probably due to the distribution of initial individuals
are sampled not ubiquitous and equal in the search-
ing space which makes only a few individuals can hill-
climb on the correct peak. An increase of the popu-
lation or the equal choice of the initial individuals in
searching space might improve the performance on the
Three-peak function for the sur-shr-HEDA.

8. Multimodal Functions with Many Optima

The results of the Schwefel function are listed in
Table 9. Both the UMDA and the CEGDA perform
badly, whereas the shr-HEDA and the sur-shr-HEDA
perform quite well. The reason for the badness of the
UMDA is still that its only one Gauss distribution is
far from enough to find the general optimum in the
wide area of the local optima. The CEGDA performs
badly because of its inability to make so many clus-
ters, which would otherwise take an expensive compu-
tational cost. As a result, in [16], Lu admitted that the
Gaussian-based EDA requires an impractical popula-
tion size to ensure finding the optimum. The HEDAs,
on the other hand, performs wonderfully on such prob-
lems, since the number of the bins can match the op-
tima of the searching space and the cost for this com-
plexity is much smaller according to our description of
the algorithm. We then have some more experiments
to certify the wonderful performances of the HEDAs in
solving the multimodal functions with many optima.

4.2.4 More Experiments on Multimodal Functions
with Many Optima Using the HEDAs

Now let us focus on the 3rd class problems and do
some more experiments between shr-HEDA and sur-
shr-HEDA. Two test problems, the Griewank function
and the Rastrigin function from [14], are used and their
descriptions in this experiment are listed in Table 10.
Of the two functions, the Griewank function is non-
separable.

Table 10. Test Functions with Many Optima

Dim Domain Type  Optimum
Griewank 30 [—600, 600] Min 0
Rastrigin 30 [-5.12,5.12] Min 0

The parameter settings of the two algorithms are
the same: mutation rate is 0.05, accumulation rate is
0.2. The number of the bins is 99. The population
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is 1000. The maximum generation is 400. 20% of the
population is selected for model updating. The thresh-
old value is set to 0.9. Elitist strategy is used. For the
sur-shr-HEDA, K = 800.

The experimental results are shown in Tables 11
and 12.

Table 11. Experimental Results for the Griewank Function

Best Mean Std.

shr-HEDA 0.0276 0.0581 0.0335
sur-shr-HEDA 1.110 x 10—1% 1.887 x 10~1% 5.363 x 10~17

Table 12. Experimental Results for the Rastrigin Function

Best Mean Std.
shr-HEDA 2.152 x 10~%  0.7966 1.1296
sur-shr-HEDA 0 0 0

Note that we set the population of both the two
algorithms to be 1000 and then the only difference
between the two algorithms is whether or not the sur-
rounding effect is accounted. In solving these two func-
tions, the sur-shr-HEDA outperforms the shr-HEDA.
In addition, the sur-shr-HEDA perfectly solves these
two multimodal problems in high accuracy. It again
shows us that the surrounding effect is an efficient
method to improve the HEDA and the sur-shr-HEDA
is a wonderful tool to solve the multimodal continuous
problems.

4.2.5 More Comments on Non-Separable Problem
Using the HEDAs

Among the non-separable functions we use in this
algorithm, except for the Three-Peak function, the sur-
shr-HEDA has got great performances on them which
even outperforms the CEGNA that concerns linkage
information. But the instable performance in Three-
Peak function is not mainly due to its losing infor-
mation on variable linkage in our experiment as has
been mentioned. Thus, although the sur-shr-HEDA
does not contain linkage information, however, since
a thorough searching is performed on each variable of
the problem, in some cases, the algorithm is able to
handle non-separable problems.

5 Conclusion

In this paper, we aim to discuss and improve the
continuous estimation of distribution algorithms based
on histogram probabilistic model. The advantages
of histogram model in optimizing complex and mul-
timodal functions are analyzed. To make histogram
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model efficiently explore and exploit the search space,
two strategies are brought into the algorithms and is
certified to work well by the experiments. The sur-
rounding effect reduces the population size in estimat-
ing the model with a certain number of the bins and
the shrinking strategy guarantees the accuracy of op-
timal solutions. The proposed sur-shr-EDA can opti-
mize several complex multimodal functions very suc-
cessfully.

This study has great implication for designing con-
tinuous EDAs. In the EDAs literature, Gaussian prob-
abilistic model occupies a predominant position, and
most of the research concentrates on how to adapt
the general Gaussian model to fit complex continu-
ous landscapes. This paper takes a successful at-
tempt to use other probabilistic model. The experi-
ment shows that histogram-based EDA gives compa-
rable and even much better performance than those
predominant EDA methods based on Gaussian related
models. The experimental comparison with the most
recently published results of Gaussian-based EDAs in-
dicates that histogram model is potential alternative
for designing competent continuous EDAs.

More research is needed to find applications of the
histogram probabilistic model in developing efficient
continuous optimization algorithms.
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