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Abstract
have different resolutions, in this paper we analyze palmprints using a multi-resolution method and define a novel palmprint
feature, which called wavelet energy feature (WEF), based on the wavelet transform. WEF can reflect the wavelet energy
distribution of the principal lines, wrinkles and ridges in different directions at different resolutions (scales), thus it can
efficiently characterize palmprints. This paper also analyses the discriminabilities of each level WEF and, according to these
discriminabilities, chooses a suitable weight for each level to compute the weighted city block distance for recognition. The
experimental results show that the order of the discriminabilities of each level WEF, from strong to weak, is the 4th, 3rd,
5th, 2nd and 1st level. It also shows that WEF is robust to some extent in rotation and translation of the images. Accuracies

According to the fact that the basic features of a palmprint, including principal lines, wrinkles and ridges,

of 99.24% and 99.45% have been obtained in palmprint verification and palmprint identification, respectively. These results

demonstrate the power of the proposed approach.
Keywords

1 Introduction

As computer-aided identity recognition becomes in-
creasingly important, biometrics is taking its place as
one of the most secure, flexible and reliable of the avail-
able approaches!™?. The most widely used biometric
feature is the fingerprint®4/ while the most reliable one
is the iris(®®l. However, it is very difficult to extract
small unique features (known as minutiae) from unclear
fingerprints/®4 and the iris input devices are very ex-
pensive. Other biometric features, such as facel”®! and
voicel®10 are less accurate and they can be mimicked
easily. The palmprint, as a relatively new biometric fea-
ture, has several advantages compared with other cur-
rently available features'!): palmprints contain more in-
formation than fingerprint, so they are more distinctive;
palmprint capture devices are much cheaper than iris
devices; palmprints also contain additional distinctive
features such as principal lines and wrinkles, which can
be extracted from low-resolution images; a highly ac-
curate biometrics system can be built by combining all
features of palms, such as palm geometry, ridge and val-
ley features, and principal lines and wrinkles, etc.

A palmprint has three types of basic features: princi-
pal lines, wrinkles, and ridges (see Fig.1) and they have
been analysed in various ways. Zhang!'?! and Dutal'®!
employed palm lines, including principal lines and wrin-
kles, for identity recognition. Lil'¥ analysed them in
the frequency domain. Zhang!!! also identified individ-
uals by extracting texture features, which were consti-
tuted by these basic features, from palmprints. Youl'!

biometrics, palmprint recognition, wavelet energy feature, weighted city block distance

proposed a hierarchical method of palmprint identifi-
cation based on global textural feature and interesting
points. Hanl'®! used the operator-based approach to
extract the line-like features from palmprints for palm-
print verification. In all of these methods, palmprints
were analysed in a single resolution. However, these ba-
sic features in palmprints have intrinsic multi-resolution
characters: the principal lines are the thickest, so they
can be analyzed in low resolutions; the wrinkles are
thinner than the principal lines and can be analyzed in
medium resolutions and the ridges are the thinnest, thus
they should be analyzed in high resolutions. Therefore,
it is very suitable to analyze palmprints using multi-
resolution methods.

Wavelets17~19 are powerful tools of multi-resolution
analysis, which have been used widely in biomet-
rics based identity recognition systemsl®. A two-
dimensional wavelet transform can decompose the im-
age in several directions at different resolutions (scale),
which is very advantageous to characterize palmprints
since their basic features have different directions and
different resolutions. Moreover, to a nonoscillating pat-
tern, the amplitudes of wavelet coefficients increase
when the scale of wavelet decomposition increase,
whereas, to a high frequency oscillating pattern, the am-
plitudes of wavelet coefficients at large scales are much
smaller than at fine scale which matches the spatial fre-
quency of the oscillations!'8!. In a palmprint, the princi-
pal lines and wrinkles are nonoscillating patterns while
the ridges are oscillating pattern. As a result, the dis-
tributions of their wavelet energy, in this paper defined
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by using wavelet coefficients, are different at each scale
of wavelet decomposition. Therefore, wavelet energy is
well suited to describing a palmprint. Wavelet ener-
gies of different decomposition levels have different pow-
ers to discriminate palmprints. Thus, when matching
palmprints, we choose a suitable weight for each level to
compute a weighted cityblock distance according to the
discriminability of this level WEF.

Fig.1. Three types of basic features in a palmprint.

The paper is organized as follows. Section 2 pro-
vides a palmprint preprocessing technique. Section 3
describes the wavelet energy feature construction and
matching in detail. Section 4 provides experimental re-

sults and comparisons, and Section 5 gives a conclusion.

2 Palmprint Preprocessing

When palmprints are captured, the position and di-
rection of a palm may vary so that even palmprints from

(¢)
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the same palm may have a little rotation and transla-
tion. Furthermore, palms differ in size. Hence palmprint
images should be orientated and normalized before fea-
ture extraction and matching. In our CCD-based palm-
print capture device'3), there are some pegs between
fingers to limit the palm’s stretching, translation and ro-
tation (Fig.2(a)). These pegs separate the fingers, which
enables us to use the points on the fingers’ boundary to
align and normalize palmprints. An original palmprint
captured by the device is shown in Fig.2(b). There are
six main steps in the preprocessing.

Step 1. Smooth the original image by a low-pass fil-
ter and use a threshold to convert it to a binary image
(see Fig.2(c)).

Step 2. Trace the palm’s boundary (see Fig.2(d)).

Step 3. Use straight lines (L, L2, L3, and L?) to fit
the segments of the boundary of the first finger, middle
finger, third finger and little finger (see Fig.2(e)):

L'y =kix+b; (1)

where k; and b; are the slope and intercept of L¢ (i =
1,...,4), which can be computed by the following equa-
tions:

M; M; M;
ko — D k1 acf X D k1 yf — M; x Zk:1(“3£c X ?Jzk)
v 2
Mi Mi
(Zifyad) —Mx Sl (@)

Mi Mi
b‘ — Zk:l yf — k'L X Zk:l wf (3)
K3 Ml

k

where {(z¥,y5)}5,, (i = 1,...,4) are the coordinates

of the points on the segments of the boundary of the
first finger, middle finger, third finger and little finger,

(c)

(d)

4
(g) (h)

Fig.2. Main steps of preprocessing. (a) Palmprint capture device. (b) Original image. (c) Binary image. (d) Boundary tracking. (e)

Line fitting, bisectors and intersections. (f) Palmprint coordinate system. (g) Central part extraction. (h) Preprocessed result.
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respectively; M; is the total number of the points on the
corresponding segment.
Step 4. Computing the bisectors (BL' and BL?) of
the angles formed by L' and L2, L?, and L*:
BL':y= Kz + B; (4)

where K; and B; are the slope and intercept of BL!
(1 = 1,2), which can be computed by the following equa-
tions:

k2><i—1 X 1/1 + k%XZ + k2><i X \/m
K; =
\/1+k§xi—1+\/1+k%xi (5)

1 + k%xi—l

1 + kg)M. + b2><i X

\/1+k§xi—l+\/l+k§xi (6)

where 1 = 1,2; ky ~ kyg, by ~ by are computed by (2) and
(3). The intersection of BL' and the boundary, BL* and
the boundary are P! and P?, respectively (see Fig.2(e)).

Step 5. Line up point P! and P2, and make a palm-
print coordinate system in which y-axis is line P! P? and
the original point is the midpoint of line segment P*P?
(see Figs.2(f) and 2(g)).

Step 6. Crop a sub-image with fixed size from the
center of the image (see Fig.2(h)).

After preprocessing, the rotation and translation of
the palmprints from the same palms are very little.

baxi—1 X
B; =

3 Feature Construction and Matching

[17-19] {5 an effective tool for multi-

Wavelet transform
resolution feature extraction. Fig.3 shows the K-th level
wavelet decomposition. In this figure, Ay is the ap-
proximation image of the (K —1)-th level decomposition
and Ay, Hy, Vi, Dj, are the approximation, horizontal,
vertical and diagonal detail images of the K-th level de-
composition, respectively. In this paper, the original
image I is used as Ag. So after it is decomposed to the
J-th level, the original image I is represented by 3J + 1

sub-images:
[AJa{Hi7W7Di}i:1,...,J] (7)

where A is a low-resolution approximation of original
image, and H;, V;, D; are the wavelet sub-images con-
taining the image details in horizontal, vertical and di-
agonal directions at different scales (2¢). The ampli-
tudes in H;, V;, D; (1 <1 < J) correspond to the hor-
izontal high frequency (horizontal edges), vertical high
frequency (vertical edges) and diagonal high frequency
(diagonal edges), respectively. Fig.4 shows an example
of the 2-level DWT decomposition of an image.

The wavelet energy in horizontal, vertical and diag-
onal directions at i-th level is, respectively, defined as:

El =) (Hi(z,y)) (8)

rz=1y=1
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Fig.3. Two-dimensional DWT.

(a)

Fig.4. Example of 2-D DWT. (a) Original image. (b) Decomposed

image.

These energies reflect the strength of the images’ de-
tails in different direction at the i-th wavelet decom-
pose level. The details of a palmprint are the principal
lines, wrinkles and ridges. Hence, (8)—(10) can describe
the intensity of these features in different orientation at
the i-th wavelet decomposition level (scale). Because
the amplitudes of wavelet coefficients of a nonoscillating
pattern increase with the extension of wavelet decom-
position scale while those of a high frequency oscillating
pattern at large scales are much smaller than those at
fine scale which matches the spatial frequency of the
oscillations!'® | the energy of principal lines and wrin-
kles, which are nonoscillating patterns, are concentrated
at the large wavelet decomposition scales and the most
energy of ridges, which are oscillating pattern, are fo-
cused at the small scales. So the feature vector,

(EL, Ef,EEi)i=1,2,...,M (11)
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where M is the total wavelet decomposition level, can
describe the global details information of a palmprint
efficiently.

Obviously, the vectors computed from (8)—(11) are
global features of a palmprint. These features extracted
from the whole images fail to preserve the information
concerning the spatial location of different details, so it
cannot efficiently characterize palmprints. To deal with
this problem, we can firstly divide the detail images into
S x S non-overlap blocks equally (Fig.5), and then com-
pute the energy of each block. After that, the energies
of all blocks are used to construct a vector:

14 :(1/11>V12>'"a‘G(3XSXS)7"'7VM17

Vma, - Vsxsxs)) (12)

where M is the maximum level the image is decomposed
toand V;; ( =1,...,3x.5x%5S) is the energies computed
from the detail images of the i-th wavelet decomposition
level.

Fig.5. Division of the detail images at each scale.

Finally, the vector is normalized by the sum of V.
This normalized vector V' is called the wavelet energy
feature (WEF) and V' = (V;1,Via,...,Viaxsxs)) is
called the i-th level WEF.

The complete process to compute WEF of a palm-
print can be summarized as below:

1. Orientate the palmprint image;

2. Crop an N x N rectangular sub-image from the centre

of the palm;

3. Decompose this sub-image to the J-th scale by a 2D-

wavelet transform;

4. Divide each detail image into S X S non-overlapping

blocks;

5. Compute the energy of each block and construct the

feature vector;

6. Normalize this vector to form the WEF.

According to its construction, WEF V is composed
of the different level WEFs, which have different abil-
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ities to discriminate palmprints. We use the following
weighted cityblock distance to measure the similarity
between two WEFs V; and V,:

3XSxS

D(Vl,vz)aZci Z Vi) - ViG)  (13)

where M is the total wavelet decomposition level; S x S
is the number of blocks that each detail image is di-
vided; Vi = (Vi(1),V{(2),...,V{(3 x S x §)) and
Vi = (Vi(1),Vi(2),...,Vi(3 x S x S)) are the i-th
level WEF of Vi and V5; ¢; is the weight for the i-
th level WEF. We should decide ¢; according to the
discriminability of the i-th level WEF: the stronger the
discriminability is, the larger the ¢; is. If ¢; = 1, (13)
becomes the cityblock distance.

Given a palmprint database, the cityblock distances
between the i-th level WEF of each sample and the i-th
level WEF of the remaining samples can be computed.
The distribution of distances generated from pairs of
palmprints from the same palms is called the genuine
distribution (pg(D)) and from different palms is called
the impostor distribution (pr(D)). Fig.6 shows an ex-
ample of these distributions. The overlapped area of
pg(D) and pr(D) (the shadowed area in Fig.6) is called
minimum total error rate (MTER), which can reflect the
discriminability of the i-th level WEF: the smaller the
MTER is, the stronger the discriminability is. MTER
of the i-th level WEF can be obtained as follows:

0o t
R; = / pc(D)dD + / pr(D)dD, (14)
t 0
where t is the distance corresponding to the intersecting
point of pg(D) and py(D). Then we define the weight
of the i-th level WEF ¢; in this way:

1
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Fig.6. Example of genuine and impostor distributions.

Palmprint recognition involves a training stage and
a recognition stage. In the training stage, WEFs of the
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training samples are computed, and the template of a
palm is obtained by averaging the WEFs of all train-
ing samples captured from the same palm and stored in
a template database. In the recognition stage, WEF
of the input palm is computed and then, by using
weighted cityblock distance, this WEF is compared with
the stored templates to obtain the recognition result.

4 Experimental Results and Comparisons

These experiments made use of a database of 3,200
palmprint images from 320 palms. These palmprints
were taken from people of different ages and both sexes.
Ten images were captured from each palm. Six of these
were used to train the template and the remaining four
samples were employed to test. The size of the origi-
nal palmprint images was 384 x 284 pixels. The central
128 x 128 part of the image was cropped to represent
the whole palmprint. Fig.7 shows some samples from
our database. Using Harr wavelet, the images were de-
composed to the 5th level. Each detail image is divided
into 4 X 4 non-overlapping blocks. The weighted city-
block distance is used to measure the similarity between

WEFs.

Fig.7. Some samples used in the experiments.

4.1 Parameters Selection

To use the weighted cityblock distance to measure
the similarity between two WEFs, we should first se-
lect the parameter c; for each level WEF. We use all of
training samples to compute the weights. The genuine
and impostor distribution of the 1st to 5th level WEF
are plotted in Fig.8. The MTERs of these level WEF's
are listed in Table 1. According to their MTERs, the
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order of the discriminabilities of these level WEFs, from
strong to weak, is the 4th, 3rd, 5th, 2nd, and 1st lev-
els. Using (15), the weights of these level WEFs can be
easily obtained (see Table 1).

Table 1. MTERs and Weights of Each

Wavelet Decomposition Level

Level 1st 2nd 3rd 4th 5th
MTER (R;) 114 7.07 491 484 5.35
Weight (c;) 0.11 0.17 0.25 0.25 0.23
12 G . 12
— enuine = Genuine
g g
= 8 2 8
8 44 |/ a_}mpostor 8 4 ‘:,Empostor
0 40 80 120 160 200 0 40 80 120 160 200
Distance Distance
(b)
8
Genuine

f :‘-.:Impostor

Percent (%)
.

0 100 200 300 400
Distance Distance

(c) ()

0

6 Genuine

Percent (%)
i

* Impostor

0 i
0 200 400 600 800
Distance

(¢)

Fig.8. Genuine and impostor distributions of the 1st to 5th level
WEF. (a) 1st level. (b) 2nd level. (c) 3rd level. (d) 4th level. (e)
5th level.

4.2 Rotation and Translation Test

Though the rotation and translation of the palm-
prints from the same palms are very little after prepro-
cessing, it is impossible to remove all of them. To quan-
tificationally investigate the robustness of the proposed
approach to rotation and translation, 50 palmprints cap-
tured from different palms are selected randomly from
our palmprint database. These images are translated
and rotated using different distances and angles. Some
of the testing palmprints and their rotated and trans-
lated versions are shown in Fig.9. Then, the translated
and rotated palmprints are matched with the original
ones by using our proposed approach. The average
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matching distances are shown in Figs.10-11. For com-
parison, the average distance (66.9) among the palm-
prints captured from the same palm (average within-
class distance), which is computed by using all of the
samples in the palmprint database, is also plotted in
these figures. According to Fig.10, when the rotational
angle is between —4° and 4°, the average distances be-
tween the rotated and original palmprints are smaller
than the average within-class distance. Therefore, our
approach is robust when the rotational angle is within
this range. From Fig.11, when the translational distance
is within the range [—4,4] pixels, the approach is also
robust.

Fig.9. Some palmprints and the rotated and translated versions.

(a) Original images. (b) Rotated images. (c) Translated images.

0 . T
Average distance
between rotated and
20 [ original palmprints 1
S 40
z
°
o 60
e ol ___N_________
<
g
z 80
100
Average within-class distance
120 . ‘ .

—10 -5 0 5 10
Rotated angle (degree)

Fig.10. Average matching distances between the rotated and orig-

inal palmprints.

J. Comput. Sci. & Technol., May 2005, Vol.20, No.3
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Fig.11. Average matching distances between the translated and

original palmprints.

4.3 Palmprint Matching

To test the performance of the proposed approach
in palmprint matching, the WEF of each testing sam-
ple is matched against each stored template. A total
of 409,600 (320 x 4 x 320) matchings have been per-
formed, in which 1,280 (320 x 4) matchings are gen-
uine matchings. The genuine distribution and the im-
postor distribution are shown in Fig.12. It is shown
that there are two distinct peaks in the distributions
of the matching distances. One (located around 62)
corresponds to the correct matching distance and an-
other (located around 175) corresponds to the incorrect
matching distance. These two peaks are widely sepa-
rated and the overlapped area is very little (MTER is
only 1.2%). Hence the proposed approach can clearly
discriminate between palmprints.

~

(=)

Genuine

“"-‘,‘ Impostor

Percent (%)
w & o

=N

0 50 100 150 200 250 300
Distance

Fig.12. Distributions of correct and incorrect matching distances.

4.4 Palmprint Verification

Palmprint verification, also called one-to-one match-
ing, involves answering the question “Whether this per-
son is whom he claims to be” by examining his/her
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palmprint. In palmprint verification, a user indicates
his/her identity. Therefore, the WEF of the input palm-
print is only matched against his/her stored template.
To determine the accuracy of the verification, the WEF
of each testing sample is matched against each stored
template. If the matching distance does not exceed an
appointed threshold, this testing palmprint is accepted.
Otherwise, it is rejected. The performance of a verifica-
tion method is often measured by the false accept rate
(FAR) and false reject rate (FRR). We should try to
make these two rates as low as possible. However, these
two rates contradict each other and cannot be lowered
at the same time, so depending on the application, a
tradeoff is called for: for high security systems, such as
some military systems, where security is primary crite-
rion, the FAR should be reduced, while for low security
systems, such as some civil systems, ease-of-use is also
important, so the FRR should be reduced. To test the
performance of a verification method with respect to this
tradeoff, we usually plot the so-called Receiver Operat-
ing Characteristic (ROC) curve, which plots the FAR
against the FRR. The ROC curves of the proposed ap-
proach are plotted in Fig.13. The equal error rate (EER,
where FAR equals FRR) is 0.76%. This figure shows
that the proposed approach has a good performance in
palmprint verification.

3.0
2.5
2.0

EER
1.5} -

False reject rate (%)

1.0}

0.5F

2.5 3.0

1.0 1.5 2.0
False acceptance rate (%)

Fig.13. Receiver operating characteristic (ROC) curve of the pro-
posed approach.
4.5 Palmprint Identification

Palmprint identification, also called one-to-many
matching, is to answer the question “Who is this per-
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son?” according to his palmprint. To identify a person,
the WEF of his/her palmprint has to be matched against
all of the stored templates and the label of the most sim-
ilar template is regarded as the identification result. In
our one-to-320 matching, all of the 1,280 (320x4) testing
images were used and 99.45% accuracy was obtained.

4.6 Comparisons with Other Palmprint
Recognition Techniques

Our approach has been compared with Duta’s
method™®! and Li’s algorithm. In Duta’s method,
the lines of a palmprint were firstly extracted by directly
binarizing the offline palmprint images (which were ob-
tained by pressing an inked palm on a paper) with an
interactively chosen threshold, and then some feature
points and their orientation were extracted from these
lines to verify the identity. Thirty 400 x 300 resolution
offline images captured from three persons were used in
their experiments. They reported 95% accuracy for their
one-to-one matching test. It is evident that the recog-
nition accuracies of this method are dependent heavily
on the result of the line extraction. Because of the noise
and unexpected disturbance such as the movement of
hand, or variables in lighting or settings, the qualities
of online palmprints (which are captured online by a
CCD-camera-based device) are much worse than those
of offline images. This makes it much more difficult to
extract lines from online palmprint images. Up to now,
there is no effective line extraction method for online
palmprints yet. Therefore, we use Duta’s reported ex-
perimental results here for comparison.

In Li’s algorithm, the R features and 6 features of the
palmprint were extracted from the frequency domain to
identify different persons. R features showed the inten-
sity of the lines of a palmprint and 6 features showed the
direction of these lines. However, all of these features
could not reflect the spatial position of these lines since
they were extracted in the frequency domain. With the
result that these features were not able to strongly dis-
criminate between palmprints. Li’s algorithm has been
applied in our database and the accuracies in the one-
to-one and one-to-320 matching are 96.32% and 94.53%,
respectively.

Obviously, the results of the proposed approach are
much better than those of Duta’s and Li’s. Table 2 sum-
marizes and compares our approach with the methods
of Duta and Li with respect to database size, image size,
feature extraction, analysis method and accuracies.

Table 2. Comparison of Different Palmprint Recognition Techniques

Techniques

Duta’s method[13]

Li’s algorithm[14]

Our approach

Database size

Feature extraction

Analysis method

Image size

One-to-one matching accurate rates

30 images (from 3 palms)
Feature points
Single-resolution

400 x 300

95%

One-to-many matching accurate rates Not presented

3,200 images (from 320 palms)
R feature and 6 feature
Single-resolution

128 x 128

96.32%

94.53% (One-t0-320 matching)

3,200 images (from 320 palms)
WEF

Multi-resolution

128 x 128

99.24%

99.45% (One-to-320 matching)
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5 Conclusion and Future Work

Palmprint is a relative new biometric method to rec-
ognize a person. The basic features in a palmprint, in-
cluding principal lines, wrinkles and ridges, have dif-
ferent resolutions. This observation motivates us to
analyze the palmprint using multi-resolution analysis
method. In this paper, a novel palmprint feature, named
wavelet energy features (WEF), is defined by employing
wavelets, which is a powerful tool of multi-resolution
analysis. WEF can reflect the wavelet energy distribu-
tion of the principal lines, wrinkles and ridges in sev-
eral directions at different wavelet decomposition levels
(scale). The discriminability of each level WEF is also
investigated and it shows that the order of these dis-
criminabilities, from strong to weak, is the 4th, 3rd, 5th,
2nd, and 1st level. In palmprint matching, these differ-
ent discriminabilities are used to define a weight for each
level WEF to compute a weighted city block distance.
It also shows that the proposed approach is robust to
some extent in rotation and translation of the images.
The experimental results demonstrate the effect of the
proposed approach.

In recent years, some translation- and scale-invariant
wavelet transform?! have been proposed. In the fu-
ture work, we will investigate these wavelet transform
in palmprint recognition.
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