Mar. 2007, Vol.22, No.2, pp.245-251 J. Comput. Sci. & Technol.

Indexing Future Trajectories of Moving Objects in a Constrained
Network

Ji-Dong Chen ([f4k%<) and Xiao-Feng Meng (Fi /M)

School of Information, Renmin University of China, Beiyjing 100872, China

Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Education, Beijing 100872, China
E-mail: {chenjd, xfmeng}@ruc.edu.cn

Received May 1, 2006; revised February 2, 2007.

Abstract
objects. Some of these applications, such as traffic management, require the possibility to query the future trajectories of

Advances in wireless sensor networks and positioning technologies enable new applications monitoring moving

the objects. In this paper, we propose an original data access method, the ANR-tree, which supports predictive queries. We
focus on real life environments, where the objects move within constrained networks, such as vehicles on roads. We introduce
a simulation-based prediction model based on graphs of cellular automata, which makes full use of the network constraints
and the stochastic traffic behavior. Our technique differs strongly from the linear prediction model, which has low prediction
accuracy and requires frequent updates when applied to real traffic with velocity changing frequently. The data structure
extends the R-tree with adaptive units which group neighbor objects moving in the similar moving patterns. The predicted
movement of the adaptive unit is not given by a single trajectory, but instead by two trajectory bounds based on different
assumptions on the traffic conditions and obtained from the simulation. Our experiments, carried on two different datasets,
show that the ANR-tree is essentially one order of magnitude more efficient than the TPR-tree, and is much more scalable.

Keywords

1 Introduction

The continued advances in wireless sensors and po-
sitioning technologies have enabled a variety of new
applications such as traffic management, fleet manage-
ment, and location-based services that monitor contin-
uously changing positions of moving objects!!). Queries
on moving objects can be divided into two categories:
queries of historical locations of the moving objects, and
queries of their anticipated future locations (a.k.a. pre-
dictive queries). In this paper, we are concerned with
the second type of queries.

Many indexing techniques have been proposed to
support predictive queries>~"!, and most of them use a
linear prediction model, which relates objects positions
as a linear function of time, to estimate their future po-
sitions. These predictive index structures are designed
to index objects performing free movement in a two-
dimensional space. They assume that the movement of
the objects is unconstrained and is independent of each
other as well as of the environment. However, in the real
world, objects move within spatially constrained net-
works, e.g., vehicles move on road networks, and trains
on railway networks. Furthermore, road situations may
have an effect on the speed (e.g., in traffic jams) and the
orientation (e.g., at junctions) of the vehicles. Overlook-
ing this reality often leads to unrealistic data modeling
and inaccurate prediction.

Unfortunately, current indexing work that handles
network-constrained moving objects® 1% is mostly con-
cerned with historical movement. In addition, the linear

database, spatial database, access methods, moving objects

models used in the predictive index structures cannot
reflect the real movement. Applying linear prediction
models on road traffic will lead to low prediction accu-
racy, which in turn will lead to frequent updates.

In this paper, we introduce a new data model and
access method to support predictive queries on moving
objects in constrained networks. Our method makes
full use of constraints of the network and the stochas-
tic behavior of the real traffic, aiming to achieve high
update/query efficiency. Our contribution is two-fold.
First, we propose a simulation-based prediction model
which captures traffic features. Second, based on this
model, we propose a new access method — the ANR-
tree that supports efficient predictive queries, and is ro-
bust for frequent updates. The ANR-tree extends the
R-tree with adaptive units which group neighbor objects
moving in the similar moving patterns. The predicted
movement of the adaptive unit is not given by a single
trajectory, but instead by two trajectory bounds based
on different assumptions on the traffic conditions and
obtained from the simulation. We have carried on com-
plexity analysis of the algorithms in terms of I/O and
carried out extensive experiments based on two datasets.
The results show the efficiency of the ANR-tree.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 presents the
simulation-based prediction model. In Section 4, the
ANR-tree is described with its data structure and algo-
rithms. Section 5 contains algorithm analysis and ex-
perimental evaluation. We conclude in Section 6.

Short Paper

Partly supported by the National Natural Science Foundation of China (Grant No. 60573091), the Key Project of Ministry of
Education of China (Grant No. 03044), Program for New Century Excellent Talents in University (NCET), Program for Creative

Ph.D. Thesis in University.

246

2 Related Work

Research on spatio-temporal access methods has fo-
cused on two issues: (i) storage and retrieval of histori-
cal information, (ii) prediction of future trajectory. The
amount of historical trajectories is constantly increasing
over time, which makes it infeasible to keep track of all
location updates. As a result, past positions of mov-
ing objects are often approximated by polylines (mul-
tiple line segments). Several indexing techniques!''~'3],
all based on 3-dimensional variations of R-trees!'l, have
been proposed, and their goal is to minimize storage and
query cost. To manage moving objects in spatially con-
strained networks, Pfoser et al.l1% proposed to convert
the 3-dimension problem into two sub-problems of lower
dimensions through certain transformation of the net-
works and the trajectories. Another approach, known
as the FNR-treel®| separates spatial and temporal com-
ponents of the trajectories and indexes the time inter-
vals that any moving object was on a given network
link. The MON-tree approach!® further improves the
performance of the FNR-tree by representing each edge
by multiple line segments (i.e., polylines) instead of just
one line segment.

Indexing future trajectories raises different problems
than indexing historical trajectories. The goal is to ef-
ficiently retrieve objects that will satisfy some spatial
condition at a future time given their present motion
vectors. Some of the early works(?% employ dual trans-
formation techniques that represent predicted positions
as points moving in a 2-dimensional space. However,
they are largely theoretical, and applicable either only
in 1D spacel! or entirely inapplicable in practice due
to some large hidden constant in complexity?/. Also
based on dual transformation, a recent approach called
STRIPES!Y supports efficient query and update at the
cost of increased space requirements. The main focus of
most recent work is on practical implementation, for in-
stance, the TPR-treel® and its variations:»”] are based
on R-trees'¥, and the B*-tree®! and its variations!*®!
based on B*t-tree. These structures use the linear pre-
diction model to support the predictive query and to
reduce the number of index updates. However, the
assumption of linear movement limits their applicabi-
lity in a majority of real applications especially in traf-
fic network where vehicles change their velocities fre-
quently. To the best of our knowledge, no current in-
dexing method supports predictive queries of network
constrained moving objects.

3 Data Model and Trajectory Prediction

We model a road network with a graph of cellular
automata (GCA), where the nodes of the graph rep-
resent road intersections and the edges represent road
segments with no intersections. Each edge consists of
a cellular automaton (CA), which is represented, in a
discrete mode, as a finite sequence of cells. In the GCA,

J. Comput. Sci. & Technol., Mar. 2007, Vol.22, No.2

a moving object is represented as a symbol attached to
the cell and it can move several cells ahead at each time
unit. Intuitively, the velocity is the number of cells an
object can traverse during a time unit.

Let ¢ be an object moving along an edge. Let v(4) be
its velocity, x (%) its position, gap(7) the number of empty
cells ahead (forward gap), and P4(7) a randomized slow-
down rate which specifies the probability it slows down.
We assume that V. 1s the maximum velocity of mov-
ing objects. The position and velocity of each object
might change at each transition of the GCA according
to the rules below (adapted from [16]):

1) if v(¢) < Vinax and v(7) < gap(7) then v(3) +

(i) + 1;

2) if v(2) > gap(7) then v(3) + gap(3);

3)ifv(z) > 0 and rand() < P4(¢) then v(z) < v(i)—1;

4) if (z(i) + v(7)) < L then z(i) + x(3) + v().

The first rule represents linear acceleration until the
object reaches the maximum speed Vi .x. The second
rule ensures that if there is another object in front of
the current object, it will slow down in order to avoid
collision. In the third rule, P;(¢) models erratic move-
ment behavior. Finally, the new position of object ¢ is
given by the fourth rule as sum of the previous position
with the new velocity if it is in the CA.

We use GCAs not only to model road networks,
but also to simulate the movements of moving objects.
Based on the GCA, a Simulation-based Prediction (SP)
model to anticipate future trajectories of moving objects
is proposed. The SP model treats the objects’ simulated
results as their predicted positions. To refine the accu-
racy, based on different assumptions on the traffic con-
ditions we simulate two future trajectories in discrete
points for each object. Then, by linear regression and
translating, the trajectory bounds that contain all possi-
ble future positions of a moving object can be obtained.
The process of the simulation-based prediction can be
seen in Fig.1.

Most existing work uses the CA model for traffic flow
simulation in which the parameter P,(7) is treated as a
random variable to reflect the stochastic, dynamic na-
ture of traffic system. However, we extend this model for
predicting the future trajectories of objects by setting
P,(i) to values that model different traffic conditions.
For example, laminar traffic can be simulated with Py(7)
set to 0 or a small value, and the congestion can be sim-
ulated with a larger P;(¢). By giving P;(¢) two values,
we can derive two future trajectories, which describe, re-
spectively, the fastest and slowest movements of objects
as showed in Fig.1(a). In other words, the object fu-
ture locations are most probably bounded by these two
trajectories. The value of P;(7) can be obtained by the
experiences or by sampling from the given dataset.

Through the SP model, we obtain two bounds of
objects future trajectory. In the sequel, we apply this
technique in our index to a set of moving objects that
have similar movement.

Ji-Dong Chen et al.: Indexing Future Trajectories of Moving Objects in a Constrained Network 247

Road

A Simulated Trajectory

Regress Function

’

Fastest
Movement

- ,»" Slowest Movement

=
\ 4

Q
&
=
2]
-~

=
g

(0}

—|— Y S

Lower Bound

AU t
(b)

| 2

Fig.1.
(b) Future trajectory bounds.

Simulation-based prediction. (a) Simulated trajectories.

4 ANR-Tree

4.1 Structure and Storage

The Adaptive Network R-tree (ANR-tree) is a two-
level index structure. At the top level, it consists of a
2D R-tree that indexes spatial information of the road
network. On the bottom level, its leaves contain the cel-
lular automata representing road segments included in
the corresponding MBR of the R-tree and point to the
lists of adaptive units, with object’s future trajectories.
The top level R-tree remains fixed during the lifetime of
the ANR-tree (unless there are changes in the network).
The paper is developed with R-trees, but any existing
spatial index can also be used without changes.

An important feature of the ANR-tree is that it
groups objects having similar moving patterns into
adaptive units (AUs). Conceptually, an adaptive unit
is similar to a one-dimensional MBR in the TPR-tree,
that expands with time according to the predicted move-
ment of the objects it contains. However, in the TPR-
tree, it is possible that an MBR may contain objects
moving in opposite directions, or objects moving at dif-
ferent speeds. As aresult, the MBR may expand rapidly,
which may create large overlaps with other MBRs. The
AU avoids this problem by grouping adjacent objects
with the same direction and similar speed according to
a distance threshold and a speed threshold. The AU
is capable of dynamically adapting itself to cover the
movement of the objects it contains. Since objects in an

AU have similar movement, we then predict the move-
ment of the AU, as if it were a single moving object.

We now formally introduce the AU. An AU is an
8-tuple:

AU = (aulD, objSet, upperBound, lowerBound,

edgelID, enterTime, exitTime, aulnitLen),

where aulID is the identifier of the AU, objSet is a list
that stores objects belonging to the AU, upperBound
and lowerBound are upper and lower bounds of future
trajectory of the AU. The trajectory bounds of the AU
are derived from the trajectory bounds of the objects
in the AU. We assume the functions of the trajectory
bounds as follows:

upperBound : D(t) = a, + By - t,
lowerBound: D(t) = a;+ ;- t,

edgeID denotes the edge the AU belongs to, enterTime
and exitTime record the time when the AU enters and
leaves the edge and aulnitLen represents the initial
length.

In the road network, multiple AUs are associated
with a network edge. Since AUs in the same edge
are likely to be accessed together during query process-
ing, we store AUs by clustering on their edgeID. That
is, the AUs in the same edge are stored in the same
disk pages. To access AUs more efficiently, we cre-
ate an in-memory, compact summary structure called
the direct access table for each edge. A direct access
table stores the summary information of each AU on
an edge (i.e., number of objects, trajectory bounds)
and pointers to AU disk pages. Each AU corresponds
to an entry in the direct access table, which has the
following structure (aulD, upperBound, lowerBound,
auPtr, objNum), where auPtr points to a list of AUs
in disk storage and objNum is the number of objects. In
order to minimize I/O cost, we use the direct access ta-
ble to filter AUs and only access the disk pages when
necessary.

Fig.2 shows the structure of the ANR-tree. The R-

=1

R-tree

Leaf Node

Direct Access Table

| lobjSer] | |obiSet]

| |objSet [Jobiser] [TobiSer] Adaptive Units
| [objSer | | obiSet]

Fig.2. Structure of the ANR-tree.

248

tree and adaptive units in the ANR-tree are stored in
the disk. However, the direct access table is in the main
memory (also partly in the disk for a large road net-
work) since it only keeps the summary information of
AUs. In the ANR-tree, each leaf node of the R-tree can
be associated with its direct access table by its edgeID
and the direct access table can connect to correspond-
ing adaptive units by auPtr in its entries. Therefore, we
only need to update the direct access table when AUs
change, which greatly enhances the index performance.

4.2 Query Algorithm

In this part, we propose an algorithm for predictive
range query in the ANR-tree. It can also be extended
to support the (K) Nearest Neighbor query and con-
tinuous query. A predictive range query captures all
objects whose locations are inside a specified region R
during time interval [T, T3] in the future. Given a spa-
tiotemporal window range with (X;,Y:, Xs,Ys, T1,T5),
the query algorithm on the ANR-tree consists of the
following steps:

1) We first perform a spatial window range search
(X1,Y:1, Xo,Ys) in the top level R-tree to locate the
edges (e.g., €1, ez, €3, ...) that intersect the spatial query
range.

2) For each selected edge e;, we transform the orig-
inal 3D search (X1,Y:,Xs,Ys,71,T5) to a 2D search
(Sl,Sz,Tl,Tg) (Sl < Sg, T1 < Tg), where 51 and Sg
are the relative distances from the start vertex along the
edge e;. Fig.3(a) gives an example when the query win-
dow range only intersects one edge. In the case of mul-
tiple intersecting edges, we can divide the query range
into several sub-ranges by edges and apply the trans-
formation method to each edge. The method is also
applicable to various modes the query and edges inter-
sect. For space limitation, we only illustrate the case
in Fig.3(a) and compute its relative distances S; and
S5. It can be easily extended to other cases. Suppose
Xstart, Ystart, Xend, Yend are the start vertex coordinates
and the end vertex coordinates of the edge e;. According
to Thales Theorem about similar triangles, we obtain Sy
and Sy as follows:

r= \/(Xstart - Xend)2 + (Y;tart - }/;znd)za

S = leXstart r
1= %5 ~ 5

Xend - Xstart
S2 — Yl - Yrstart

- T
}/end - sztart

3) We further find the adjacent edges on which ob-
jects are possible to move into the window range dur-
ing the future period [T1,T%]. Specifically, it expands
the network from the edge points intersecting the spa-
tial window (e.g., locations of Sy, S3) up to a maximum
distance computed by the future time and the average
maximum speed in the network and returns the tra-
versed edges (e.g., e}, €5, e5,...). In this way, we can
avoid the false misses during the query processing.

J. Comput. Sci. & Technol., Mar. 2007, Vol.22, No.2

A

AU, lowerBd
upperBd

Spr 1 auvs
Xend s Yend St /,’ Q /—’

upperBd

~ |/ - _":,/: “lowerBd
xun S T
. — Lo
Sy /Query . ’ '
J i
X>, Y, - .
Xaarts Yorar = r 1 —>
starts Istart Tl T2

() (b)

Fig.3. Window range query in the ANR-tree. (a) Query transfor-
mation. (b) Query process in AUs.

4) The transformed query (S, Sa,T1,T>) is executed
in each of the AUs in the direct access table of the corre-
sponding edge e; or adjacent edge el. As illustrated by
Fig.3(b), an AU is suitable to the query only if the 2D
window range intersects the area between the upper and
lower trajectory bounds of the AU. Otherwise when the
query is below the lower bound (e.g., 8 X T1 + oy > Sb)
or above the upper bound (e.g., B, X To + a,, < S7) of
the AU, the query cannot contain objects in this AU.
In our example, the query only returns AU;. By the
trajectory bounds of the AU, we can determine whether
the transformed query intersects the AU, thus filtering
out the unnecessary AUs quickly.

5) Finally, we access the selected AUs in disk storage
and return the objects satisfying the predictive query
window.

4.3 TUpdate Operations

Since the top level R-tree indexes the road network,
it remains fixed, and the update of the ANR-tree re-
stricts to the update of AUs. The update of an AU con-
tains creating an AU, dropping an AU, adding objects
to an AU and removing objects from an AU. Specifi-
cally, an AU is usually created at the start of one edge
and dropped at the end of the edge. To create an AU,
we first compose the 0bjSet, a list of objects traveling in
the same direction with similar velocities and in close-
by locations (computed by a distance threshold and a
velocity threshold). We then predict the future trajecto-
ries of the AU by simulation and compute its trajectory
bounds. Since the AU is a one-dimensional structure,
the ANR-tree performs update operations much more
efficiently than two-dimensional indexes.

When updating an object in the ANR-tree, we first
determine whether the object is leaving the edge and
entering another one. If it is moving to another edge,
we delete it from the old AU (if it is the last object in
the old AU, the AU is also dropped) and insert it into
the nearest AU or create a new AU in the edge it is
entering. Otherwise, we do not update the AU that the
object belongs to unless its position exceeds the bounds
of the AU. In that case, we execute the same updates
as those when it moves to another edge. Factually, we

Ji-Dong Chen et al.: Indexing Future Trajectories of Moving Objects in a Constrained Network 249

find, from the experimental evaluation, that the chances
that objects move beyond the trajectory bounds of its
AU are very slim.

5 Performance Analysis

In this section, we first analyze the I/O cost of the
query algorithms and then perform experimental evalu-
ation.

5.1 Algorithms Analysis

We follow the main assumptions of [17] in our anal-
ysis, in particular we assume that rectangles, including
the whole map, are square. Let M be the total number
of edges of the GCA, W be the width of the map, IV be
the total number of objects and n be the average num-
ber of objects in an AU. The average number of AUs in
an edge is N/Mn. We assume that B is the maximum
number of objects in a disk page. The average number
of AUs in a page is B/n.

For a spatiotemporal query window (Xi,Y7, X5, Y5,
Ty, Ty), a spatial search is first performed in the top level
R-tree to locate the edges that intersect the spatial win-
dow. Let NV, be the number of data rectangles of the
R-tree, f be its average fanout, h = 1 + [log; %] its
height, and S; ., S, the average extents of node rect-
angles at level [on X and Y coordinates. Assume that
each node is in one disk page, the average number of disk
accesses for the spatial search (X1,Y7,X5,Y3) is given
by [17]:

Z Ny (Sie + X2 = Xu)) (St + Y2 = Vi)
l .
=1 f

W2

Since each leaf node of the R-tree only contains one
edge, the average number of edges intersecting the spa-
tial query is given by:

(51,0 + X2 — X4[)(S1,y + Y2 — Y3)
W2

For each selected edge, we scan its direct access ta-
ble for the purpose of only accessing relevant AUs. We
compute the average number of AUs intersecting the
transformed query (Si,S2,7T1,T3). In Fig.1(b), the two
trajectory bounds of one AU divide the coordinate plane
into three parts: upper area (above the upper bound),
middle area (between the upper and lower bounds) and
lower area (below the lower bound). We assume that
the upper and lower areas represent respectively the
percentage of g, p; of the total area of the plane.
The probability that the query intersects the AU is
(1 —p2 — p?). 1t is not difficult to compute the average
probabilities 7z, 71; of the AUs on the edge using their
bound functions and the length of the edge. Now, we
can get the average number of relevant AUs as follows:

N
Mn'

M

(1—m —7p)

Finally, for each relevant AU, we need to find the
moving objects satisfying the predictive query range.
Since the AUs on the same edge are likely clustered in
the same disk page, the average I/O cost of accessing
relevant AUs and moving objects on each selected edge
is given by:

N
MB’

Therefore, the total I/O cost for a spatiotemporal

window query in the ANR-tree is given by:

(1-72 —77)

h—1

1 N,
7z (20 7 (St +1%2 = Xa]) (S +[¥2 = Vi)
=1

N
(St +1Xz = Xa|)(S1, + Yo = Vi) (1 = 72 =)).

B
5.2 Experimental Evaluation

We evaluate the ANR-tree by comparing it with the
TPR-tree and the ANR-tree without the direct access
table (denoted as ANR-tree without DT). We measure
their query performance with different dataset size, up-
dates and query window size.

We use two datasets for our experiments. The first
is generated by the CA simulator, and the second by the
Brinkhoff Network-based Generator!'®l. We use the CA
traffic simulator to generate a given number of objects
in a uniform network of size 10000 x 10000 consisting
of 500 edges. Each object has its route and is initially
placed at a random position on its route. The initial
velocities of the objects follow a uniform random dis-
tribution in the range [0,30]. The location and veloc-
ity of every object is updated at each time-stamp. The
Brinkhoff Network-based Generator is used as a popular
benchmark in many related work. The generator takes
a map of a real road network as input (our experiment is
based on the map of Oldenburg including 7,035 edges),
places a given number of objects at random positions on
the road network, and updates their locations at each
time-stamp. We implemented both the ANR-tree and
the TPR-tree in Java and carried out experiments on a
Pentium 4, 2.4GHz PC with 512MB RAM running Win-
dows XP. To improve the performance of the ANR-tree,
we employed an LRU buffer of the same size as the one
used in the TPR-treel®.

Effect of Data Size on Query. We study the window
range query performance of the TPR-tree and the ANR-
tree while varying the number of moving objects from
10K to 100K. Fig.4 shows the average number of I/O
per query. In each case, the query cost increases as the
data size increases. However, the ANR-tree has much
lower cost than the TPR-tree. This is because the adap-
tive units in the ANR-tree have much less overlaps than
the MBRs in the TPR-tree, and the overlaps to a large
extent determine the range query cost. The ANR-tree
with the direct access table achieves better performance
than the ANR-tree without it. This is because the in-
memory summary structure enables us to filter some

250

unnecessary AUs during the search of AUs that inter-
sect the range query. However, for the Brinkhoff dataset
the benefit of the direct access table is not obvious be-
cause the large number of small edges in the network
reduces chances of filtering the AUs not included in the
range query.

For each data size, the search costs of the two indices
in the Brinkhoff dataset are both higher than those in
the CA dataset due to the higher complexity of road

network and skewed spatial distribution of objects in
the Brinkhoff dataset.

450

«_ ANR-tree n
400 ’

---g--- ANR-tree without DT

350 b ™ TPR-tree .
B TR

300
250 PR o
200 F w7

150 T
100 F
50

Range Query 1/Os
n

10 30 50 70 90
Number of Moving Objects (K)

(a)

100 — % ANR-tree
---8--- ANR-tree without DT
80 ™ TPR-tree

Range Query 1/Os

0
10 30 50 70 90
Number of Moving Objects (K)

(b)

Fig.4. Effect of data size on query. (a) Brinkhoff. (b) CA.

Effect of Query Window Size. To study the effect
of query window size on performance, we increase the
window size from 10 to 100 for 100K data size with a
workload of 200 range queries. Fig.5 shows the query
cost as a function of the query window size. It is clear
that for all the index solutions, query cost increases with
the query window size. This is so because larger win-
dows contain more objects and therefore lead to more
node accesses. However, this effect is more obvious on
the TPR-tree.

Effect of Update. We increase the number of up-
dates from 100K to 1M to examine how query perfor-
mance is affected. We issued 200 range queries for every
100K updates in a 1M dataset. Fig.6 shows that the
cost of the TPR-tree increases much fast as the num-
ber of updates increases. The cost of the ANR-tree is
considerably lower and is less sensitive to the number
of updates. This is because as objects move apart, the
amount of dead space in the TPR-tree increases, which

J. Comput. Sci. & Technol., Mar. 2007, Vol.22, No.2

700 « ANR-tree
600 - —=— ANR-tree without DT m
& -~ @ TPR-tree ™
= 500 Cmmw ™
5 oo
& 400
(9]
2300
51
~
0 1 Il Il 1 1 1 1 1 J
10 20 30 40 50 60 70 80 90 100
Query Windown Size
(a)
130 _« ANR-tree ..
" ---&-- ANR-tree without DT M
110 | ™ TPR-tree 'e
é | .
B 90 P B
5 oW WY a
&
o 70 F A
2 L 28
&
50 6 o
30 1 1 1 1 1

J
30 40 50 60 70 80 90 100
Query Windown Size

(b)

Fig.5. Effect of query window size on query. (a) Brinkhoff. (b)
CA.
1200 ¢ _ « ANR-tree
---2--- ANR-tree without DT ..
, 1000 F e TPR.jree o
¢
R
> 800 e
2 =
o 600 w7
(] .-
50 -
5 400 %
=4
200 -
i B
100 300 500 700 900
Data Updates (K)
(a)
100 ANR-tree
90 |- —= ANR-tree without DT
@ TPR-tree -m W
580 I wm
z 70 |
s
< 60 F
©
4
& 30 [;——«fEF"»EI””EL’"E—”‘E"**EFJ*EI“”EF"’E‘
40
| xR K
30 1 1 1 1 1 1 1 1
100 300 500 700 900
Data Updates (K)

(b)

Fig.6. Effect of updates on query. (a) Brinkhoff. (b) CA.

makes false hits more likely. Also, updates lead to the

Ji-Dong Chen et al.: Indexing Future Trajectories of Moving Objects in a Constrained Network

expanding and overlaps of MBRs, which further deteri-
orate the performance of the TPR-tree. For the ANR-
tree, the increase of the updates hardly affect the total
number of AUs, and the chances of overlaps of different
AUs are very slim.

6 Conclusion

Querying future trajectories of objects moving in a
constrained network is a topic of great practical impor-
tance. Our contribution is two-fold. First we propose
a prediction model, based on simulation, which predicts
with a great accuracy the future trajectories of moving
objects.
model exploits the constraints of the network and mod-

The accuracy results from the fact that the

els the stochastic aspect of urban traffic. Then, we pro-
pose a new access structure, which extends the R-tree
with adaptive units that exploit as much as possible the
movement characteristics of objects. The efficiency of
the structure results from the possible reduction of 3D
spatiotemporal queries to 2D queries. Our experimen-
tal results performed on two datasets show that the effi-
ciency of our algorithm is one order of magnitude higher
than the TPR-tree.

Acknowledgments The authors would like to
thank Hai-Xun Wang from IBM T. J. Watson Re-
search, Karine Zeitouni from PRISM, Versailles Saint-
Quentin University in France and Stéphane Grumbach
from CNRS, LIAMA China for many helpful advices.

References

[1] Saltenis S, Jensen C S. Indexing of moving objects for
location-based service. In Proc. 18th Int. Conf. Data Engi-
neering, San Jose, CA, 2002, pp.463—472.

[2] Agarwal P K, Arge L, Erickson J. Indexing moving points
(extended abstract). In Proc. the 19th ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems,
Dallas, Texas, 2000, pp.175-186.

[3] Jensen C S, Lin D, Ooi B C. Query and update efficient
Bt-tree based indexing of moving objects. In Proc. 30th

251

Int. Conf. Very Large Data Bases, Toronto, Canada, 2004,

pp.768-779.

Patel M, Chen Y, Chakka V. STRIPES: An efficient index

for predicted trajectories. In Proc. the ACM SIGMOD Int.

Conf. Management of Data, Paris, France, 2004, pp.637—646.

Kollios G, Gunopulos D, Tsotras J V. On indexing mobile

objects. In Proc. the 8th ACM SIGMOD-SIGACT-SIGART

Symp. Principles of Database Systems, Philadelphia, USA,

1999, pp.261-272.

[6] Saltenis S, Jensen C S, Leutenegger S T, Lopez M A. Index-
ing the positions of continuously moving objects. In Proc.
the ACM SIGMOD Int. Conf. Management of Data, Dallas,
Texas, USA, 2000, pp.331-342.

[7] Tao Y, Papadias D, Sun J. The TPR*-tree: An optimized
spatiotemporal access method for predictive queries. In Proc.
29th Int. Conf. Very Large Data Bases, Berlin, Germany,
2003, pp.790-801.

[8] Almeida V T D, Giiting R H. Indexing the trajectories of mov-
ing objects in networks. Geolnformatica, 2005, 9(1): 33-60.

[9] Frentzos E. Indexing objects moving on fixed networks. In
Proc. the 8th Int. Symp. Spatial and Temporal Databases,
Santorini Island, Greece, 2003, pp.289—-305.

[10] Pfoser D, Jensen C S. Indexing of network constrained moving
objects. In Proc. 11th ACM Int. Symp. Advances in Geo-
graphic Information Systems, New Orleans, Louisiana, USA,
2003, pp.25-32.

[11] Nascimento M A, Silva J R O. Towards historical R-trees. In
ACM Symposium on Applied Computing, Atlanta, Georgia,
1998, pp.235-240.

[12] Pfoser D, Jensen C S, Theodoridis Y. Novel approaches in
query processing for moving object trajectories. In Proc.
26th Int. Conf. Very Large Data Bases, Cairo, Egypt, 2000,
pp.395-406.

[13] Tao Y, Papadias D. MV3R-tree: A spatio-temporal access
method for timestamp and interval queries. In Proc. 27th Int.
Conf. Very Large Data Bases, Roma, Italy, 2001, pp.431-440.

[14] Guttman A. R-trees: A dynamic index structure for spatial
searching. In Proc. the ACM SIGMOD Int. Conf. Manage-
ment of Data, Boston, USA, 1984, pp.47-57.

[15] Yiu M L, Tao Y, Mamoulis N. The Bdual-Tree; [ndexing mov-
ing objects by space-filling curves in the dual space. To appear
in Very Large Data Base Journal, 2006.

[16] Nagel K, Schreckenberg M. A cellular automaton model for
freeway traffic. Journal Physique, 1992, 2: 2221-2229.

[17] Theodoridis Y, Stefanakis E, Sellis T K. Efficient cost models
for spatial queries using R-trees. TKDEF, 2000, 12(1): 19-32.

[18] Brinkhoff T. A framework for generating network-based mov-
ing objects. GeolInformatica, 2002, 6(2): 153—180.

[4

[5

