Mar. 2005, Vol.20, No.2, pp.243-249 J. Comput. Sci. & Technol.

Microarchitecture of the Godson-2 Processor

Wei-Wu Hu, Fu-Xin Zhang, and Zu-Song Li
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, P.R. China
E-mail: {hww, fxzhang, lisoon}@ict.ac.cn

Received August 19, 2004; revised January 15, 2005.

Abstract The Godson project is the first attempt to design high performance general-purpose microprocessors in China.
This paper introduces the microarchitecture of the Godson-2 processor which is a 64-bit, 4-issue, out-of-order execution
RISC processor that implements the 64-bit MIPS-like instruction set. The adoption of the aggressive out-of-order execution
techniques (such as register mapping, branch prediction, and dynamic scheduling) and cache techniques (such as non-blocking
cache, load speculation, dynamic memory disambiguation) helps the Godson-2 processor to achieve high performance even
at not so high frequency. The Godson-2 processor has been physically implemented on a 6-metal 0.18um CMOS technology
based on the automatic placing and routing flow with the help of some crafted library cells and macros. The area of the chip

is 6,700 micrometers by 6,200 micrometers and the clock cycle at typical corner is 2.3ns.

Keywords
blocking cache, load speculation

1 Introduction

The Godson project is the first attempt to design
high performance general-purpose microprocessors!!—?
in China. Besides aiming at Linux PCs for office and
network servers, they can also be used in many em-
bedded environments such as network computing ends,
network switches, industry control, and game machines,
etc. Godson implements the MIPS-like instruction set
to take advantage of its ready-made hardware systems
and software codes.

Multiple levels of parallelism can be explored to im-
prove performance of a processor. In instruction level,
out-of-order execution and superscalar technique allow
the processor to schedule the execution of instructions
in a maximum throughput. In data level, vector instruc-
tions that are implemented with SIMD technique enable
the processor to generate multiple results with one in-
struction. In thread level, multithreading enables multi-
ple threads to run simultaneously on a single or multiple
processors.

Godson achieves both the architectural and phys-
ical goals step-by-step. Architecturally, the Godson-
1 processor implements single-issue out-of-order execu-
tion pipeline, with static branch prediction and blocking
cache; the Godson-2 processor implements superscalar
out-of-order execution pipeline, with dynamic branch
prediction and non-blocking cache, it also implements
some fix-point SIMD instructions by reusing the floating-
point datapaths; and the Godson-3 processor will fur-
ther implement multithreading. Physically, the Godson-
1 processor is an ASIC designed chip, Godson-2 will in-
clude some customer designed modules, and the later
versions of Godson-2 or Godson-3 will be semi- or full-
customer designed.

superscalar pipeline, out-of-order execution, branch prediction, register renaming, dynamic scheduling non-

The Godson-2 processor has been physically imple-
mented on a 6-metal 0.18um CMOS technology based
on the automatic placing and routing flow with the help
of some crafted library cells and macros. The area of the
chip is about 6,700 micrometers by 6,200 micrometers.
The clock cycle at typical corner is 2.3ns. Now the first
version of Godson-2 chips run well and the Linux PC
based on Godson-2 is under development.

The following sections are organized as follows. Sec-
tion 2 summarizes architectural features of Godson-2.
The instruction fetching unit, out-of-order execution en-
gine, functional units, and memory access unit are then
introduced in the following four sections. Section 7
briefly presents the physical design and fabrication of the
Godson-2 chip. Future work and conclusion are given in
Section 8.

2 Godson-2 Processor Architecture Overview

The Godson-2 microprocessor is a general-purpose
RISC microprocessor that implements the 64-bit MIPS-
like instruction set. It fetches and decodes four instruc-
tions per cycle and dynamically issues them to five fully
pipelined functional units. Though instructions are ex-
ecuted out-of-order according to their dependency, they
are committed in the program order to provide precise
exception handling and sequential memory consistency.

The four-way superscalar of Godson-2 raises ex-
tremely high requirements for inter-instruction de-
pendency resolving and instruction/data providing.
Godson-2 employs out-of-order execution and aggressive
cache design to improve pipeline efficiency.

Out-of-order execution is a combination of the reg-
ister renaming, dynamic scheduling, and branch pre-
diction techniques. Register renaming removes WAR

*Short Paper

The work of this paper is supported by the National High Technology Development 863 Program of China (Grant Nos.2001AA111100
and 2002AA110010) and the Key Knowledge Innovation Project of Chinese Academy of Sciences.

244

(write after read) and WAW (write after write) depen-
dency and is also essential for precise exception han-
dling and branch misprediction recovering. Godson-2
has a 64-entry physical register file for fix-point and
floating-point register mapping respectively. Dynamic
scheduling reduces the stall caused by RAW (read af-
ter write) data dependency through reordering the in-
struction. Godson-2 maintains a 16-entry fix-point reser-
vation station and a 16-entry floating-point reservation
station for out-of-order instruction issuing. A 32-entry
ROQ (reorder queue) ensures that out-of-order exe-
cuted instructions are committed in the program order.
Branch prediction removes control dependency by pre-
dicting the direction before the branch instruction is ex-
ecuted. Godson-2 uses a 16-entry BTB (branch target
buffer), a 4K-entry BHT (branch history table), a 9-bit
GHR (global history register), and a 4-entry RAS (re-
turn address stack) for precise branch prediction.

The cache system of Godson-2 also provides poten-
tial for high performance. Godson-2 has a 64KB level-
one instruction cache and a 64KB level-one data cache,
both four-way set associative. It also provides the MIPS
R5000 like off-chip cache interface which can support as
large as 8MB unified level-two cache. The fully asso-
ciative TLB of Godson-2 has 64 entries each maps an
odd page and an even page. A 16-entry memory ac-

J. Comput. Sci. & Technol., Mar. 2005, Vol.20, No.2

cess queue that contains a content-addressable memory
for dynamic memory disambiguation allows Godson-2
to implement out-of-order memory access, non-blocking
cache, load speculation, and store forwarding.

Godson-2 has two fix-point functional units, two
floating-point functional units, and one memory access
unit. The floating-point units can also execute 32- or
64-bit fix-point instructions and 8- or 16-bit SIMD fix-
point instructions through extension of the fmt field of
the floating-point instructions.

The basic pipeline stages of Godson-2 include in-
struction fetch, pre-decode, decode, register rename, dis-
patch, issue, register read, execution, and commit. Fig.1
shows major sections of Godson-2.

In fetch stage, the instruction cache and instruction
TLB (Translation Lookahead Buffer) is read according
to the content of PC (program counter). Four new in-
structions are sent to IR (instruction register) if the in-
struction fetch is TLB hit and cache hit.

In pre-decode stage, branch instructions are found
and their branch directions are dynamically predicted.

In decode stage, the four instructions in IR are de-
coded into internal format of Godson-2 and are sent to
the register renaming module.

In register rename stage, a new physical register is
allocated for each logical destination register, and the

Commit bus

i _
Branch bus Reorder queue | Write back bus
p|BRQ ROQ
Map bus 3 L
S > ALUL >
g - AAAA4
] 1 A y o > ﬁ
" 2| BTB|—| (» 3, £ IR} ‘ P
< > = : PIALU2 o — = X
g 5 F = o 3 o
E : :]
B Hig. ek = |2
: = s MEM S R
Ay = 8 EE g gEy : E
L ITLB—| |»| © £ IEE ﬁ :
] " 5 =] g .
—»] | | %) 8.& o ot =
—>lCACHEEE EE Ei f i éoé >
L RS-
B = S 2
] >
YFALU2»]
Refill bus
Miss)]
qm::e CACHE interface (‘;ﬁgﬁ‘;

v f

Processor interface

¢

Fig.1. Microarchitecture of Godson-2.

Wei-Wu Hu et al.: Microarchitecture of the Godson-2 Processor 245

logical source register is renamed to the latest phys-
ical register allocated for the same logical register.
Inter-instruction dependencies among four instructions
mapped in the same cycle are also checked. The renamed
instructions are latched for being sent to reservation sta-
tions and queues in next cycle.

In dispatch stage, the latched renamed instructions
are dispatched to the fix- or floating-point reservation
station for being executed, and are sent to the reorder
queue for in-order graduation. Associated instructions
are also sent to branch queue and memory queue. Each
empty entry of reservation stations and queues selects
among four dispatched instructions in this cycle.

In issue stage, one instruction with all required
operands ready is selected from the fix- or floating-
point reservation station for each functional unit. When
there are multiple instructions ready for the same func-
tional unit, the oldest one is selected. Each instruction
with unready source operands in register mapping stage
snoops result and forward buses for their operands.

In register read stage, the issued instruction reads
its source operands from the physical register file and
is sent to the associated functional units. It may also
get the data directly from one of the result buses if its
source register number matches the destination register
number of the result bus.

In execution stage, the instruction is executed ac-
cording to its type. The calculation result of the instruc-
tion is written back to the register file. Result buses are
also sent to the reservation station for snooping and to
the register mapping table to notify that the associated
physical register is ready.

In commit stage, up to four instructions can be com-
mitted in program order per cycle. Committed instruc-
tions are sent to the register mapping module to confirm
the mapping of its destination register and release the
old one. They are also sent to the memory access queue
to allow committed store instructions to write cache or
memory.

3 Imnstruction Fetching and Branch Prediction

The Godson-2 pipeline begins with the fetch stage,
in which four instructions are fetched in parallel at any
word alignment within an eight-word instruction cache
line. In each cycle, the processor compares tags read
from the cache to physical addresses translated from
ITLB (instruction TLB) to select instructions from the
correct way. On cache miss a refill request will be raised.

The 16-entry ITLB is a subset of the main TLB. It
is different from the main TLB in that each ITLB entry
maps only one page. On an ITLB miss, the processor
creates an internal Godson-2 instruction which looks for
the entry in the main TLB and fills the ITLB. A normal
TLB exception will rise if the missing page is not in the
main TLB too.

The second stage of the Godson-2 pipeline is the

pre-decode stage. In this stage, branch instructions of
the four instructions in IR are found and their branch
directions and branch targets are predicted. Different
branch prediction methods are used for different branch
instructions. Branch-like instructions and jump instruc-
tions are always predicted taken, allowing the compiler
to statically predict branch direction by using branch-
like instructions. BHT is used for predicting direction
of conditional branch instructions, while BTB and RAS
are used for predicting target PC for jump register in-
structions.

The BHT contains a 9-bit global history register
(GHR) and 4K-entry pattern history table (PHT). Each
PHT entry has a 2-bit saturating up/down counter. The
counter is increased by one if the prediction is correct,
and is decreased by one otherwise. The high order bit
of the counter is used for branch prediction.

The 16-entry BTB predicts the target PC of the jump
register instruction. Each BTB entry contains the PC
and target PC of the jump register instruction. Besides,
a 2-bit saturating up/down counter is associated with
each BTB entry. On replacement, entries with counter
values 0 or 1 will be replaced prior to others.

MIPS instruction set does not provide call or return
instruction, it normally uses branch/jump and link in-
struction and the jump register 31 instruction instead.
Godson-2 implements a four-entry return address stack.
The decoding of a branch and link instruction causes its
PC+8 to be pushed to the RAS, while the decoding of
a jump register 31 instruction causes the target PC to
be popped from the RAS. Each branch instruction saves
the top-of-stack pointer of the RAS to repair the top-of-
stack pointer of the RAS after branch misprediction.

The third stage of Godson-2 pipeline is the decode
stage. In this stage, the four instructions are decoded
into internal instruction format of Godson-2 and are sent
to the register renaming module. The fix-point multipli-
cation or division instruction is split into two internal in-
structions because it generates two 64-bit results. Only
one branch instruction can be decoded every cycle in this
stage to simplify the management of branch instructions.

4 Register Renaming and Dynamic Scheduling

4.1 Register Rename and Register Rename
Tables

Register renaming can be implemented either by us-
ing separate architectural and rename register files, or
by using a merged architectural and rename register file.
In the first approach, a stand alone rename register file
is used for register rename. In the second approach,
rename registers are implemented along with the archi-
tectural registers in the same physical register file and
a mapping table is used to dynamically map between
architectural and physical registers. Godson-2 imple-
ments the merged approach and has a 64-entry physical

246

register file for fix-point and floating-point register re-
name respectively. Correspondingly, two 64-entry phys-
ical register-mapping tables (PRMT) are maintained to
build the relationship between physical and architectural
registers. Each PRMT entry has the following fields:

e state: each physical register is in one of four
states, MAP_EMPTY, MAP _MAPPED, MAP WTBK,
and MAP_COMMIT;

e name: the identifier of the associated architectural
register to which this physical register is allocated;

e valid: this bit is used to mark the latest allocation
of a given architectural register if more than one physical
registers are allocated to it.

The PRMT also includes fields used to restore the
register mapping on mispredicted branch canceling.

In register rename stage, the PRMT is associatively
looked up for the two source registers srcl, src2 and the
destination register dest of each instruction to find the
associated latest mapped physical register psrcl, psrc2,
and odest. Besides, a free physical register pdest whose
state is MAP_EMPTY is allocated to the destination
register dest, and the state of the newly allocated phys-
ical register is set to MAP_MAPPED. The valid bit of
the pdest entry is set to “1” and the valid bit of the odest
entry is set to “0” reflecting that pdest becomes the lat-
est allocated physical register for the dest architectural
register.

Since four instructions are mapped concurrently,
inter-instruction dependencies among instructions
mapped at the same cycle should be checked. If the
source register srcl of an instruction is identical to
the destination register dest of a previous instruction
mapped at the same cycle, the physical register corre-
sponds to srcl should be pdest of this previous instruc-
tion, rather than the psrcl looked up from the PRMT.
This is also true for psrc2 and odest.

After register renaming, the architectural register
name srcl, src2, and dest are replaced with the physical
register name psrcl, psrc2, and pdest. These physical
register names are sent to the reservation station. The
odest field is kept in the reorder queue and is used to
release the physical register when the instruction is com-
mitted. The processor determines dependencies simply
by comparing the physical register names.

After an instruction is executed, its associated
PRMT entry is set to MAP_WTBK such that the fol-
lowing instructions reading this physical register know
the value is ready.

When an instruction is committed, it sets the pdest
entry of PRMT to MAP_COMMIT and the odest en-
try to MAP_EMPTY, that means its destination register
value is regarded as the processor state and the previous
value for this destination register is discarded.

It can be seen from the above register rename process
that there may be multiple physical registers allocated
to the same architectural register because a logical reg-
ister may have a sequence of values as it is written by

J. Comput. Sci. & Technol., Mar. 2005, Vol.20, No.2

instructions in the pipeline. Physical registers assigned
to the same logical register hold both committed values
and temporary results as instructions flow through the
pipeline. A physical register is written exactly once for
each assignment of it.

4.2 Instruction Issue and Reservation Stations

Register renamed instructions are latched and then
sent to the reservation station to be scheduled for execu-
tion. Godson-2 has two independent group reservation
stations. Fix-point and memory instructions are sent to
the fix-point reservation station. Floating-point instruc-
tions are sent to the floating-point reservation station.
Each reservation station has 16 entries and can accept
as many as four instructions per cycle.

In the register rename stage, the PRMT is looked up
to see whether the associated operand has been gener-
ated and written back to the register file. Result buses
and forward buses are also snooped for renaming and
dispatching instructions and for instructions in reserva-
tion stations to decide when the required operand will be
ready in the register file. The associated ready bit is set
to ready if the destination register of one snooped bus
matches the source register of the snooping instruction.
Result and forward buses stem from the five functional
units. The result buses send out the execution results of
functional units, while the forward buses forecast which
result will be sent out in next cycle.

The reservation stations can issue as many as five
operand-ready instructions to the five functional units.
If there are multiple operand-ready instructions for the
same functional unit, the oldest one is issued. To record
the age of each instruction, an age field is added to each
entry of the reservation station. It is set to a low value
when an instruction enters the reservation station, and
is increased by one each time an instruction of the same
functional unit enters the reservation station.

Unlike MIPS R10000 which has a separate in-order
reservation station for memory accesses, Godson-2 issues
memory accesses through the fix-point reservation sta-
tion. To keep the order of some special CPO (coproces-
sor 0) instructions, such as control register instructions,
TLB instructions, and cache instructions, Godson-2 im-
poses two types of order relations in the fix-point reser-
vation station. The first type is called “wait issue” re-
lation, “wait issue” instructions cannot be issued until
all its previous instructions have been committed. The
second type is called “stall issue” relation. “stall issue”
instructions stall the issue of following instructions until
it is committed. Ordinary memory access instructions
are neither “wait issue” nor “stall issue”.

4.3 Reading Operands and Register Files

Godson-2 has one fix-point physical register file and
one floating-point physical register file, both with the
size of 64 x 64. Issued instructions read operands from

Wei-Wu Hu et al.: Microarchitecture of the Godson-2 Processor 247

the register file before they are sent to functional units
for execution.

The fix-point register file has three write ports and
six read ports. The two fix-point units and the mem-
ory unit use one write port and two read ports each.
The floating-point register file has three write ports and
five read ports. The two floating-point units use one
write and two read ports each. Besides, floating-point
load instructions use one write port and floating-point
store instructions use one read port of the floating-
point register file. Move instructions between fix-point
and floating-point register files such as MTC1, DMTC1,
MFC1, DMFC1, CTC1, and CFC1 use the memory ac-
cess data path to transfer data and hence are executed
by the memory unit.

Special operands such as the program counter of
branch and link instructions or the predicted taken bit of
conditional branch instructions are read from the branch
queue and sent to the associated functional unit in par-
allel with operands from register file.

4.4 Instruction Commit and Reorder Queue

The reorder queue holds all instructions after register
mapping and before they are committed. After instruc-
tions are executed and written back, the reorder queue
commits them in the program order. The reorder queue
can hold as many as 32 instructions concurrently.

Reorder queue can accept as many as four mapped
instructions per cycle. Newly entered instructions
are set to ROQ_-MAPPED state. After the in-
struction is written back, its state in reorder queue
is set to ROQ_-WTBK for ordinary instructions and
ROQ_BRWTBK for branch instructions. The state of
branch instructions are set to ROQ_WTBK after the
branch result has been sent to other parts of the proces-
sor through the branch bus to justify branch prediction
tables and to cancel instructions following mispredicted
branches. ROQ_WTBK instructions can be committed
if they reach the head of the reorder queue.

Reorder queue graduates instructions in order. It
commits as many as four ROQ_WTBK instructions in
the queue head per cycle. The execution result of an in-
struction cannot be made as the processor state before
this instruction graduates. When an instruction grad-
uates, its pdest and odest fields are sent to the register
mapping module to confirm the mapping of pdest en-
try as the processor state and to free the mapping of
odest entry, it also informs the memory queue that the
corresponding store instructions can start to modify the
memory.

For precise exception handling, exceptions are not
processed as soon as they occur. They are recorded in
the reorder queue instead. When the exception instruc-
tion reaches the head of the reorder queue, the exception
information is sent out through exception bus. All the
following instructions are cancelled, exception informa-

tion is recorded in CPO registers, and the PC is set to
the entry point of exception handler.

4.5 Branch Canceling and Branch Queue

A branch instruction enters the branch queue at the
same time when it is sent to the reorder queue and the
reservation station. At most, one branch instruction can
be accepted by the branch queue per cycle. The branch
queue can hold as many as eight branch instructions
concurrently.

The branch queue provides the information neces-
sary for execution when a branch instruction is issued
to be executed. The information includes the PC value
for branch and link instructions, and the predicted taken
bit for conditional branch instructions.

After a branch instruction is executed, execution re-
sults specific to branch instructions are written back
to the branch queue. The results include the target
PC for JR and JALR instructions, the branch direction
for conditional branch instructions, and a bit indicat-
ing whether the branch prediction is error. The branch
instruction execution result should be feedback to the in-
struction fetch part before it can be committed. Besides
canceling mispredicted instructions, the branch execu-
tion result is also used to justify the BHT, BTB, RAS,
and GHR for following branch prediction.

For incorrect prediction, instructions that follow the
mispredicted branch should be cancelled. The key issue
is for each instruction in the pipeline to decide whether
it is before or after the mispredicted branch. Godson-
2 divides the continuous instruction stream into basic
blocks separated by branch instructions. Each instruc-
tion is assigned a branch queue position identifier brqid
that can be regarded as its basic block number. For
branch instruction, this identifier indicates its position
in the branch queue; for ordinary instruction, this iden-
tifier indicates its previous branch instruction position in
the branch queue. In this way, each instruction can de-
termine its relative position to the mispredicted branch
by comparing its brqid with the brqgid of the mispredicted
branch. For example, if the head of the branch queue is
in position 0 and the mispredicted branch is in position
5, then an instruction with the brqid value of 6 will be
cancelled and an instruction with the brqid value of 4
will not be cancelled. Delay slot instructions should be
paid special attention in branch canceling.

5 Functional Units

Godson-2 has two fix-point functional units, ALU1
and ALU2, and two floating-point functional units,
FALU1 and FALU2.

ALU1 executes fix-point addition, subtraction, logi-
cal, shift, comparison, trap, and branch instructions. All
ALUI instructions are executed and written back in one
cycle.

248

ALU2 executes fix-point addition, subtraction, log-
ical, shift, comparison, multiplication, and division in-
structions. Fix-point multiplication is fully pipelined
and has a latency of four cycles. Fix-point division uses
the SRT algorithm and is not fully pipelined, the latency
of fix-point division ranges from 4 to 37 cycles depend-
ing on the operands. All other ALU2 instructions can
be executed and written back in one cycle.

The fully pipelined FALU1 executes floating-point
addition, subtraction, absolute, negation, conversion,
comparison, and branch instructions. The floating-point
absolute, negation, comparison and branch are two-cycle
instructions, while the latency of floating-point addition,
subtraction, and conversion instructions is four-cycle.

FALU2 executes floating-point multiplication, divi-
sion, and square root instructions. The fully pipelined
floating-point multiplication uses two-bit Booth-encoded
Wallace tree algorithm and has a latency of five cycles.
The division and square root use the SRT algorithm and
are not fully pipelined. The latency of single/double pre-
cision floating-point division ranges from 4 to 10/17 cy-
cles, the latency of single/double precision floating-point
square root ranges from 4 to 16/31 cycles, depending on
the operands.

Besides executing all MIPS III floating-point instruc-
tions, the floating-point functional units can also execute
paired-single floating-point instructions which calculate
two single precision operations (addition, subtraction
and multiplication) in the 64-bit datapath, 32- or 64-bit
fix-point instructions (arithmetic, logic, shift, compare,
and branch), and 8- or 16-bit SIMD fix-point instruction
through extension of the fmt field of the floating-point
instructions.

6 Memory Access and Memory Management

The memory subsystem of Godson-2 also provides po-
tential for high performance. Godson-2 has a 64KB level
one instruction cache and a 64KB level one data cache,
both four-way set associative. The fully associative TLB
of Godson-2 has 64 entries each maps an odd and an even
page. A 16-entry memory access queue that contains a
content-addressable memory for dynamic memory dis-
ambiguation allows Godson-2 to implement out-of-order
memory access, non-blocking cache, load speculation,
and store forwarding.

The Godson-2 memory access pipeline is split into
four stages. Memory references are issued out-of-order
to the address calculation unit. Calculated virtual ad-
dresses and values are sent to TLB and cache unit; TLB
translates virtual addresses into physical addresses in
parallel with cache accessing; TLB and cache results
are then used to determine whether cache access is hit
and are sent to memory access queue, where dynamic
memory disambiguation and memory forwarding is per-
formed; finally the results are written back when ready.

The interface of the Godson-2 processor supports

J. Comput. Sci. & Technol., Mar. 2005, Vol.20, No.2

split read and R5000 like external level two cache. The
size of the external cache ranges from 256KB to 8MB.

6.1 TLB

Godson-2 implements a 64-entry fully associative
TLB for virtual-physical address translations. It con-
tains a CAM part that is used to associatively search
virtual addresses and an RAM part which stores phys-
ical page numbers and page protect bits. The CAM
lookup is done in address calculation stage to avoid the
need of asynchronous RAM. To reduce hardware cost,
Godson-2 uses 40-bit virtual address and 36-bit physical
address instead of the rarely needed 64-bit.

One important feature of Godson-2 is its ability to do
page level execution protection. It is implemented as an
additional bit in TLB entries, which can be manipulated
by software. An address error exception will occur in an
instruction fetch attempt from a page with the bit set.
Operating systems can utilize this ability to effectively
invalidate many exploits of buffer overflow vulnerabili-
ties, which are the most common form of security holes.

Many of the MIPS coprocessor 0 control registers are
related with TLB, so they are implemented close-by to
minimize wiring. Some control register bits affect in-
struction fetch or other processor status hence CP0 in-
structions which access control registers are serialized in
instruction fetch or issue stage.

6.2 Data Cache

Godson-2 comes with a 64KB four-way set associative
primary data cache. It is virtually indexed and physi-
cally tagged so that accesses can happen in parallel with
TLB lookups. The replacement policy is random, but
two continuous replacement of the same block is avoided
by hardware.

To reduce chip area and ease physical design, sin-
gle port RAM is used for both tag and data. Godson-2
allows simultaneous loads and write-back of stores pro-
vided they access different banks to alleviate cache ac-
cess conflict. When cache port conflict does occur among
refills, loads (stores read only the tag array) and write-
back of stores (which write cache data only), refills have
the highest priority while write-back of stores have the
lowest priority.

Because each cache way contains 16K bytes (four
times the minimum virtual page size), two of the vir-
tual index bits (13:12) might not equal the bits in the
physical address tag. Current Godson-2 does not provide
hardware to prevent possible consistency problems. Op-
erating systems are expected to provide solutions here.
There are already mature software solutions available to
solve inconsistent problems caused by virtual index.

6.3 Memory Access Queue

Memory access queue is the core unit of Godson-
2 memory subsystem. It can track up to 16 in-flight

Wei-Wu Hu et al.: Microarchitecture of the Godson-2 Processor 249

memory loads or stores. Loads and stores enter the
queue out-of-order, but an in-order architectural mem-
ory model is maintained. Multiple cache misses and hit
under miss are allowed.

Godson-2 does not retry a memory access in case of
cache miss or hazards. Using a physical address CAM,
the memory access queue dynamically performs disam-
biguation and forwarding between accesses. When a load
enters the queue, it checks all the older stores for possi-
ble bypass for each byte it needs. When a store enters
the queue, it checks all the younger loads in front of an-
other tyounger store to the same byte in the queue to
decide whether to forward value to them. The queue
also snoops cache refill and replace operations.

The queue has four read ports. The first read port
is used to select first result-ready instruction and write
back its result. Cache hit loads are written back even
when there is pending stores before it. If late coming
store should forward its value to the speculatively writ-
ten back load, the load and its following instructions will
be cancelled. The second read port is used to select the
first committed write-ready store and write its value to
data cache. A store is write-ready when the value to
store is valid and it has been committed (that is, cannot
be cancelled). The third read port is used to issue miss
request to the next level memory. Uncached accesses
and exception handling use the last read port.

7 Physical Implementation

The above design of the Godson-2 processor has been
physically implemented based on the ASIC flow with
some manual placement and a number of crafted cells
and macros. Design Compiler was used to do logical
synthesis, Physical Compiler was used to generate the
placement for cells, and Astro was used for floorplan,
clock tree generation, and routing. The design was based
on SMIC’s (Semiconductor Manufacturing International
Corporation) 6-metal 0.18um CMOS process.

A number of crafted cells and macros were built for
this design. The crafted cells include some basic cells
such as flip-flops with much lower latency and power
than those of Artisan’s library, NANDs, NORs, AOISs,
MUXs, buffers and inverters with different sizes; some
double height cells such as 4-, 6-, or 8-bit comparator,
4-bit flip-flops, and full adder; and the pad cells for flip-
chip package. The crafted macros include a 64 x 64 regis-
ter file with 3 write ports and 6 read ports and a special
RAM macro for TLB.

To reduce clock cycle time, some datapath mod-
ules or modules with replicated structure were manu-
ally mapped to the cell library from a structural Verilog
model, and were manually placed in a bit-sliced way.
These modules were automatically routed in a flatten
way after the detailed placement. Besides, the useful
clock skew technique is used for critical path pipeline
stage to borrow time from adjacent pipeline stages.

The area of the chip is about 6,700 micrometers by
6,200 micrometers. The clock cycle at typical corner is
2.3ns. The power consumption is about 2.0-3.0 watt in
400MHz. Now Godson-2 chips are running well and a
type of Linux PC based on the Godson-2 processor is
under development.

8 Conclusion and Future Work

This paper introduces the micro-architecture of the
Godson-2 processor. Godson-2 is a 64-bit, 4-issue, out-
of-order execution RISC processor which implements the
MIPS-like instruction set. The adoption of the aggres-
sive out-of-order execution techniques (such as register
mapping, branch prediction, and dynamic scheduling)
and cache techniques (such as non-blocking cache, load
speculation, dynamic memory disambiguation) helps
Godson-2 to achieve high performance even at not so
high frequency.

Our recent work includes further improving the func-
tional units, the instruction fetch system and memory
system. Improvements on the functional units include
the support of conditional move instruction and the
floating-point multiply-add instruction. Improvements
on instruction fetch system include more precise branch
prediction and support for SMT (Simultaneous Multi-
threading). Improvements on memory system include
on-chip level-two cache implementation, cache coherence
for SMP and on-chip DDR memory interface. Besides,
custom physical design of the next version of Godson-2
processor with more advanced technology is being un-
dertaken.

Our future work includes implementing a special
Java co-processor and exploiting multithreading paral-
lelism through putting multiple processors in the same
chip.

References

[1] Weiwu Hu, Zhimin Tang. Microarchitecture design of the
Godson-1 processor. Chinese Journal of Computers, April
2003, pp.385—396. (in Chinese)

[2] Divid Patterson, John Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc.
1996.

[3] Kessler R. The Alpha 21264 microprocessor.
March/April 1999, 19: 24-36.

[4] Kenneth Yeager. The MIPS R10000 superscalar microproces-
sor. IEEE Micro, April 1996, 16: 28—41.

[5] Tim Horel, Gary Lauterbach. UltraSparc-III: Designing third-
generation 64-bit performance. IEEE Micro, May/June 1999,
19: 73-85.

[6] Ashok Kumar. The HP PA-8000 RISC CPU. IEEE Micro,
Mar.—Apr., 1997, 17: 27-32.

[7] Joel Tendler, Steve Dodson, Steve Fields et al. Power 4 sys-
tem microarchitecture. IBM Technical White Paper, October
2001.

[8] Huck J et al. Introducing the IA-64 architecture. IEEE Mji-
cro, Sept.—Oct., 2000, 20: 12-23.

[9] Glenn Hinton, Dave Sager, Mike Upton et al. The microarchi-
tecture of the Pentium 4 processor. Intel Technology Journal,

Q1, 2001.

IEEE Micro,

