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Abstract An increasing number of structural homology search tools, mostly based on profile stochastic context-free
grammars (SCFGs) have been recently developed for the non-coding RNA gene identification. SCFGs can include statistical
biases that often occur in RNA sequences, necessary to profile specific RNA structures for structural homology search. In
this paper, a succinct stochastic grammar model is introduced for RNA that has competitive search effectiveness. More
importantly, the profiling model can be easily extended to include pseudoknots, structures that are beyond the capability
of profile SCFGs. In addition, the model allows heuristics to be exploited, resulting in a significant speed-up for the CYK

algorithm-based search.
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1 Introduction

Stochastic context-free grammars (SCFGs), a natu-
ral extension from the hidden Markov model (HMM),
are suitable for modeling stem-loops in RNA secondary
structure2l.  In particular, context-free production
rules are capable of modeling the nested base pairs
that may involve nucleotides separated by a number
of nucleotides in an RNA sequence and subsequently,
conformations formed by parallel stems. Compared to
Tinico’s thermodynamic modell3l, SCFGs can more eas-
ily include statistical biases that often occur in RNA se-
quences, making it suitable for them to profile specific
RNA structures in structural homology search. Indeed,
there have been a number of structure search tools, for
example, tRNAscan-SE and Rsearch!*®! that were de-
veloped based on the Covariance Model (CM)[?, a spe-
cial type of SCFG. A CM provides a position-specific
structural template and can be very effective in search-
ing. The application of these search tools has demon-
strated the successful role of grammar-based structure
search in non-coding RNA gene findingl®~8], especially
when the secondary structure is the most conserved
characteristic of functional RNAsl.

In order to search for more complex RNA structures
at a larger (e.g., genome) scale, a number of important
issues need to be fully addressed. In particular, position-
specific profiling with SCFGs usually yields models large
in size, making the profiling a tedious, challenging task.
Smaller grammar models would also make it feasible to
combine stochastic information from other sources (e.g.,
phylogeny)[lovn]. Moreover, a search based on the CYK
alignment algorithm runs in time O(mnw?) for size m
of the model and size w of the window scanning through
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the target sequence of length n!'2l. Hence, the search
could become very slow even for moderately large pro-
files or long target sequences (e.g., genomes)[13]. In addi-
tion, SCFGs are incapable of describing pseudoknotted
structures*!2:14 which have been frequently observed
in functional RNAs!%11:15]  Therefore it is desirable to
develop stochastic grammar models that can facilitate
profiling, speed up the search, and include pseudoknots.

The design of a stochastic grammar model needs
to address two different but related issues: model
toplogy (i-e., production rules) and parameter estima-
tion. In spite of the success that has been achieved
by SCFGs[1:11:16:17 " there has been limited develop-
ment of automated probability parameter estimation af-
ter the grammar (or an initial grammar) topology is
devised™?. A further difficulty is that automatically
learning the topology of an SCFG model from training
data may lead to the local maxima, as in the case of
learning HMMs, by allowing all possible transitions/'2!.
Thus successful SCFGs are constructed mainly based
on the immediate problem of interest. For example,
the CM12] describes alignment probability with des-
ignated position (and position pair)-specific production
rules of match, insertion, and deletion. More recently,
small and simple SCFGs have also been investigated!'?!
which can combine other stochastically expressible in-
formation from additional sources such as evolutionary
models of comparative RNA sequence analysis.

In this paper, we introduce a new method to profile
RNA secondary structure with succinct stochastic gram-
The method is based on a region-specific view
of RNA secondary structure and consequently leads to
a simple design for grammar topology. In particular,
RNA secondary structure is considered to be a list of
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regions that are either non-structural loops or pairing
nucleotides that form stems. Each region (or a pair of
regions forming a stem) is described with a designated
set of a few rules, including a direct-recursion rule. The
number of production rules in a succinct grammar thus
only depends on the number of regions in the struc-
ture, a significantly reduced number compared to that
of the CM. In order to avoid the possible loss of crucial
position-specific information, the succinct model also al-
lows the presence of position-specific rules to account for
highly conserved sequence regions.

We have conducted theoretical and experimental
analyses on the effectiveness of the new model. In spite
of the geometric length penalty imposed by the direct-
recursion rules, with very few exceptions the optimal
structure obtained with the succinct model remains the
same as the optimal structure obtained with the CM.
When applied to searching for tRNAs and 5S rRNAs,
both models achieve high sensitivity and specificity. The
new model can improve its effectiveness even closer to
that of the CM when the alignment is scored with a new
technique the succinct model enables.

The simplicity of the succinct grammar method also
Based on the
grammatical techniques developed by Cai et al.'®! we
are able to profile pseudoknotted structures with suc-
cinct stochastic grammars that include special nonter-
minals as the description of crossing stems. The pro-
filing has been tested on two pseudoknots in tmRNAs.
Our experiments have consistently shown that Z-scores
of the pseudoknots exceed those of the random se-
quences with the same base composition, demonstrat-
ing the great potential of the succinct model in RNA
pseudoknot homology search. In order to evaluate the
ability of the model to recognize the profiled pseudo-
knots on real biological sequences, we performed ex-
periments to search for the pseudoknots on the 3’UTR
region in the genomes of tobacco mosaic virus and re-
lated viruses. The results demonstrate that the succinct
profiling model can correctly identify most of the struc-

makes it easy to include pseudoknots.

tural signals on genomes where the presence of pseudo-
knots has been experimentally verified!'?! and, in addi-
tion, provide reasonable predictions of their locations on
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other genomes. The succinct model allows heuristics to
be exploited to speed up the alignment and search. In
particular, stochastic productions modeling a region pe-
nalize alignments where the length of the region is larger
than the expected value. The possible lengths of a region
can therefore be restricted to a certain range accord-
ing to a quality control parameter determined by the
penalty function. Such restrictions make it possible to
avoid the computation of useless probabilities in the full
dynamic programming-based alignment. Experimental
results on tRNAs have shown that, without adversely
affecting the quality of the alignment, the heuristics can
increase the speed of the CYK algorithm several fold
even under the requirement of high quality alignment.

2 Succinct Profile SCFGs

Based on the SCFGI[!'?! developed for profiling RNA
sequences, we propose a succinct stochastic context free
grammar (SSCFG) to model RNA secondary structure
from the perspective of regions (Durbin et al.'2 pro-
vides a detailed survey of SCFG). RNA secondary struc-
ture consists of stems and loops. A loop is a non-
structural subsequence of nucleotides. A stem is a set
of stacked base pairs, formed by two (possibly distant)
subsequences which we call base pairing regions. The
region between the two halves of a stem is called the
span of the stem. For some stems the span is simply
a (hairpin) loop while for others it can fold into more
complex structure, for example a secondary structure
that contains other stems and loops.

As shown in Fig.1(a), we define the RNA secondary
structure as a list of base region units: (r1,72,...,7m),
where r; is either a base pairing region (i.e., a half of a
stem) or a non-structural loop. A base pairing region
forms a stem with another base pairing region; neither of
them can contribute to additional stems. In particular,
given a list of regions (r;,riy1,...,7;), ¢ < J, the sec-
ondary structure S(i,j) (without pseudoknots) defined
by the list can be interpreted as follows, recursively from
5" (left) to 3’ (right).

(a) if 2 = j, then r; is a loop;

(b) if i < j and 7; is a loop, then S(%,j) consists of two

T Tm
S(k+1,7)

5 T T 3
1 Ti 1 X1 k-1 Tk Tj T'm
Sik Xk41,57
Xij
(b)

Fig.1. Modeling RNA secondary structure without pseudoknots using region-based SCFG. (a) An RNA sequence may contain a list

of base region units: (r1,72,..

.,7m); S(i,7) denotes the secondary structure formed on the region list (r;,7i4+1,...

,7;). (b) Regions

can be modeled with nonterminals and productions in SCFG; a deriving procedure starting with X; ; can generate the subsequence

between regions i and j; S; ; represents the subsequence formed by the pairing regions i and k of a stem and its span; unstructured

loop region 7; is derived from the nonterminal L; with a direct-recursion production.
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substructures: loop r;, followed by the secondary structure
S(i+1,j) defined by list (ri41,-..,7;);

(c) if r; pairs with 7, to form a stem, for some k,
t < k < j, then S(z,7) consists of three substructures: the
stem formed by regions r; and 7, it spans S(¢ + 1,k — 1)
defined by list (7i41,...,7%—1), and the secondary structure
S(k+1,j) defined by list (rg41,...,7;).

Therefore, a consensus secondary structure defined
by list (ry,72,...,7m) can be profiled with stochastic
context-free grammar productions. Fig.1(b) shows the
nonterminals used in a region-based profiling SCFG.
Specifically, we let X; ; start the derivation where the
structure S(¢,7) in the list (r;,..., ;) can be generated
and L; represents loop region r;; nonterminal S; ; mod-
els the stem formed between base pairing regions r; and
r; with span S(i+1,k—1). According to definitions (a),
(b) and (c), the structure (r;,...,r;) can be profiled as:

1) Xi7j — L“

2) Xiﬂ' — LiXH—Lj |Xi+1,ja Ll — ILZ | T

3) Xij = SipXeaiy | Xipre—1 Xk, Xe1,
Sik = xlipy, Iig — o1 py | Xip1 p—1.

Note that the profile can avoid overfitting by allow-
ing the absence of substructures (which is achieved with
the “optional” notation “|”). In particular, in 2), loop
L; may or may not appear. Also in 3), the stem S;
may not appear. Furthermore, the span X;; —1 is in-
dependent of the presence of S; ; and may be absent.

For productions in 2), loop L; is profiled with a
direct-recursion production to allow the alignment of
any subsequence with a length greater than one. Sym-
bol x represents the four normal nucleotides. Note that
alternatively, productions in 2) can be replaced with
productions X, ; — L;X;y1; and L; — L;|0, where
() represents the empty object, such that the loop may
be absent from the secondary structure obtained in some
alignments. In 3) stem S; ;, is profiled to contain the first
base pair and the rest of the stem I, that is profiled
with a recursion rule. The derivation of the stem .S, ;.
ends with the presence of nonterminal X;; —1. The
pair ¢ — y represents all the 16 possible base pairs (or
24 pairs including the pairings between bases and gap
A to allow for left and right bulges).

The probability parameters for these productions
can be estimated from a set of training set sequences
that have been aligned to the consensus structure. In
general, approaches to estimating production probabili-
ties need to consider two possible types of productions.
First, the probabilities for productions that have X; ;
on the left hand side in 2) can be estimated by count-
ing the frequency of loop L; in the training sequences.
Additionally, to account for the different percentages of
four normal nucleotides in the loop base composition,
we compute the frequency of each normal nucleotide to
appear in the loop and assign the value to the produc-
tion where the nucleotide is generated. The probabilities
associated with the productions in 3) can be estimated
similarly from the frequency of stem S;j, and that of
the span X1 1 if S; 1 does not appear. Moreover, the
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probability for each production that generates a given
base pair is the relative frequency of the base pair in
the stem. Pseudocounts are included in order to pre-
vent overfitting of the model to the training sequences.

Second, the statistics for lengths of the recursively
defined substructures (i.e., loops and stems) are consid-
ered to follow the geometric distribution. The probabil-
ity for recursion rule L; — zL; thus must be multiplied
by an additional factor of 3/(5+1), where £ is the length
mean of the subsequences in all the training sequences
aligned to the loop L;. Similarly, an additional factor of
(a—1)/a must be incorporated into the probabilities for
recursion rules in the format of I; ;, — «I; 1y, where o is
the length mean of the subsequences in all the training
sequences aligned to the stem S; j.

We have shown that imposing the geometric distri-
bution on stems and loops would not cause anomalies in
the formation of a stable stem when the stem length «
and the lengths of its two neighboring loops 81, B2 sat-
isfy one of the properties as follows. The details of the
proof are shown in Appendix A.

1) max {f1, 52} < (o — 1)(1+ W14 ﬁ),

2) /1 > t(a—1) and B < a — 1+ ;%, for any

t>144/1+ 5.

[A B b C ¢ E e D  d a]

Fig.2. Diagram of the base pairing regions of tRNA molecules.
Upper case letters indicate base regions that pair with the cor-
responding lower case letters. Stem F-e appears only in some

sequences.

However, the actual length distribution of stems and
loops in the training sequences may not be geometric.
The geometric distribution tends to favor shorter re-
gions, the above properties only show that it is suitable
for modeling loops and stems in sequences with stable
secondary structure. For sequences that contain many
noncanonical base pairs in their stems, the geometric
distribution may fail to identify the structural signals
carried in stems when they are surrounded by a ran-
dom background. Alternative distributions should be
considered to alleviate the preference of shorter regions
resulting from the geometric distribution. Hence, we
have developed a more appropriate distribution to de-
scribe the statistics of the lengths of loops and stems.
In particular, let S be a substructure (e.g., a stem) of
length mean « defined with recursion rules. We would
like motifs of length close to a to be penalized less than
those with a larger deviation in length from «. The
penalty is thus a function in |l — «| for the motif of
length [. The function can simply be geometric or a
more sophisticated one.

The computation of the new alignment penalty
would be difficult to do with the full dynamic program-
ming used by the CYK algorithm. The algorithm must
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be slightly modified to incorporate the more centralized
distribution. Assume the substructure stem S (without
bulges) is defined with rules:

X—=S8Y, S—ouazly, I—alyT (1)
where the recursion rule I — zly is used to generate
base pairs other than the first pair in the stem S, and T’
is the span of the stem. Let f(I, ) be the penalty func-
tion. The probability of aligning motif s[i..j] to stem S
can be computed with the formula:

P(S,i,5) = p(s[il, sl P(L,i + 1,5 — 1)
f(D(I,i+1,j—1)+1,a) (2)

where P(I,i+1,j—1), the probability of admitting the
stem substructure excluding the first pair is computed
with:

P(I,i+ 1,7 —1) = max{p(s[i + 1], s[j — 1])x
P(I,i+2,7—2),P(T,i+1,57—1)}
(3)

and integer function D(I,i+1,j — 1), the length of seg-
ment in s[i 4+ 1..j — 1] aligned to the stem S (except the
first base pair) is computed along with (3) as:

D(I,i+1,7-1)=14+D(1,i+2,j—2) or
D(I,i+1,j-1)=0 (4)

3 Structural Homology Search and Sensitivity
Improvement

We now evaluate the performance of the succinct
model in structural homology search based on the exper-
iments conducted on tRNAs and 5S rRNAs. For tRNA
search, 43 Homo sapiens tRNA sequences (from 70 to
90 nucleotides) were selected as the training data from
http://rna.wustl.edu/GtRDB/Hs/Hsalign.html. All pairs
of the selected sequences had less than 80% identity
value. A pseudocount value 1.0 was used for the model
construction. Two models were constructed. The CM
for tRNAs had 210 nonterminals, 9 bifurcation rules,
and 420 rules in total. The target sequence was a ran-
dom background sequence with 10° nucleotides where 27
Drosphila melanogaster tRNA sequences (selected from

Table 1.

http://rna.wustl.edu/GtRDB/Dm/Dmalign.html) were in-
serted. The random background was generated with
four different types of base compositions. The scoring
scheme was log-odds, in other words, the logarithm of
the ratio between the probability of the alignment on
the structural model and that of the null model. In
addition, in order to study the possible effect of the
length distribution on the searching accuracy of the
model, we performed experiments on both the geometric
and centralized length penalty functions. Fig.2 provides
a schematic description of the secondary structure in
tRNA molecules.

Table 1 compares the search effectiveness and effi-
ciency achieved by the CM and those by the succinct
model that uses the geometric length penalty function.
It shows that while the CM is almost perfect in accuracy,
with values of sensitivity and specificity larger than 95%
in all experiments, the succinct model also achieves val-
ues of more than 80% in sensitivity and specificity. It is
interesting to note that, for both models, improvement
in accuracy is observed when the base composition of
the real structures differs to a larger extent from that
of their background. This property could be utilized
in identifying noncoding RNA genes as previous work!®!
has shown that the difference in base composition be-
tween RNA genes and other parts of the genomes can
be significant in some cases.

In addition, Table 1 shows the results of similar ex-
periments using 5S rRNA sequences with the succinct
model and the CM respectively. The succinct model
was trained with a set of training sequences downloaded
from the Rfam!??! database. With a pair-wise identity
value less than 80%, the training set is comprised of 30
sequences with each of them containing 115 to 130 nu-
cleotides. The resulting CM for 5S rRNAs contained 162
nonterminals, 12 bifurcation rules and 122 rules in total,
while the succinct model had 36 nonterminals, 12 bifur-
cation rules, and 54 rules in total. The target sequence
was randomly generated with a length of 10° nucleotides
into which was inserted 35 5S rRNAs different from the
training sequences.

We examined the effectiveness discrepancy (espe-
cially in the sensitivity) between the succinct model and
the CM. Part of the problem was the use of the sim-
ple geometric distribution, in general, the search is per-
formed with the CYK algorithm applied to the window

Performance Comparison Between the Succinct SCFG (SSCFG) and the CM in tRNA and 58 rRNA Structure

Homology Search (The base compositions for the target sequences were obtained from the base frequencies of the inserted
structures, for type k, 1 < k < 4, with pseudocounts 0.05(1 — k) for A and T, and 0.05(k — 1) for G and C. The target sequence
was of length 10° and the scanning window of size 160. The sensitivity and specificity are in percentage and time in second.)

Base Model tRNA 55 rRNA
composition Sensitivity Specificity Time Sensitivity Specificity Time
C+G=57.0% CM 100 100 9,538 80 100 8,626
SSCFG 81.5 91.7 4,791 74.3 100 6,007
C+G=67.0% CM 96.3 96.1 9,692 91.2 100 8,626
SSCFG 81.5 88.0 4,749 77.1 100 6,019
C+G=T77.0% CM 100 100 9, 586 100 100 8,610
SSCFG 96.3 96.3 4,728 100 100 6,107
C+G=87.0% CM 100 100 9,559 100 100 8,745
SSCFG 100 100 4,643 100 100 6,027
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used to scan across the target sequence. A structure
motif aligned to the profile is considered significant if
its score exceeds the pre-defined threshold. On a sam-
ple sequence (e.g., randomly sampled from the target
sequence and with 5% to 10% of its contents), alignment
scores are computed from all windows and the distribu-
tion of scores can be determined (and is usually assumed
to be Gaussian). A search success must have sufficient
statistical significance, which leads to the definition that
a nonstructured random sequence segment receives a
score higher than the threshold with a probability less
than a small number P (We used P = 0.001 in all ex-
periments). Due to the use of geometric distribution for
lengths of stems and loops in the succinct model, a motif

of length £ aligned to a stem (of length mean «) receives

. k
a penalty score proportional to the amount of ("‘771) .

Therefore, on random sequences that in general do not
carry significant structural signals for stems at their cor-
responding locations, the SSCFG tends to select shorter
sequence segments. Additionally, without the positional
dependent states and probabilities that essentially com-
prise the CM, the SSCFG does not have a mechanism
to penalize sequence segments signficantly shorter than
the training sequences. This results in a larger mean
and a relatively narrower distribution of scores on ran-
dom sequences (data not shown). Moreover, due to the
raised random background in an SSCFG based search,
a structural motif with the profiled secondary structure
would receive a score statistically less signficant than
it is able to achieve on the corresponding CM model,
which may give rise to the lower sensitivity we have
observed in the experiments. We then replaced the geo-
metric distribution with the centralized distribution we
have developed and performed structure search experi-
ments again on the tRNAs and 5S rRNAs using SSCFG.
Table 2 presents the comparison of the searching accu-
racy in terms of sensitivity and specificity between the
two different length distribution functions. The results
show that a centralized distribution provides a more ap-
propriate description on the statistics of region lengths
and thus improves the searching accuracy. In addition,
we expect this centralized distribution to achieve more
significant improvement on secondary structure when a
considerable number of noncanonical base pairs are in-
volved.

4 Profile and Search for Pseudoknot Structures

In this section, we extend the succinct profiling
model to include pseudoknots. Pseudoknotted struc-
tures consist of crossing stems that cannot be modeled
with SCFGs and require a context-sensitive grammar.
Our previous work['8! extended SCFG to include spe-
cial nonterminal symbols for the modeling of crossing
stems. Since the general problem of pseudoknot deter-
mination is computationally intractable/?!!, our method
deals with restricted cases of such structures. A sec-
ondary structure including pseudoknots can also be de-
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fined with a list of base regions (r4,...,7;), i < j. How-
ever, due to the presence of crossing stems, such a list of
base regions may contain a sticky base region that would
pair with another sticky region outside of the structure.
Therefore, there are two types of secondary structures:
with and without a sticky region.

Table 2. Comparison of the Performance of the SSCFG
on tRNA and 558 rRNA Structural Homology Search Us-
ing both the Geometric and Centralized Alignment Penalty
Calculation. The test data are the same as those used in
the experiments to obtain the results in Table 1. SE and SP
are sensitivity and specificity in percentage respectively)

Base tRNA 5S rRNA
composition Geometric Centralized Geometric Centralized
SE SP SE SP SE SP SE SP
C+G=57.0% 81.5 91.7 88.0 923 74.3 100 77.1 100
C+G=67.0% 81.5 88.0 88.0 96.0 77.1 100 85.7 100

C+G=177.0% 96.3 96.3 100 100 100 100 100 100
C+G=87.0% 100 100 100 100 100 100 100 100

As shown in Figs.3(a)-3(d), given a list of base re-
gions (r;,...,7h,...,7;), @ < j, the secondary structure
D(i,j,h) containing sticky region rj, defined by the list
can be interpreted recursively from 5’ (left) to 3’ (right).

(a) If ¢ = h, i.e., 7; is a sticky region, then D(i, 7, h) con-
sists of two substructures: sticky region r;, followed by the
secondary structure S(i + 1, j) defined by list (riy1,...,7;)
(see Section 2) that does not contain a sticky region.

(b) If ¢ < h and r; is a loop, then D(%,j, h) consists of
two substructures: loop r; followed by the secondary struc-
ture D(i + 1,7, h) containing the sticky region 7 defined by
list (Pig1yeeeyThyovyTj);

(c) If r; pairs with 7, to form a stem, for some k,
t < k < h, then D(z,7,h) consists of three substructures:
the stem formed by regions r; and rg, its span S(:+1,k—1)
defined by list (ri41,...,7%—1) that does not contain a sticky
region, and the secondary structure D(k+ 1, j, h) defined by
list (re+1,.. ..,7;) that contains the sticky region r;
and

<y Thy -

(d) If r; pairs with rr to form a stem, for some k,
h < k < j, then D(z,7,h) consists of three substruc-
tures: the stem formed by regions r; and r, its span
D(i 4+ 1,k — 1,h) containing the sticky region rj, defined
by list (ri41,---,7hy-.-,Tk—1), and the secondary structure
S(k 4+ 1,7) not containing a sticky region defined by list
(rk+1, ey Tj).

Given a list of regions (r;,...,7;), the secondary
structure Pk(i,7) including pseudoknots defined by the
list can be interpreted as consisting of three substruc-
tures: secondary structure D(i,k,h) containing the
sticky region 7, secondary structure D(k + 1,7,1) con-
taining the sticky region 7, for h < k < [, and the
crossing stem formed by r;, and r;.

A consensus secondary structure (r1,7s,...,7y) in-
cluding pseudoknots can be profiled with the follow-
ing stochastic grammar. In addition to the nontermi-
nal symbols given in Section 2, let Y; ;5 be the nonter-
minal for secondary structure D(i,7,h) containing the
sticky region ry. Let T;;; be the nonterminal for the
stem defined by base pairing regions r; and r; with span
D(i+ 1,k —1,h). Then in addition to the rules for sec-
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1 Ty | Ti+1 . . Ty m
C e S+ 1, ) ——

S(i,4) >

Ty [Tit1 Th Ty T

———D(i+1,7,h) >

< . >
D(i, 4, h)

(b)

i
S(i+1,k—1)
—— S (i, k) —

D(i, j, h) >

[ =D (i4+1,k—1,h)> <
S(k+1,7

(d)

Fig.3. Modeling secondary structure with pseudoknots using region-based SCFG. (a) i = h, D(i,7, h) contains two substructures: r;
and S(i + 1,j5). (b) ¢ < h, D(i,j,h) contains two substructures: r; and D(i + 1,j,h). (c) r; pairs with r; in a stem, for i < k < j,
D(i,j, h) contains three substructures: the stem formed by r; and ry, S(i 4+ 1,k — 1) and D(k + 1,7, h). (d) r; pairs with 7 in a stem,
for h < k < j, D(i,J, h) contains three substructures: the stem formed by r; and r;, D(i + 1,k — 1,h), and S(k + 1, 7).

ondary structures without pseudoknots given in Section
2, rules for pseudoknots are:
4) Xi; — QiYit1,5; and
5) Xs; = TijnYer1,5,0Yir1,6—1,0Yet1,5,
Tikn — Ji 1,0y
Jik,h = i k0 Y Yit1,6—1,0
where the rules for secondary structures with a sticky
region are:

6) Yijn = QiXit1;

7) Yijn = LiYig1jn;

8) Yi,jn = SikYkt1,5,; and

9) Yijn = Tikn Xpt1,5-

The grammar specifies sticky region r; with special
nonterminal @Q;. As implicitly defined by the rules in 4)
and 5), two such sticky regions, contained in two neigh-
boring substructures, form a (crossing) stem. To define
probability parameters for crossing stems, the following
explicit rules are needed for the pair of nonterminals @y,
Q) to define a crossing stem:

10) ShJ — a:Ith, Ih,l — th71y|(Z)
where () is the empty object. Notice the difference be-
tween the above rules and the rules of 3) in Section 2
for stems.

To evaluate the performance of the succinct gram-
mar model for pseudoknot profiling, we aligned tm-
RNA sequences and random sequences to the pseu-
doknot profile and examined its ability to recog-
nize real sequence structures from randomly shuf-
fled ones. The alignment algorithm was
structed based on the techniques we previously de-
veloped for stochastic grammar-based pseudoknot
structural alignment. From the tmRNA database
(http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html) 85
tmRNAs were downloaded. The tmRNA molecules
have up to 4 pseudoknots in their structure. We mod-
eled pseudoknots 1 and 2, together with the region in

con-

between them (as shown in Fig.3). In the dataset we
used, pseudoknot 1 has an average length of about 30
nucleotide bases, pseudoknot 2 has an average length of
about 150. Not all the pairing regions indicated in Fig.4
are found in all sequences; in particular, in pseudoknot
2, stem L — [ is presented in 60% of the sequences and
stem O — o is presented in only 14% of the sequences.

Pkl Pk2

VAR
K L M N m O o | k n

[\
G H 9 h I J J 3

Fig.4. Diagram of the pairing regions of tmRNA pseudoknots 1
and 2 and the sequence between them. Upper case letters indicate
base sequences that pair with the corresponding lower case letters.
Not all structures are found in all sequences. This substructure
of tmRNA, which contains 150-250 nucleotides, is called Pk1-2.

We constructed a phylogenetic tree of these se-
quences, then used this tree as the basis for dividing
the data set into two, so that the two halves each sam-
pled the evolutionary diversity of the data. Omne half
set was used as a training set to estimate the required
probabilities for the succinct grammar profile. The sec-
ond half set was used as an evalution set. On average, a
sequence in the training set has 68.3% identity with its
closest match in the evaluation set. We compared the
results obtained from a given sequence in the evalua-
tion set with randomly permuted sequences of the same
length and the same base composition. We took the
same tmRNA pseudoknot 1 and 2 sequences used to
test the structural alignment and then randomized the
order of nucleotides in each sequence 50 times. We used
the alignment algorithm to align random sequences to
the profile. A distribution of 50 probability scores was
obtained and the Z-scores were computed for both orig-
inal sequences and random sequences being aligned to
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the pseudoknot profile.

Fig.5 shows the comparison of Z-scores between the
original sequences and the random sequences. It can be
inferred from the Figure that, on average, the structural
signals obtained on real sequences significantly stand out
from the randomized background, which has an invari-
ant Z-score value of around 0.7-0.9. In particular, the
average Z-score for pseudoknot 1 structural alignments
was 2.22, and for pseudoknot 2 the value is 3.75. In a few
cases, the Z-score value of aligning the real sequence to
the model was less than that of the random background
obtained by averaging the Z-scores on the 50 randomly
shuffled sequences. This happened 4 out of 38 times for
pseudoknot 1, and 1 out of 42 times for pseudoknot 2.
(We ascribe this type of error to the geometric penalty
function imposed by recursion rules. The scale of the
errors should be substantially reduced by employing the
centralized distribution introduced in Section 2.) Thus,
although random RNA sequences frequently reveal sug-
gestive stem-loop patterns, in general, a distinct signal
exists in real sequences that contain the profiled pseudo-
knot and methods based on our model are able to detect
this signal.

To test the searching capability of the succinct
stochastic grammar model on real biological data, we
designed experiments that use the model to search the
genomes from tobacco mosaic virus and related viruses
for a domain that folds into a pseudoknot structure
in the 3’'UTR region and consists of five simple pseu-
doknots with each pseudoknot structures containing
around 30 nucleotide bases. We use Pk1-5 to represent
them respectively. Due to the considerable amount of
running time the program needs on long sequences, we
trained the grammar model with the only 5 available se-
quences we have and we divided the pseudoknot struc-
ture into four pieces where each piece contains one or
two simple pseudoknots; the genomes are then searched
for each piece. We look for hits from several of the
sub-structures in the same sequence neighborhood and
consider a real hit as comprised of hits that are from
the results for different pieces and contiguous in loca-
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Fig.5. Structural alignment Z-scores of tmRNA sequences vs.
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tions on the genome. Table 3 shows the results of our
experiments.

To summarize, the algorithm based on the succinct
model successfully identified a complex multiple pseu-
doknot structure in viral genomes at essentially the cor-
rect location; however, some portions of these complex
structures were not found correctly. It can be seen from
Table 3 that the searching algorithm is able to recog-
nize most of the structural signals of the pseudoknot
structures in this particular domain. The Pkl is not
found on genomes of TMVC, TVV and RV at the cor-
responding locations where it is presented in those of
TMVF and TMV. Sequence alignments performed man-
ually also demonstrate that it is difficult to identify Pkl
in the part that contiguously precedes Pk2 and Pk3.
For the genomes of BVQ, CMV and OPV, our results
predict they should have a similar pseudoknot struc-
ture to TMV in their 3'UTR regions. However, in these
genomes, the searching algorithm fails to find Pk4 in
the region between Pk2-3 and Pk5, this may suggest
that the structure on this region has been significantly
changed by mutations or it is the only true negative of
the searching program. In addition, we observed from
the results that the Pkl is not identified on locations
that contiguously precedes Pk2 and Pk3 on the genomes
of BVQ, CMV and OPV. However, for two of them, the
BVQ and OPYV, the program finds a hit on locations
close to Pk2 and Pk3.

5 Speed up the Searching

Table 1 shows the running time discrepancy between
the models CM and SSCFG. Because the number of
bifurcation rules is the same for both models and domi-
nates the running time of the CYK algorithm, the speed-
up can be theoretically derived. In particular, let k& be
the number of bifurcation rules in both models, w be
the window size, and N the length of the target se-
quence. The running time of the CYK-based search is
O(kw?N + (m —k)wN) for a total number of m rules in
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the structural alignment Z-scores of reshuffled sequences. (a) Pkl

structure. (b) Pk2 structure. Z-scores in both plots are sorted in ascending order. It is evident from both plots that most of the real

sequences have structural alignment Z-scores significantly larger than the background. Only a few exceptions are observed.
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Table 3. Searching Results on the Genomes from Tobaco Mosaic Virus (TMV) Family (3'UTR pseudoknot structure
is divided into four pieces with shorter lengths (less than 70 nucleotides each). For each genome, only one set of
hits that are close or contiguous in locations is found. TMV is the Tobaco Mosaic Virus; BVQ is the Beet Virus Q;
CMV is the Cucumber Mottle Virus; OPV is the Obuda Pepper Virus; RV is the Ribgrass Virus; TMVC and TMVF
represent the TMV Crucifier and Fujian respectively. TVV is the Turnip Vein Virus; RL specifies the corresponding
real location of each piece; we use N/A to mark the unavailable real location data; SL denotes the location found
by the algorithm; RT is the running time; GL is the length of a genome in the number of base residues respectively)

Organism SL(Pk1) SL(Pk2-3) SL(Pk4) SL(Pk5) RT (h) GL(bs)
TMV 6,183-6,237 6,233-6,290 6,291-6,356 6,358-6,395 6.53 6,395
RL 6,182—6,237 6,238-6,289 6,290-6,357 6,358-6,395
BVQ 5,922-5,978 5,798-5,857 Missing 5,963-6,003 6.12 6,003
RL N/A N/A N/A N/A
CMV Missing 6,262—6,319 Missing 6,387—6,424 6.72 6,424
RL N/A N/A N/A N/A
OPV 6,161-6,215 6,342-6,401 Missing 6,469-6,506 6.81 6,506
RL N/A N/A N/A N/A
RV 5,638-5,692 6,139-6,198 6,200—6,263 6,264—6,300 6.48 6,301
RL N/A 6,145-6,197 6,198-6,263 6,264-6,301
TMVC Missing 6,142-6,201 6,203-6,266 6,267-6,303 6.48 6,304
RL N/A 6,153-6,205 6,206—6,271 6,272-6,304
TMVF 6,183-6,237 6,233-6,290 6,291-6,357 6,358-6,395 6.37 6,395
RL 6,182—6,237 6,238-6,289 6,290-6,357 6,358-6,395
TVV Missing 6,150-6,209 6,211-6,274 6,275-6,311 6.51 6,311
RL N/A 6,156-6,208 6,209-6,274 6,275-6,311
140,000
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Fig.6. Performance evaluation for the speed up technique. (a) Number of cells computed by the standard and the three improved

algorithms (with quality control parameter ¢ = 0.975,0.925, and 0.875). (b) (Linear) relationship between the number of computed

cells and the running time.

the succinct model. For the CM, the total number of
rules is about 4w; the running time is thus O(kw?N +
(4w — k)wN). The ratio of the two running times is ap-
proximately (k—1)/(k+ 3) considering w > k, m. Note
that with a careful design, the number k of bifurcation
rules can be the same as the number of parallel stems
in the modeled secondary structure. In the case of tR-
NAs, this is 5 and the ratio (k —1)/(k+3) = 3. In our
experiments, the SCFG grammar was not “optimally”
crafted since it has 9 bifurcation rules as does the CM.
But as illustrated by the formula, the ratio of their run-
ning time remains approximately % as shown in Table
1.

Much more speed-up is possible with the succinct
model. In particular, the recursion rules make it eas-
ier to exploit heuristics that may avoid the full dynamic
programming in the CYK algorithm. We have observed
that, for a given nonterminal X in the SSCFG, only a
subset of all possible subsequences in the target sequence
can be aligned to it with a score of sufficient magnitude

and useful in the later computation. We thus employ an
idea to identify, for each nonterminal in the SSCFG, the
set of subsequences on which the alignment needs to be
peformed. In other words, we identify the set of (4, 7)’s
for X such that the probability P(X,1,7) is valid. This
technique can effectively reduce the number of matrix
cells for probabilities that need to be determined and
is thus expected to signficantly improve the efficiency
of the algorithm. We have developed an algorithm that
can preprocess the profile SSCFG and produce a list
of probability matrix cells that need to be computed.
Computational details are shown in Appendix B.

We have implemented the improved CYK algo-
rithm and conducted experiments on tRNAs to eval-
uate its performance on efficiency by comparing with
the standard CYK algorithm for structural alignment.
Twenty tRNA sequences were chosen from the web-
site http://rna.wustl.edu/tRNAdb/ as the training data to
build the succinct SCFG model consisting of 32 nonter-
minals and 68 rules. Among the training sequences, 16
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sequences contained 4 stems and the rest have 5 stems.
Seven different tRNA sequences from the same web-
site were selected, mainly based on their diverse lengths
(ranging from 73 to 91). Fig.6(a) shows the test results
for different quality control parameter . Compared to
the standard CYK, the number of valid cells drastically
decreases in the improved algorithm. For example, the
number of valid cells is reduced to the fracton of 1/8
for € = 0.875. Fig.6(b) shows that the running time of
the improved algorithm is (linearly) proportional to the
number of valid cells.

To evaluate the performance of the speed-up method
in discriminating tRNAs from random structures, we
tested both algorithms on the random sequences as well.
We downloaded 108 tRNAs from the same website and
randomly shuffled them 10 times to obtain in total 1,080
random sequences. They were aligned to the tRNA pro-
file (with quality control parameter ¢ = 0.9); their lo-
godds scores ranged from —29.59 to —4.71 with a mean
value of —17.70 and a standard deviation of 3.85. Us-
ing the logodds score with a Z-score value of 2.33 as
a threshold, 107 out of 108 real tRNA sequences were
recognized from the randomly shuffled sequences. The
experimental results indicate that the efficient alignment
algorithm may achieve excellent accuracy in structural
homology search.

6 Conclusion

We have introduced a succinct stochastic grammar
model to profile RNA secondary structure to address
some important issues concerning structural homology
search with profile SCFGs. In particular, while being
simple and small, our new model retains the qualities
of being effective in alignment and search. The nature
of the model also allows heuristics to be exploited so
that alignment and search with the model can be signif-
icantly speeded up. In addition, the new model makes it
possible to include pseudoknots that cannot be profiled
with SCFGs. To evaluate its performance, especially to
demonstrate the above advantages of the new model, we
have also presented detailed theoretical and experimen-
tal analyses.

As the goal of future research, a number of additional
issues related to the succinct model may be investigated.
Firstly, in addition to the region-specific rules, the new
model allows position-specific ones to be included to pro-
file highly conserved sequence regions. However, the
profiles constructed in our experiments were all region-
specific rules. Secondly, in general, the construction of
profiling models needs training data sets that contain a
large number of sequences. It may thus be necessary
to incorporate additional stochastic information from
other sources into the model when the number of avail-
able training sequences is not sufficiently large. Given
the simplicity of the model, it would be interesting to
study how to combine it with evolutionary or biophysi-
cal models. Finally, the efficiency techniques enabled by

J. Comput. Sci. & Technol., July 2005, Vol.20, No.4

the succinct model (see Section 5) can be immediately
applied to the structural alignment and search for struc-
tures with pseudoknots, tasks that are still forbidden for
profiles of even a moderate size.
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Appendix A

In this appendix, we show that imposing the geometric
distribution on stems and loops would not cause anomalies,
such as changing the regions that pair to form a stem, in the
formation of the profiled secondary structure. We study a
simple SSCFG that models a stem and the two neighboring
loops. We show that, under certain conditions, base pairs
are preferred to unpaired nucleotides when the length distri-
butions of all regions follow the geometric distribution. We
first examine it from the probability point of view.

Let L1SL> in the profile be a substructure consisting of
stem S (of length mean «) and its two neighboring loops L1
and L (of length mean (31 and (2 respectively). Let

S=Y1+" Yi;C1* " CkQ1* " ART1 " * L]

b+ bidg - dizy -2,

be some sequence aligned to the structure LiSLs, in
which regions yi1---yi, li,lo =2 0, are
aligned to the loops L; and L2 respectively, base pairs
(a1,b1)---{an,br),h = 2 are aligned to the stem S, and
subsequence z1 -- - x; is aligned to the span of S. Consider-
ing the probability contributions from stems and loops due
to the geometric distribution, the ratio v between the prob-
ability of SSCFG to generate a stem comprised of base pairs

and 2z --- 2z,
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(c1,d1) -+, {ck,dr) and that of the null model is:
(=9)" Ty e
— iy 7, 5
¥ (& )k( H ep(d:) (5)
B1+1 ﬁ2+1 i=1

where p(c;, d;) is the probability to generate base pair (c;, d;)
in the SSCFG and gq(c;), g(d;) are the probabilities to gen-
erate independent bases ¢; and d; in the null model. Note
that a relatively larger value of the odds %
that forming a base pair between c¢; and d; can increase
the overall alignment probability and thus is preferred in
the SSCFG model. Therefore, without counting the influ-
ence of the geometric length distribution, the total odds
w = Hl 1 % > 1 would imply the inclusion of the
stack to the stem. To maintain such alignment under the
succinct grammar model, the ratio v needs to be greater

than or equal to 1, which implies that:
(22"
(3
T k., 5 k=
(724" (52)"

Straightforwardly, we obtain:

indicates

(6)

o — 1 ﬁl ,82
> : (7
a Bi+1B+1
Therefore, imposing the geometric length distribution on

stems and loops will not cause anomalies if their length
means satisfy one of the two following properites:

1) max{ﬁhﬁz}g(a—l)(l“‘\/i)'

2) i 2 tla—1) and B2 < a — 1+ =, for any

t>14/1+ L

Therefore, before we use the model based on the geomet-
ric distribution to profile RNA sequences from a particular
family, we need to verify that the lengths of stems and their
corresponding loops in the RNA sequences satisfying one of
the above properties. For example, before we used our model
to search for tRNA genes, we examined the multiple align-
ment of 3,491 sequences of cytoplasmic tRNA genes out of
more than 5,300 sequences, which do not contain modified or
non-standard bases used for the purpose of multiple align-
ment. Table 4 shows the length means for the four stems
and their neighboring loops in the tRNAs. It is evident from
the data that more than 90.0% of the sequences in the multi-
ple alignment satisfy the property (1). This provides further
justification for using the geometric distribution in SSCFG
for profiling the tRNA genes.

Table 4.
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Appendix B

This appendix presents the computational details on im-
proving the efficiency of the CYK algorithm that aligns RNA
sequences to the SSCFG model, we start with computing the
set of all possible lengths of subsequences that can be derived
from every nonterminal X in the SSCFG. In particular, we
need to determine the set Size(X) defined as:

Size(X) = {k : 3s,|s| =k, such that X =" s}. (8)
Based on the dependency relationship graph for distinct non-
terminals, Size can be computed in a bottom-up fashion for
all nonterminals not involved in recursion rules. For nonter-
minals X involved in recursion rules, the cardinality of the
Size(X) would be infinite.
rules describe only stems and loops, we can remove the size
values in Size(X) that have a high penalty score due to the
length distribution, especially the size values much larger or
smaller than the mean of the substructure (i.e. stem or loop)
derived from X. This can be achieved by assuming a certain
distribution for the sizes such that only 1 — € fraction of sizes
are removed, ¢ is called the quality control parameter. The
standard CYK may be regarded as the case where ¢ = 1.

However, since direct recursion

We then compute the outside offset pairs for every non-
terminal X. It is defined as:
OF(X) :{(lvr) : don, az, |a1| =1, |a2| =T,
So =" CK1XQ2} (9)
where Sy is the start nonterminal in the grammar. Comput-
ing OF(X) for every nonterminal X in the grammar can
be done in a top-down fashion based on the dependency
relationship graph, starting from the start nonterminal S,
OF(So) = {(0,0)}. We then determine the set of dynamic
programming matrix cells needed for nonterminal X by:
VC(X)={(¢,j): 5 —i+ 1€ Size(X) and
(t—1,n—j) € OF(X)}. (10)
The CYK algorithm can be modified such that it only com-
putes probabilities P(X,1,3) for (i,7) € VC(X).
essary to point out the computation of sizes, outside offset
pairs, and valid cells only depends on the grammar model
and the length of the target sequence and is independent of
the content of the target sequence.

It is nec-

Compliance of Cytoplasmic tRNAs with Our Theoretical Conclusion (The tRNAs were ob-
tained from http://www.uni-bayreuth.de/departments/biochemie/sprinzl/index.

html22]. For all

the 4 stems, length means for all neighboring loops are calculated. Inside loops are those loops in the span
of a stem. The total odds w (see Appendix A for details) was computed based on the stack of all base pairs

in the stem excluding the first or last three pairs.)

Stem Length mean Compliance (%)
«a (outside) B4 (outside) (o (inside) By (inside) B2 w=>1 Property (1)
1 7 0 2.045 2 0 99.9 yes
2 4 2 1 8.322 8.322 100 yes
3 5 1 5.11 7 7 92.2 yes
4 5 5.11 0 7 7 100 yes
Overall 98 yes




