Sept. 2006, Vol.21, No.5, pp.665-673 J. Comput. Sci. & Technol.

Study on Parallel Computing

Guo-Liang Chen! ([%[E KR ), Guang-Zhong Sun® (#)J 1), Yun-Quan Zhang? (7K = 4%), and Ze-Yao Mo® (& |5E)
! Anhui Province-MOST Key Co-Lab of High Performance Computing and Its Applications

Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, P.R. China
2 Laboratory of Parallel Computing, Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics

Beiging 100088, P.R. China
E-mail: {glchen,gzsun}@ustc.edu.cn; zyq@mail.rdcps.ac.cn; zeyao_mo@mail.iapcm.ac.cn
Received April 18, 2006; revised June 14, 2006.
Abstract In this paper, we present a general survey on parallel computing. The main contents include parallel computer
system which is the hardware platform of parallel computing, parallel algorithm which is the theoretical base of parallel
computing, parallel programming which is the software support of parallel computing. After that, we also introduce some

parallel applications and enabling technologies. We argue that parallel computing research should form an integrated method-
ology of “architecture — algorithm — programming — application”. Only in this way, parallel computing research becomes

continuous development and more realistic.

Keywords
1 Introduction

For a given application problem, first, the computa-
tional scientists have to convert it into a numerical com-
putation problem, second the computer scientists have
to design a parallel algorithm and then use some pro-
gramming languages to execute that parallel algorithm
on a concrete parallel computer, finally, the application
experts run software to solve the given problem. The
above whole process can be called parallel computing.
From this, parallel computing deals with the following
subject areas: the parallel computer system which is the
hardware platform of parallel computing, the parallel
algorithm which is a theoretical base of parallel com-
puting, the parallel programming which is the software
support of parallel computing, the parallel application
which is the motive force of development in parallel com-
puting. Obviously, parallel computing involves compu-
tational mathematicians, computer scientists, software
engineers and applied domain experts. The main fea-
ture of parallel computing is related to applied domain
closely.

It is here necessary to distinguish the following sev-
eral professional terms in order to discuss conveniently.

Numerical computation method which focus on
researching the mathematic principle of solving appli-
cation problem dealing with the computation method
convergence, stability and precision etc; parallel algo-
rithm which is a concrete method and procedure to solve
a given problem on a parallel computer. Usually, we
can design a numerical parallel algorithm according to
the corresponding numerical computation method; par-
allel program which is a segment code of implement-
ing the parallel algorithm using some parallel program-
ming languages. It can be run directly on a parallel
computer; parallel software which is a set of parallel

parallel computing, parallel architecture, parallel programming, parallel algorithm, parallel application

programs to solve a given application problem. Software
should be reusable across different platforms. For this,
we should use a reusable technicality to encapsulate some
algorithms and technique in a reusable fashion.

When the parallel computing was in its infancy, we
began to study on parallel computing. On the basis of
parallel algorithm that we studied before, we extended
little by little the scope of researching to study simulta-
neously parallel algorithm, parallel architecture, parallel
programming and parallel application. Over the past 20
years, we have established a complete subject system of
“Theory — Design — Implementation — Application”
for parallel algorithm and formed an integrated method-
ology of “Parallel Computer — Parallel Algorithm —
Parallel Programming” for parallel computing. We have
cultivated many students in parallel algorithm and par-
allel computing areas for our country and published sep-
arately a series of parallel algorithms and parallel com-
puting monographs and textbooks in Chinesel' =7,

In the following, the hardware platform of parallel
computing (parallel computer systems) is given in Sec-
tion 2, theoretical base of parallel computing (parallel
algorithm) in Section 3, software support of parallel com-
puting (parallel programming) in Section 4, parallel ap-
plications and enabling technologies in Section 5, and a
brief conclusion in the last.

2 Hardware Platform of Parallel Computing:
Parallel Computer Systems

With the rapid development of the past several
decades, there are various parallel computer architec-
tures. Based on the parallel computers’ produce cost
and usage, there are two series of parallel computers:
common parallel computers and supercomputers(®!.

Survey

Supported by the National Natural Science Foundation of China under Grant No.60533020.



666

2.1 Common Parallel Computer Architecture

Common Parallel Computers are normally cheap and
convenient to get. So they are wildly used in many areas
which need relatively low computing capability. There
are three types of common parallel computers based on
the architecture. The first one is the so called desktop
multiprocessors, which is a new kind of personal com-
puter with 2 or 4 CPUs. It can achieve higher per-
formance than normal PC. The second type is SMP
(Symmetric Multiprocessor) servers, which can easily be
bought from computer markets. It has several symmet-
rical processors on a single main board. Usually an SMP
server may contain 8, 16 or even 32 processors. Its ar-
chitecture is shared memory and tightly coupled. The
last one is COW (Cluster of Workstation) or PC cluster,
it is a distributed memory, loosely coupled architecture,
as the development of commercial networks and commer-
cial processors, this architecture becomes more and more
popular(™.

2.2 Supercomputer Architecture

Compared with the common parallel computers, the
supercomputers have high performance but correspond-
ing high cost and long producing time. The main archi-
tecture of supercomputers includes MPP, PVP and DSM
and so on. MPP (Massively Parallel Processor) is usu-
ally made up of a large number of commodity processors
which are connected by a customized high bandwidth
and low latency communication network. The proces-
sors have physically distributed memory and they are
synchronized through blocking message-passing opera-
tions. PVP (Parallel Vector Processor) is another kind
of architecture of the supercomputers. It is made up of
a few of specific vector processors, which are connected
by a customized high bandwidth and low latency com-
munication network. So PVP can achieve extraordinary
performance for some specific applications. On the other
hand, the PVP supercomputers are much more expen-
sive than those based on MPP. DSM (Distributed Shared
Memory) has physically distributed, but system hard-
ware and software support a single address space to ap-
plication users. In DSM, DIR (Cache directory) is used
to support distributed coherent caches. Some commer-
cial DSM machines with large amount of processors are
often called constellation.

China has made the world-noted achievements on
the development of supercomputers. Besides the United
States and Japan, China has become the third country
which is able to independently develop and produce high-
performance computers. Now, several supercomputer
series such as Dawning, Galaxy, Shenwei, Lenovo have
made remarkable progresses. A supercomputer from
Lenovo ranked the 14th place among the top 500 su-
percomputers in Nov. 2003 and Dawning4000A ranked
the 10th in June 2004.

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

3 Theoretical Base of Parallel Computing:
Parallel Algorithms

Generally speaking, algorithm is a method and steps
to solve a given problem. Parallel algorithm is de-
signed to execute in parallel on parallel computers. Par-
allel algorithms can be classified in different ways!®:
for example, based on the executing fashion, there are
synchronous algorithms and asynchronous algorithms.
Based on the executing operations, we can classify paral-
lel algorithms in numerical algorithms and non-numerical
algorithms. Numerical algorithms mainly solve the prob-
lems based on algebraic operation, such as matrix mul-
tiplication, computing the result of polynomial, solving
linear equations, etc. Non-numerical algorithms mainly
solve the problems based on comparison relation, which
include sorting, selecting, searching, matching and so on.
There are many distinguished achievements on parallel
algorithms during the past several decades!®!.

3.1 Parallel Computational Models

Usually, a computational model consists of several
measurable parameters that reflect the computational
characteristics of target architecture. Based on the com-
putational behavior defined by the model (such as syn-
chronous vs. asynchronous, etc.), usually a cost function
can be used to analyze algorithm complexity. Algorithm
designer and program developer can use such a model
to design algorithms, to calculate cost function and to
assess the running time of parallel algorithm.

Based on the historical development of parallel com-
putational models, we think they can be classified into
three generations. The first generation is the shared
memory parallel computational model, started from
1978. The second generation is the distributed memory
parallel computational model, started from 1984. The
third generation is the hierarchical memory parallel com-
putational model mainly started from 1993.

First Generation Parallel Computation Model.
PRAM (Parallel Random Access Memory) was first built
up by Fortune, Wylliel®! and Goldschlager!'® indepen-
dently. The PRAM model consists of a collection of
RAM processors, and they load/store data through a
common central memory. Concurrent access to the com-
mon memory is allowed and only takes one unit of time
to be finished. The RAM processors can execute in-
struction concurrently in unit time and in lock-step with
automatic and free synchronization. Through hiding
the architectural details of communication, memory hi-
erarchy and process synchronization, the PRAM model
can simplify the design and analysis of parallel algo-
rithms, but sometimes may lead to misleading analysis
results. Thus, many researches have been incorporated
various features of current parallel machines into PRAM
model to enhance its reflectivity. These features and cor-
responding models are asynchrony PRAMI['! queuing
shared memory!*?! and latency PRAM3! etc.

Second Generation Parallel Computation Model.



Guo-Liang Chen et al.: Study on Paralle]l Computing

There are several models that assuming a distributed
memory paradigm and processor communicates through
message passing, we will introduce BSP-like and LogP-
like models as follows.

The BSP (Bulk Synchronous Parallel) model was pro-
posed by L. Valiant in 199014/, The parameters of this
model include p (the number of processors), g (unary
packet transmission time) and L (Synchronous period-
icity). The algorithm executed on BSP model consists
of a sequence of supersteps with periodicity L. In each
superstep, each processor can perform the combination
of local computation on local available data and mes-
sage passing. After each period of L unit times, a global
check is performed to ensure all processors have finished
one superstep, otherwise, another superstep allocated for
the unfinished superstep. The BSP model posits band-
width limitation on the algorithm through limiting the
maximum messages that can be sent/received in each
superstep. The synchronization is charged at most L
unit times. The advantages of BSP model are its sepa-
rated consideration on computation and communication,
easy programming and correctness guarantees of algo-
rithm using superstep. But the length of superstep is
affected by h-relations (h = L/g).

The development of LogP model was based on the
observation of the convergence of parallel computer ar-
chitecture in the 90s. It was proposed by D. Culler et al.
in 1993015]. LogP consists of four parameters, as the four
characters in its name: L (latency of message passing), o
(overhead of processor involved in message preparation
and processing), g (maximum time gap between succes-
sive messages, its reciprocal is essentially the bandwidth
of the communication) and P (the number of proces-
sors). The LogP model gives detailed descriptions of the
bottleneck of parallel computation and hides the topol-
ogy of interconnection network, but it cannot be used to
analyze algorithm easily.

Third Generation Parallel Computation Model. Since
the speed gap between processor and memory systems
becomes larger and larger, the cost on memory access
becomes non-ignorable. The following distributed mem-
ory models which consider incorporating the memory hi-
erarchy into the analysis of parallel algorithms.

Two early models, HMM (Hierarchical Memory
Model) and Hierarchical Memory Model with Block
Transfer (BT), were proposed by Alok Aggarwal
et all'®'"l The UMH (Uniform Memory Hierarchy)
model'8] has different assumption on memory location
at each level, the memory access cost for each level is the
same, i.e., the cost function in UMH is the function of
level number, not data address. Parallel versions of these
models are easy to be built through replicating the serial
model p times. P-UMH model was proposed in [18] and
P-HMM and P-BT models were proposed in [19]. The
LogP-HMM model2] extends an existing parameterized
network model (LogP) with HMM model characterizing
each processor. It captures both network communication
costs and the effects of multilevel memory, such as local

667

cache and I/0.

DRAM (h,k) (Distributed Random Access Memo-
ry) (21,22] i3 4 computational model with considerations on
instruction/thread level parallelism (k ways) and mem-
ory hierarchy (h levels) based on memory access com-
plexity concept?3!. In Memory LogP?4 model, the com-
munication cost is divided into memory communication
cost and network communication cost. All the above
models ignores TLB (Translation Look-aside Buffer) and
disk cost.

3.2 Design and Implementation of Parallel
Algorithms

Policy. There are three general policies to design a
parallel algorithm. One is parallelizing a sequential al-
gorithm. In this way, the designer needs to detect and
exploit any inherent parallelism in an existing sequential
algorithm. Another is designing a new parallel algorithm
without regard to the related sequential algorithms. In
terms of the description of a given problem, we redesign
or invent a new parallel algorithm. The last design pol-
icy is borrowing other well-known algorithms to solve
the given problem. This is necessary to find relationship
between to be solved problem and well-know problem.
Then a similar algorithm that solves a given problem
using a well-know algorithm can be presented!4!.

Method. There are several of tricks and methods
in parallel algorithm design. The most frequently used
methods are partitioning, divide and conquer, pipelining
and so on. Partitioning is a simple but quite important
method. It breaks up the given problem into several non-
overlapping sub-problems of almost equal sizes and solves
these sub-problems concurrently. Divide and conquer
first divides the problem into several sub-problems, then
solves recursively the sub-problems, at last merges solu-
tions of sub-problems into a solution for original problem.
Pipelining is also a useful method in parallel algorithm.
It breaks an algorithm into a sequence of segments in
which the output of each segment is the input of its suc-
cessor. In this way, all segments must produce results
at the same rate. For numerical computation problem,
the iterative methods are often used in design of parallel
algorithms!46].

Implementation. When we want to implement paral-
lel algorithms on parallel computers, some problems such
as task decomposition, assignment, mapping, scheduling
may be encountered.

Only decomposing a big problem into several sub-
problems properly can we implement effectively. There
are two types of decomposition: domain decomposition
and functional decomposition. The former is also called
data decomposition and the latter is also called compu-
tation decomposition. The decomposition should make
the computing tasks balanced and reduce the communi-
cation between the related tasks.

After the decomposition step, we need to assign the
sub-problems on proper processors and decide their ex-



668

ecution sequence. This is a scheduling problem. It
plays an important role in optimizing the algorithm per-
formance of implementation. There are three types of
scheduling: static scheduling or compile time schedul-
ing, it decides all the tasks’ executing processor and se-
quence before they operate; dynamic scheduling does not
know the information of the tasks, so it can only decide
a task’s executing processor and sequence when it avail-
able; hybrid scheduling is a combination of the above
two scheduling, it schedules parts of tasks at the com-
pile time, the rest tasks are scheduled dynamically at the
running time.

Scheduling can also be divided as optimal scheduling
and sub-optimal scheduling or heuristic scheduling. The
optimal scheduling algorithm can get an optimal schedul-
ing result in a polynomial time. Unfortunately, most
optimal scheduling algorithms can only be used on very
simple and particular circumstances. Therefore, many
works have been done on designing efficient heuristic
scheduling algorithms for various scheduling models. Al-
though these algorithms cannot get the optimal schedul-
ing result, they can get relatively good result in a low
computing complexion[25—28],

3.3 Performance Evaluation of Parallel
Algorithm

There are various methods and metrics that are used
to measure the performance of a certain parallel algo-
rithm. No single method or metric is preferred over an-
other since each of them reflects certain properties of the
parallel algorithm.

Speedup. It is defined as the ratio of the execution
time on a single processor to that on a parallel com-
puter. Amdahl’s Law!??! states that if f is the fraction
of a sequential calculation, then the maximum speedup
that can be achieved is 1/f. Since 1967, this law has been
used as a negative argument against massively parallel
processing. In fact, it is not necessary to fix workload
and let algorithm run on different numbers of processors
as Amdahl said. In large scientific computation applica-
tion, in order to increase accuracy, we have to increase
workload. Correspondingly, we have to increase the num-
ber of processors to keep the execution time unchanged.
In 1987, Gustafson gave such a formulation which is of-
ten referred to as the Gustafson’s Law[®*! and has been
widely refereed to as a “scaled speedup measure”. Since
1988, Gustafson’s Law has been used to justify massively
parallel processing system.

Efficiency. The efficiency of a parallel algorithm de-
scribes the fraction of the time that is usefully employed
by the processors for a given computation. It is defined
as sp/p, where s, is speedup and p is the number of
processors. Usually efficiency is between 0 and 1.

Scalability. A computer system (hardware, software,
algorithms etc.) is scalable, if it can scale up (increase its
resources) to accommodate performance and functional-
ity demand and scale down (decrease its resources) to

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

reduce cost.

There are different dimensions of scalability. Scala-
bility in machine size indicates how well the performance
will improve with additional processors. This scalability
measures the maximum number of processors a system
can accommodate. Scalability in problem size shows how
well the system can handle larger problems with larger
data size and workload. And technology scalability de-
scribes how well the performance improvement with the
changed technology. Iso-efficiency®!!| Iso-speed[3?] and
average latency[®3] are three metrics proposed for the
study of scalability.

4 Software Support of Parallel Computing:
Parallel Programming

With the rapid development of parallel computing
in the past several decades, there are various parallel
programming models, languages and benchmarks. They
construct the software support of parallel computing!*4!.

4.1 Parallel Programming Models

Parallel programming model is an abstraction be-
tween hardware and software for programmers. There
are several parallel programming models in common
use: shared variable, message passing, and data paral-
lel, etc.[39]

Shared Variable. The shared variable programming is
the native model for PVP, SMP and DSM machines. In
this model, tasks share a common address space, where
tasks exchange data through reading and writing shared
variables. Various mechanisms such as locks/semaphores
may be used to control access to the shared variable. An
advantage of this model from the programmer’s point of
view is that the notion of data “ownership” is lacking, so
there is no need to specify explicitly the communication
of data between tasks. Program development can often
be simplified, but the portability is problematic.

Message Passing. The message passing programming
is the native model for MPP, COW machines. This
model consists of a set of tasks that use their own lo-
cal memory during computation. Tasks exchange data
through communications by sending and receiving mes-
sages. Data transfer usually requires cooperative oper-
ations to be performed by each process. The special
synchronous operations (barrier, event etc.) are used.
The programmer is responsible for determining all par-
allelism.

Data Parallel. The data parallel programming is
the native model for SIMD and VP machines. It origi-
nates from vector programming. Under the data parallel
model, most of the parallel work focuses on performing
operations on a data set. The data set is typically orga-
nized into a common structure, such as an array or cube.
A set of tasks work collectively on the same data struc-
ture, however, each task works on a different partition of
the same data structure3. Users do not have to specify



Guo-Liang Chen et al.: Study on Paralle]l Computing

communication operations.

Unified Model. Unified parallel programming model
is suitable for various shared memory or distributed
memory. It is a multi-layer model. The core support
layer includes GOOMPI[S] (Generic Object Oriented
MPI) and PMT (Parallel Multi-Thread). The core ap-
plication layer centers on smart parallel and distributed
abstract data structures and implementation of a highly
reusable basic parallel algorithm library. At the high-
level framework layer, it provides extensible parallel al-
gorithmic skeletons and supports the research and design
of new parallel algorithms. This model has advantage to
support intuitively mapping from algorithm to program.

4.2 Parallel Programming Languages and
Parallelization Methodologies

Designing and developing parallel programs has
ever been a very manual process. Usually, there are
three ways to develop parallel programs, i.e., auto-
parallelization compilers, library extension and new par-
allel programming languages.

Auto-Parallelization Compilers. A parallelizing com-
piler generally works in two different ways: 1) fully auto-
matic: the compiler analyzes the source code and iden-
tifies opportunities for parallelism. Loops (do, for) are
the most frequent target for automatic parallelization;
2) programmer directed: using compiler directives or
possibly compiler flags, the programmer explicitly tells
the compiler how to parallelize the code and distribute
the data. But researchers finally found out that auto-
matic parallelization compiler is not effective. The way
of adding compiler directives as HPF37 became an ac-
ceptable way for some applications with regular data ac-
cess (i.e., data parallel model).

Library Eztensions of Sequential Programming Lan-
guages. Providing a user callable parallel programming
library embedded in a sequential programming languages
is an easy and popular way to realize parallel program-
ming. MPI and OpenMP are two such popular library
extensions. MPI®8! is a message passing library standard
based on the consensus of the MPI Forum. Its goal is to
establish a portable, efficient, and flexible standard for
message passing programs. MPI is now the “de facto”
industry standard for message passing. MPICH®?! and
LAM/ MPI“! are two popular and freely available MPI
packages. OpenMP is an Application Program Inter-
face (API) that may be used to explicitly direct multi-
threaded, shared memory parallelism. It comprises of
three primary API components: compiler directives, run-
time library routines and environment variables.

New Parallel Programming Languages. Parallel pro-
gramming paradigms, over the past decade, have fo-
cused on how to exploit more computational power of
contemporary parallel machines. Ease of use and code
development productivity have been a secondary goal.
Partitioned Global Address Space (PGAS) programming
model aimed at leveraging the ease of programming of

669

the shared memory paradigm, while enabling the ex-
ploitation of data locality. Co-array Fortran (CAF)M*!
and UPC[? are two emerging languages for single-
program, multiple-data global address space program-
ming. There are also several other new parallel languages
developed for HPCS project.

4.3 Parallel Benchmarks

There are several freely available and popular bench-
marks that are commonly used by the HPC community.
The current trend on benchmark design is to develop
application-oriented benchmarks. Such benchmarks, as
MM5143] WRF[44, will play more and more important
roles in the future.

NPB. NPB (NAS Parallel Benchmarks)!*® is a small
set of programs designed to help evaluate the perfor-
mance of supercomputers. They were developed by the
NASA Ames Research Center. NPB has been widely
used because it mirrors real-world parallel scientific ap-
plications better than most other available benchmarks.
The NPB suite of programs provides a comprehensive
view of the various performance characteristics of HPC
systems. The suite consists of five kernels that mimic the
computational core of numeric methods used by CFD
(Computational Fluid Dynamics) applications and three
CFD pseudo-applications. NPB results are provided in
MOPS (Millions of Operations Per Second). For each
kernel, the NAS benchmarks specify five classes of in-
creasing workloads, called W, A, B, C and D.

Linpack. Linpack®! is widely used today for char-
acterizing HPC systems. This benchmark uses a set of
functions to measure the time taken to solve the dou-
ble precision (64 bits) system of linear equations using
Gaussian elimination method. Its results are expressed
as MFLOPS (Millions of FLoating-point Operations Per
Second), and used by TOP500 and China TOP100[47]
as one rank metric. One of the most popular packages
of Linpack benchmarking is High-Performance Linpack
(HPL)!48l,

HPCC. The current HPCC (HPC Challenge) bench-
mark measures the performance of several elements of
a machine. It consists of a set of 23 measurements in
eight groups. It supplements and extends Linpack, ex-
ercises critical features of an HPC machine, calculation
speed, memory access, MPI communication and applica-
tion kernels*?].

5 Parallel Applications and Enabling
Technologies

This section surveys the various applications in nu-
merical simulations for parallel computing especially
highlighting the advanced technologies to enable the par-
allel computing into realities. Note that only some snap-
shots of typical applications are discussed here, we en-
courage the reader to explore the citations to get more
detail.



670

5.1 Computational Fluid Dynamics (CFD)

The most traditional application is the field of com-
putational fluid dynamics/®. The motion of a fluid
is governed by the well-known Navier-Stokes equations.
On a series of discrete zones called by mesh covering
the computational domain, these equations are solved
by the computational methods of finite difference, fi-
nite volume and finite elements®!!. Methods for mesh
generation!®?! solvers for the sparse nonlinear or lin-
ear systems of equations!®*®4, and programming tech-
niques for the managements of software complexities are
the most basically enabling techniques for the success
of these computational methods. With respect to the
requirements of higher resolution and higher fidelity for
numerical simulations, terascale parallel computing is an
essential path.

Computation Method of CFD. Once parallel comput-
ing is applied to the CFD, the traditional computational
methods can be directly translated with little efforts pro-
vided that efficient parallel algorithms are designed and
are implemented for their enabling techniques. Firstly,
the mesh generated in advance should be partitioned
into subdomains distributed to each processor and suit-
able information should be maintained for processor’s
boundaries, or the mesh is generated in parallel syn-
chronizing the numerical simulation. Nevertheless, work-
loads should be balanced for each processor not only
in the beginning but also in the proceeding of paral-
lel simulation!®®!. Secondly, robust and scalable solvers
should be designed towards solving the sparse system of
equations with thousands of millions of unknowns aris-
ing from the implicit discretization of partial differen-
tial equations governing fluids. Thirdly, further software
techniques should be considered for data structure com-
plexities and programming for parallel implementations
on thousands of processors and parallel visualization on
terascale data set.

Partitioning Methods. The data dependencies among
zones of a mesh and the workload of each zone can usu-
ally be accurately depicted by an undirected graph where
each node represents a zone and each edge represents
two zones connected depending on each other. The mul-
tilevel strategy is most efficient to partition a mesh for
hundreds or thousands of processorsl®®!. It can often
partition a graph into subgraphs with a small number of
cut-edges and uniformed workloads for each subgraph.
However, this method always introduces larger commu-
nications for load redistribution especially in the case of
parallel adaptive computing where mesh is dynamically
refined or coarsened towards capturing the physical in-
terests locally!®”l. Partitioning methods based on space
filling curves!®®! are good substitutions for less distribu-
tion overheads. Therefore, one can use the graph par-
titioning method in the beginning of a parallel simula-
tion for good load distribution, but should use a cheaper
partitioning method such as multilevel averaging weight-
ing method®% or space filling curves method!®!! to dy-
namically adjust the workloads during the proceeding of

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

parallel simulation.

Parallel Solver. After the mesh is partitioned, the
well-known BSP model can be used to describe the data
flow of parallel implementations of the computational
methods of CFD[®2. Therefore, parallel programming
techniques mentioned in previous section should be taken
into consideration towards running the code more effi-
ciently. Global synchronizations should be suppressed
especially while using hundreds or thousands of proces-
SOTS.

[63] is often the most ro-

Jacobi-free Newton method
bust and efficient parallel solver for the nonlinear sparse
system of partial differential equations provided that a
suitable solution is given approximately before iterations.
However, the approximate solution resulted from the last
time step are usually efficient for the unsteady fluids.
Preconditioned Krylov subspace iterative solver(®¥ is the
most suitable solver for the linear system resulted from
the Newton linearization though its global reductions for
inner products of vector are really challenges for hun-
dreds or thousands of processors. Suitable decision of
preconditioner is very important for the convergence of
Krylov iterations. Usually, BILUPBY is efficient for small
numbers of unknowns and processors. Multigrid meth-
ods and their variations(®¥ are essential for larger num-
bers of unknowns and processors especially for the ra-
diation driven hydrodynamics!®®!. Hypre is the state-of-
the-art library of high performance preconditioners!6!.

Reusable Software. The reuse of parallel software is
also very important for the development of CFD in a
long term. PETSc67!, UGI®] and SAMRAII®? are good
examples to show the software frameworks for the sim-
plifications of the parallel programming and codes de-
velopment on single level mesh, adaptive unstructured
mesh, and adaptive structured mesh respectively.

5.2 Particle Transportation

The field of particle transport is another type of ap-
plication requiring parallel computing!”!. Different from
the field of fluid dynamics, it concerns with the dis-
cretization in seven dimensions such as the time, space
and velocity, etc. So, it requires more challenging com-
putations than CFD. Both the Monte Carlo method and
the discrete coordinate method are efficient for solution
of such equations. The parallel implementation for the
Monte Carlo simulation is trivial. However, the paral-
lel implementations for the discrete coordinate methods
are not easy because neighboring zones depend on each
other along the direction of particle flux swept. In the
case of deformed structured grid or unstructured grid,
this directed data dependencies will challenge the paral-
lel algorithms. In fact, such dependencies can be accu-
rately depicted by the DAG (Directed Acyclic Graph).
So, the parallel algorithm based on the DAG is also suit-
able for the parallel implementations of discrete coordi-
nate method. Many works address such problems(™72,
work in [73] generalizes these ideas to be suitable for



Guo-Liang Chen et al.: Study on Paralle]l Computing

more general cases.

5.3 Other Applications

Environment and Energy. The numerical simulations
in many other fields are also typically based on the dis-
crete mesh. These fields include environment and energy,
ocean modeling, earthquakes, cosmological structure for-
mation, radiation astrophysics, electromagnetics, and so
on. They require the capabilities of tens of TFLOPS
for parallel computers. The book[”¥ surveys the impor-
tant developments in these fields. The essential enabling
techniques for these fields are also similar as that for the
CFD and particle transport.

Chemistry. The computational chemistry has a long
history and spans a broad range of computational meth-
ods. NWChem!™! is the well-known parallel software in-
cluding many of these methods such as Hartree-Fock or
self-consistent field, density functional theory, molecular
dynamics, perturbation theory, coupled theory, and so
on. However, the enabling techniques for these methods
are different from that mentioned above because they
should support irregular data references globally. The
parallel computing model of BSP or DAG mentioned
above is no longer useful. Fortunately, Global Array
(GA) programming model78! supports such data refer-
ences well. NWChem is a successful application using
GA.

Biology. The discipline of biology is one of the state-
of-art applications requiring parallel computing. Many
of the new enabling techniques are underdeveloped. Part
of these work uses molecular dynamics method having
the similar communicational characteristics as stated in
NWChem. We do not discuss these applications here
because, currently, such applications are typically the
data intensive applications which have no special require-
ments on communications with respect to the traditional
applications.

With the rapid developments of parallel computers,
parallel computing becomes more and more successful in
the numerical simulations using thousands of processors.
The excellent results on applications and enabling tech-
niques are showed in the proceedings of supercomputing
conference in each yearl”".

6 Conclusions

This paper provides a broad briefly look at the state
of parallel computing in hardware platform, theoretical
base, software support and some parallel applications.
We argue that parallel computing research should form
an integrated methodology of “architecture — algorithm
— programming — application”. Only in this way, par-
allel computing research becomes continuous develop-
ment and more realistic. In the following, we briefly
anticipate to the future of parallel computing.

Parallel Computer. Various parallel computer archi-
tectures will be coexisted. However, the future computa-
tional hardware platform will consist of multiple parallel

671

systems with different performance, size and OS etc. The
main difficulty of the heterogeneous hardware environ-
ments will increase complexity for both system software
and application software!”®. Since the high performance
parallel computer has thousands of processors. The is-
sues of fault tolerancel™ and energy-consume/®” must
be considered for the usage of the real systems. The de-
velopment of modern processor technologies and many
applications on the many-core architecture are also stud-

ied by many researchers/81:82]

Parallel Algorithm. The research on parallel algo-
rithms will be emphasized more realistic and focused on
solving problems from the applied domain. The theo-
retical work on parallel algorithm will be complemented
by extensive experimentation which can guide us how
to build parallel computer, how to make parallel algo-
rithm more efficient in practice, how to model parallel
computer more accurately and how to express parallel
algorithm more intuitive using parallel programming lan-
guages. Commodity PC with multiple processors is more
and more common on the market. We can expect the use
of parallel algorithm to increase dramatically®!.

Parallel Programming. The parallel programmer re-
quires to provide a unified parallel programming model,
language and tools that can be suitable for various dis-
tributed and shared memory parallel architectures, can
easily express the complex algorithm, can hide imple-
mentation details, can support fast and intuitive map-
ping from parallel algorithm to parallel program, can
help programmers to debug and correct errors to opti-
mize performance of application software etc.[83]

Parallel Software. It is very important to make ap-
plication software reusable portable and scalable during
developing software. Software should be reusable across
different platforms. Software should be scalable as the
number of processors increased providing significant per-
formance maintaining reasonable efficiency. We should
say that good commercial software is rare at the high
end. The scientific community is generally conservative,
community acceptance is essential to the success of soft-
ware. Software has always followed hardware in the past
years. However, this relationship will be reversed moving

toward software-centric in parallel computing[7.

New Applications. Many socially relevant applica-
tions will increasingly share the market space with tradi-
tional computation applications. These new applications
deal with massive data processing. Data, rather than
computation, will be transformational elements. These
data will be of varying format, type, quality and over-

whelming to currently available I/O systems!™l,

Non-Traditional Computation Modes. Neuro-com-
puting, nature inspired computing, molecule computing
and quantum computing etc. are with inherent and mas-
It will be expected to solve some in-

tractable problems using traditional computation model.

sive parallelism.

In summary, there are some serious problems in the
parallel computing. Firstly, the development of high per-
formance hardware is faster than software. It is very



672

difficult for researchers of parallel algorithms and soft-
ware to use thousands upon thousands of processors in
the parallel computer. Secondly, high performance ap-
plication is still weak. Most of the applications of high
performance computing are in low level. High-end paral-
lel software and killer application are still rare. At last,
the education of high performance computing in China
is not widespread. Many graduates of some universities
know little about parallel computing. With the develop-
ment of high performance computing in China, the gap
between the need of professional and the lack of current
education will be much greater. So right now, it is very
necessary to provide the course of parallel computing for
students with major of computation science in more uni-
versities.

Acknowledgments We would like to thank the
anonymous referees for their valuable suggestions and
comments to improve the presentation of this paper.

References

[1] Chen G. Parallel Algorithm of Sorting and Selection. Univer-
sity of Science and Technology of China Press, 1990.

[2] Chen G, Chen L. Computational Theory and Parallel Algo-
rithms of VLSI. Univ. Science and Technology of China Press,
1991.

[3] Tang C et al. Parallel Graph Algorithm. University of Science
and Technology of China Press, 1991.

[4] Chen G. Parallel Computing — Architecture, Algorithm, Pro-
gramming. 2nd Edition, Higher Education Press, 2003.

[5] Chen G, Wu J et al. Parallel Computer Architectures. Higher
Education Press, 2002.

[6] Chen G. Design and Analysis of Parallel Algorithms. 2nd Edi-
tion, Higher Education Press, 2002.

[7] Chen G, An H et al.
Education Press, 2003.

[8] Blelloch G E, Maggs B M. Parallel algorithms. ACM Comput-
ing Surveys, 1996, 28(1): 51-54.

[9] Fortune S, Wyllie J C. Parallelism in random access machines.
In Conference Record of the 10th Annual ACM Symp. Theory
of Computing, San Diego, California, 1978, pp.114-118.

[10] Goldschlager L M. A universial interconnection pattern for par-
allel computers. J. the ACM, 1982, 29(4): 1073-1086.

[11] Cole R, Zajicek O. APRAM: Incorporating asynchrony into
the PRAM model. In Proc. 1st Annual ACM Symp. Parallel
Algorithms and Architectures, Santa Fe, New Mexico, 1989,
pp-158-168.

[12] Gibbons P, Matias Y, Ramachandran V. The QRQW PRAM:
Accounting for contention in parallel algorithms. In Proc. the
SPAA’9, Cape May, New Jersey, 1994, pp.638-648.

[13] Aggarwal A, Chandra A, Snir M. On communication latencies
in PRAM computations. In Proc. SPAA’89, Santa Fe, New
Mexico, 1989, pp.11-21.

[14] Valiant L. A bridging model for parallel computation. Com-
munications of the ACM, 1990, 33: 103-111.

[15] Culler D, Karp R, Patterson D et al. LogP: Towards a realis-
tic model of parallel computation. In Proc. ASPLOS IV, New
York, 1993, pp.1-12.

[16] Aggarwal A, ALpern B, Chandra A, Snir M. A model for hi-
erarchical memory. In Proc. the 19th Annual ACM Symp.
Theory of Computing, Chicago, Illinois, USA, 1987, pp.305—
314.

[17] Aggarwal A, ALpern B, Chandra A, Snir M. Hierarchical mem-
ory with block transfer. In Proc. of the 28th Annual IEEE
Symp. Foundations of Computer Science, Los Angeles, CA,
1987, pp.204-216.

Parallel Algorithms Practice. Higher

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

[18] Alpern B, Carter L, Feig E, Selker T. The uniform memory
hierarchy model of computation. Algorithmica, 1993.

[19] Vitter J, Shriver E. Algorithms for parallel memory II: Hier-
archical multilevel memories. Technical Reports, CS—1993-02,
Department of Computer Science, Duke University, 1993.

[20] Li Z, Mills P H, Reif J H. Models and resource metrics for
parallel and distributed computation. In the 28th Int. Conf.
System Sciences (HICSS’95), Hawaii, USA, 1995, pp.51-61.

[21] Zhang Y. Performance optimizations on parallel numerical
software package and study on memory complexity [Disser-
tation]. Institute of Software, CAS, 2000.

[22] Zhang Y. DRAM(h): A parallel computation model for high
performance numerical computing. Chinese Journal of Com-
puters, 2003, 12(26): 1660-1670.

[23] Zhang Y, Sun J, Tang Z, Chi X. Memory complexity in high
performance computing. In Proc. the 3rd Int. Conf. High
Performance Computing in Asia-Pacific Region, Singapore,
1998, pp.142-151.

[24] Cameron K, Sun X H. Quantifying locality effect in data access
delay: Memory log P. In Proc. the 2003 IEEE Int. Parallel
and Distributed Processing Symp., Nice, France, 2003, pp.212—
219.

[25] Gerasoulis A, Yang T. On the granularity and clustering of
directed acyclic task graphs. IEEE Trans. Parallel and Dis-
tributed Systems, 1993, 4(6): 686—701.

[26] Shirazi B A, Hurson A, Kavi K. Scheduling and Load Bal-
ancing in Parallel and Distributed Systems. IEEE Computer
Science Press, 1995.

[27] Kwok Y, Ahmed I. Dynamic critical-path scheduling: An ef-
fective technique for allocating task graph to multiprocessors.
IEEE Trans. Parallel and Distributed Systems, 1996, 7: 506—
521.

[28] Topcuoglu H, Hariri S, Min-You W. Performance-effective and
low-complexity task scheduling for heterogeneous computing.
IEEE Trans. Parallel and Distributed Systems, 2002, 13(3):
260-274.

[29] Amdahl G M. Validity of the single-processor approach to
achieving large scale computing capabilities. In AFIPS Con-
ference Proc., Atlantic City, New Jersey, 1967, pp.483—485.

[30] Gustafson J L. Revaluating Amdahl’s law. Communications
of the ACM, 1987, 31: 532-533.

[31] Grama A Y, Gupta A, Kumar V. Isoefficiency: Measuring the
scalability of parallel algorithms and architectures. IEEE Par-
allel and Distributed Technology, 1993: 1(3), 12-21.

[32] Sun X, Rover D. Scalability of parallel algorithm-machine com-
binations. IEEE Trans. Parallel and Distributed System,
1994, 5(6): 599-613.

[33] Zhang X, Yan Y, He K. Latency metric: An experimental
method for measuring and evaluating parallel program and
architecture scalability. Journal of Parallel and Distributed
Computing, 1994, 22(3): 392—410.

[34] Quinn M J. Parallel Programming in C with MPI and
OpenMP. McGraw Hill, 2004.

[35] http://www.llnl.gov/computing/tutorials/parallel_ comp/

[36] Yao Z, Zheng Q, Chen G. GOOMPI: A generic object oriented
message passing interface. In Proc. NPC, 2004, pp.261-271.

[37] http://www.vcpc.univie.ac.at/information/mirror/HPFF/.

[38] http://www-unix.mcs.anl.gov/mpi/.

[39] http://www-unix.mcs.anl.gov/mpi/mpich/.

[40] http://www.lam-mpi.org/.

[41] http://www.co-array.org/.

[42] http://upc.lbl.gov/.

[43] http://www.mmm.ucar.edu/mm5/.

[44] http://www.wrf-model.org/.

[45] http://www.nas.nasa.gov/Software/NPB/.

[46] http://www.netlib.org/linpack/.

[47] http://www.samss.org.cn.

[48] http://www.netlib.org/benchmark/hpl/.

[49] http://icl.cs.utk.edu/hpcc/.

[50] CFD, http://www.cfd-online.com/.

[51] Ferziger J H, Peric M. Computational Methods for Fluid Dy-
namics. Springer-Verlag, 1999.

[52] Thompson J F, Soni B K, Weaherill N P (eds.). Handbook of
Grid Generation. CRC Press, Boca Raton, FL, 1999.



Guo-Liang Chen et al.: Study on Paralle]l Computing

53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Rheinboldt W C. Methods for Solving Systems of Nonlinear
Equations. Second Edition, SIAM, Philadelphia, 1998.

Saad Y. Iterative Methods for Sparse Linear Systems. Second
Edition, STAM, Philadelphia, 2003.

Teresco J D. Hierarchical partitioning and dynamic load bal-
ancing for scientific computation. In PARA’0/ State-of-the-
Art in Scientific Computing, Copenhagen, Denmark, 2004.
Schloegel K, Karypis G, Kumar V. Graph Partitioning for High
Performance Scientific Simulations. Chapter 18, Sourcebook of
Parallel Computing, Dongarra J, Foster I, Fox G et al. (eds.),
New York: Morgan Kaufmann Publishers, 2003.

Meiron D, Deiterding R. Load balancing strategies for parallel
SAMR algorithms. SURF 2005 technical report, Available at
http://scdrm.caltech.edu/publications/cit-asci-tr, 2005.
Sagan H. Space-Filling Curves. New York: Springer-Verlag,
1994.

Mo Z, Zhang J, Cai Q. Dynamic load balancing for short-range
parallel molecular dynamics simulations. Int. J. Computer
Maith., 2002, 79(2): 165-177.

Mo Z, Zhang B. Multilevel averaging weight method for dy-
namic load imbalance problems. Int. J. Computer Math.,
2001, 76(4): 463-477.

Cao X, Mo Z. A new scalable parallel method for molecu-
lar dynamics based on Cell-Block data structure. In Proc.
ISPA2004, Hong Kong, Cao J, Yang L T, Lau F (eds.), Lec-
ture Notes in Computer Science, 2004, 3358: 757-764.
Bisseling R H. Parallel Scientific Computation: A Structured
Approach Using BSP and MPI. Oxford University Press, 2004.
Knoll D A, Keyes D E. Jacobian-free NewtonKrylov methods:
A survey of approaches and applications. Journal of Compu-
tational Physics (JCP), 2004, 193: 357-397.

Trottenberg U, Osterlee C W, Schuller A. Multigrid. Academic
Press, 2001.

Mo Z, Shen L, Wittum G. Parallel adaptive multigrid algo-
rithm for 2-D 3-T diffusion equations. Int. J. Computer
Maith., 2004, 81(3): 361-374.

Falgout R D, Jones J E, Yang U M. The Design and Im-
plementation of Hypre, a Library of Parallel High Perfor-
mance Preconditioners. Chapter in Numerical Solution of
Partial Differential Equations on Parallel Computers, Bruaset
A M, Bjgrstad P, Tveito A (eds.), Springer-Verlag, to ap-
pear. Also available as LLNL Technical Report UCRL-JRNL-
205459, 2004.

Balay S, Groppy W D, Mclnnes L C et al. PETSc 2.0 Users
Manual. Technical Report ANL-95/11, Argonne National Lab-
oratory, Argonne, IL, Mar 2000.

Bastian P, Birken K et al. UG—A flexible software toolbox for
solving partial differential equations. Computation and Visu-
alization in Science, 1997, 1. 27-40.

Wissink A M, Hornung R D, Kohn S R et al. Large scale par-
allel structured AMR calculations using the SAMRAI frame-
work. In Proc. High-Performance Computing and Networking
Conf. (SC’2001), Denver, 2001, pp.22-28.

Lewis E E, Miller W F. Computational Methods of Neutron
Transport. John Wiley & Sons Publisher, 1984.

Mo Z, Fu L, Parallel flux sweep algorithm for neutron trans-
port on unstructured grid. J. Supercomputing, 2004, 30(1):
5-17.

Plimpton S, Hendrickson B, Burns S et al. Parallel algorithms
for radiation transport on unstructured grids. In Proc. Super-
Computing’2000, Dallas, Nov. 4-10, 2000, pp.25-31.

Mo Z, Zhang A, Cao X. Towards a parallel framework of
grid-based numerical algorithms on DAGs. In Proc. 18th
Int. Symp. Parallel and Distributed Computing (IPDPS’06),
Greece, April 25-29, 2006, pp.416—424.

Dongarra J, Foster I, Fox G et al. (eds.). Sourcebook of Par-
allel Computing. Morgan Kaufmann Publishers, New York,
2003.

Bernholdt D E. Parallel computational chemistry: An overview
of NWChem. Chapter 7 of Sourcebook of Parallel Computing,
Dongarra J, Foster I, Fox G et al. (eds.), New York: Morgan
Kaufmann Publishers, 2003.

[76]

[77]
(78]

[79]

(80]

(81]

(82]

(83]

673

Nieplocha J, Ju J, Krishnan M K et al. The global arrays
user’s manual. Pacific Northwest National Laboratory Techni-
cal Report No.13130, October 1, 2002.
http:://www.supercomputing.org/.

Jordan H F, Alaghband G, Jordan H E. Fundamentals of Par-
allel Computing. Prentice Hall. 2003.

Chakravorty S, Kale L V. A fault tolerant protocol for mas-
sively parallel systems. In Proc. 18th International Paral-
lel and Distributed Processing Symposium (IPDPS), Santa Fe,
New Mexico, 2004, pp.212-219.

Stou Q F. Algorithms minimizing peak energy on mesh-
connected systems. In Proc. 18th ACM Symp. Parallelism in
Algorithms and Architectures (SPAA), Cambridge, MA, USA,
2006, pp.331-334.

Shan J, Chen Y, Diao Q et al. Parallel information extrac-
tion on shared memory multi-processor system. In Proc. Int.
Conf. Parallel Processing (ICPP), Columbus, Ohio, USA,
2006, pp.215-224.

So B, Ghuloum A, Wu Y. Optimizing data parallel operations
on many-core platforms. First Workshop on Software Tools
for Multi-Core Systems (STMCS), Manhattan, NY, 2006,
pp.66-70.

Mattson T G, Sanders B A, Massingill B L. Patterns for Par-
allel Programming. Prentice Hall. 2005.

Guo-Liang Chen is a profes-
sor and academician of the Chinese
Academy of Sciences. He works with
Dept. Computer Sci. & Tech., Uni-
versity of Science and Technology of
China. His major research areas in-
clude parallel computing theory and
algorithms.

Guang-Zhong Sun is a lecturer
in the Dept. Computer Sci. & Tech.,
University of Science and Technology
of China (USTC). His research inter-
ests include parallel algorithms and
scheduling theory.

Yun-Quan Zhang is an associate
professor and vice director of the Lab.
of Parallel Computing, Institute of
Software, CAS. His research interests
include performance evaluation, paral-
lel software design and parallel compu-
tational model.

Ze-Yao Mo is a professor. He has
been doing researches on parallel al-
gorithms and parallel application soft-
ware for larger scale scientific and en-
gineering numerical simulations.



