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Abstract It is well-known that in order to build a strong ensemble, the component learners should be with high diversity
as well as high accuracy. If perturbing the training set can cause significant changes in the component learners constructed,
then Bagging can effectively improve accuracy. However, for stable learners such as nearest neighbor classifiers, perturbing
the training set can hardly produce diverse component learners, therefore Bagging does not work well. This paper adapts
Bagging to nearest neighbor classifiers through injecting randomness to distance metrics. In constructing the component
learners, both the training set and the distance metric employed for identifying the neighbors are perturbed. A large scale
empirical study reported in this paper shows that the proposed BagInRand algorithm can effectively improve the accuracy

of nearest neighbor classifiers.
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1 Introduction

Ensemble learning algorithms train multiple compo-
nent learners and then combine their predictions. Since
the generalization ability of an ensemble could be sig-
nificantly better than that of a single learner, ensemble
learning has been a hot topic in the past years!!. It is
well-known that in order to produce a strong ensemble,
the component learners should preserve high diversity as
well as high accuracy[??!. Although different algorithms
may utilize different schemes to achieve the diversity, the
most often used one is to perturb the training sets.

In one of the most famous ensemble learning al-
gorithms, i.e., Bagging[¥, many samples are generated
from the original data set via bootstrap sampling!® and
then a component learner is trained from each of these
samples, whose predictions are combined via majority
voting. It is evident that the bootstrap sampling pro-
cess is a specific mechanism for perturbing the train-
ing set. As Breiman indicated®!, for unstable learn-
ers such as decision trees and neural networks, perturb-
ing the training set can cause significant changes in the
component learners constructed, therefore Bagging can
effectively improve the accuracy. However, for stable
learners such as nearest neighbor classifiers, perturbing
the training set can hardly produce diverse component
learners, therefore Bagging can hardly work. So, al-
though Bagging is a powerful ensemble learning algo-
rithm, it is difficult to be applied to nearest neighbor
classifiers to obtain good performance, notwithstanding
nearest neighbor classifiers are very useful in real-world
applications!®7.

In this paper, a new variant of Bagging named
BagInRand (Bagging with Injecting Randomness) is
proposed, which constructs diverse component nearest
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neighbor classifiers through perturbing both the train-
ing set and the distance metrics employed in measuring
the distance between different instances. A large scale
empirical study involving twenty data sets, eight config-
urations of k values of nearest neighbor classifiers and
nine configurations of ensemble sizes is reported in this
paper, which shows that BagInRand can effectively im-
prove the accuracy of nearest neighbor classifiers.

The rest of this paper is organized as follows. Sec-
tion 2 proposes the BagInRand algorithm. Section 3
presents the empirical study. Section 4 concludes the

paper.

2 BagInRand

In the middle of the 1990’s, Krogh and Vedelsby!?!
presented a famous equation E = E — A, where F is
the generalization error of an ensemble, and E and A
are the average generalization error and average am-
biguity of the component learners, respectively. This
equation clearly discloses that the more accurate and
the more diverse the component learners are, the better
the ensemble is. Therefore, in order to develop a good
ensemble, the component learners should be with high
diversity as well as high accuracy. Unfortunately, mea-
suring diversity is not straightforward because there is
no generally accepted formal definition, and so using it
effectively for building better ensembles is still a prob-
Therefore, generating diverse but
accurate component learners remains a trick at present,
which is the key of most ensemble learning algorithms.

lem to be solved[®.

Bagging!¥ achieves the diversity through perturbing
the training set. For a given data set D, t samples
Dy, Ds,...,D; are generated by bootstrap sampling.
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Note that the data distribution held by a sample, say
D;, is usually different from that of D. Therefore the
component learners trained from these samples can be
anticipated to be diverse. Although this scheme is quite
effective for unstable learners such as decision trees and
neural networks, it is not so useful in dealing with stable
learners such as nearest neighbor classifiers. This is not
difficult to understand because as Breiman!® indicated,
given N training examples, the probability that the i-th
training example is selected 0,1,2,... times is approx-
imately Poisson distributed with A = 1. The proba-
bility that the ¢-th example will occur at least once is
1—(1/e) ~ 0.632. If there are t bootstrap samples in a
2-class problem, then a test instance may change classi-
fication only if at least one of its nearest neighbors in the
training set is not in at least half of the ¢ samples. This
probability is given by the probability that the number
of heads in t tosses of a coin with probability 0.632 of
heads is less than 0.5¢. As t gets larger, this probability
gets very small.

Since the scheme of perturbing training set does not
work for nearest neighbor classifiers, in order to build a
good ensemble, we have to try other schemes for intro-
ducing diversity. In fact, as indicated by Dietterich[!,
besides perturbing training set there are several other
schemes that could help improve the diversity, among
which is the scheme of injecting randomness into the
learning algorithm. Such a scheme has been applied by
Kolen and Pollack®! to neural networks through setting
different initial weights for different networks, by Kwok
and Carterl®! and Dietterich!!®! to C4.5 decision trees
through introducing some randomness to the selection of
tests for splitting tree nodes, and by Ali and Pazzanil'!]
to relational learner FOIL through randomly selecting
some good candidate rule conditions. These studies in-
spired us to try the scheme of injecting randomness in
building ensembles of nearest neighbor classifiers.

Nearest neighbor classifier has no separate training
phase, but when a new instance is given to be classified,
the classifier will identify several neighboring training
examples for this new instance and then usually use
the majority voting method to produce the classifica-
tion. The Euclidean distance is generally used to mea-
sure the distance between different instances described
by continuous attributes. Actually, the Euclidean dis-
tance is a special case of Minkowsky distance, with order
2. That is, in the formal definition of Minkowsky dis-
tance shown in (1), p is set to 2 for obtaining Euclidean
distance. Here x; and x5 are two instances described
by d-dimensional continuous attribute vectors.

Minkowskyp(wl,mg) :(‘wll — 3321|p =+ |$12 — w22\p
+---+|w1d—ﬂ32d|p)1/p-

(1)

Through setting different values to p, different dis-
tance metrics can be obtained. In general, the smaller

the value of p, the more robust the resulting distance
metric to data variations; while the larger the value of
p, the more sensitive the resulting distance metric to
variations. That means these resulting distance metrics
may help identify different vicinities of a given instance.
So, it is possible to use them to help construct diverse
component nearest neighbor classifiers.

However, Minkowsky distance can hardly deal with
categorical attributes. Fortunately, VDMI2] can be a
good complement. Let N, , denote the number of train-
ing examples holding value u on categorical attribute a,
Ng.u,c denote the number of training examples belong-
ing to class ¢ and holding value u on a, and C denote
the number of classes. The distance between two values
u and v on a can be computed by a simplified version
of VDM shown in (2), where g is usually set to 1 or 2.
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A new distance metric can be developed through
combining the Minkowsky distance and VDM in the way
as (3) shows, where the first j attributes are categorical
while the remaining (d — j) ones are continuous. Here
the distance is called Minkovdm distance. It is evident
that such a distance metric can deal with both continu-
ous and categorical attributes, and both p and g can be
perturbed to help construct diverse component nearest
neighbor classifiers.

Minkovdm,, q(x1,22) = (VDM y(211, 221) +--- +
VDM ¢(®1j,@2;5) + |@1,j41 — @2,541[7
+---+\w1d—w2d|p)1/p. (3)

Table 1. Pseudo-Code Describing the BagInRand Algorithm
BagInRand(z, D, Y, k, t, Q1, Q2)
Input: @: Instance to label
D: Data set
Y: Label set {y1,y2,---,¥Yn}
k: Number of neighbors to query
t: Trials of bootstrap sampling
Q1: Distance order set {p1,p2,...,p1}
Qg: Distance order set {g1,92,...,qm}
for i € {1..n} do count; « 0
for : € {1..t} do
D; <+ BootstrapSample(D);
pi + RandomSelect(Q1);
q; <+ RandomSelect(Q2);
Z « Neighbor(x, k, D;, Minkovdmp, q,);
%% k nearest neighbors of  are identified in D;
%% with the distance metric Minkovdmyp, q;
1* ¢ arg max Z 1;

Y, €Y, z€Z:
2. label=y;

%% y;* is the label held by majority instances in Z
count;x < count;* + 1
%% yi* receives the vote of a component learner
end of for
Output: @.label < Yarg max(count,)

%% x.label is determined via majority voting
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The BagInRand algorithm works through bootstrap
sampling the original data set first. For each sample, it
then randomly selects a value of p from a set 2; and a
value of ¢ from a set 5. The selected p and ¢ values
are then used to substantiate the Minkovdm distance
defined in (3), which results in a component nearest
neighbor classifier on the sample. Finally, the classi-
fication of a given instance is determined by majority
voting of the predictions made by the component clas-
sifiers constructed on different samples. The empirical
study reported later shows that such a simple algorithm
works well on nearest neighbor classifiers.

The pseudo-code of BagInRand is shown in Table
1. Note that compared with the Bagging algorithm for
nearest neighbor classifiers, BagIlnRand has two more
parameters to set, that is, ; and Q5. But since 5
is usually set to {1,2} and Q; can be easily set to a
random set of real values, the BagInRand algorithm is
almost as easy as Bagging to use.

3 Empirical Study

A large scale empirical study is performed to test
BagInRand. Twenty data sets from the UCI Machine
Learning Repository!*®! are used, where the original in-
stances with missing values are removed. Information
on the experimental data sets is tabulated in Table 2.

Table 2. Experimental Data Sets
Attribute

Data set Size _ . Class
Categorical  Continuous
anneal 898 6 32 6
auto 159 15 10 7
balance 625 4 0 3
breast 277 0 9 2
breast-w 683 9 0 2
credit-a 653 6 9 2
credit-g 1,000 7 13 2
diabetes 768 8 0 2
glass 214 9 0 7
heart 270 13 0 2
heart-c 296 6 7 5
tonosphere 351 34 0 2
iris 150 4 0 3
lymph 148 3 15 4
segment 2,310 19 0 7
sonar 208 60 0 2
soybean 562 0 35 19
vehicle 846 18 0 4
vote 232 0 16 2
vowel 990 10 3 11

On each data set, ensembles of eight kinds of k-
nearest neighbor classifiers are tested, where the value
of k is set to 3, 5, 7, ..., 17, respectively. Nine en-
semble sizes are tried, including 3, 5, 7, ..., 19. Since
10 times 10-fold cross validation is performed, in total
7,200 BagInRand ensembles are tested on each data set.
For comparison, Bagging is tested in the experiments.
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Also, three other ensemble algorithms are included in
the comparison. The first one is InRand, which is al-
most the same as BagInRand except that it does not
utilize bootstrap sampling. That is, the InRand algo-
rithm attempts to construct diverse component nearest
neighbor classifiers through only injecting randomness
to distance metrics. The second one is BagInRandRAW,
i.e., BagInRand with Random Attribute Weights. As
its name suggests, this algorithm utilizes all the mech-
anisms used in BagInRand and besides, for each com-
ponent nearest neighbor classifier it assigns a random
weight in the range of [0.0,41.0] to each input attribute.
Therefore, different input attributes will have different
degrees of impact in computing the distances, while at-
tributes with zero weight will be excluded. The third
one is BagRAW, i.e., Bagging with Random Attribute
Weight, which is almost the same as BagInRandRAW
except that it does not inject randomness to distance
metrics. ; used by BaglnRand, InRand and Bagln-
RandRAW is set to {1,2,3}, while Qs is set to {1, 2}.

Note that this paper focuses on adapting the Bagging
algorithm to nearest neighbor classifiers through intro-
ducing diversity from different aspects. As for building
ensembles of nearest neighbor classifiers, there are at
least two effective algorithms. One is the subspace al-
gorithm that trains different component learners from
different attribute subspaces'¥, which has also been
presented as the MFS (Multiple Feature Subsets) al-
gorithm in [15]; the other is the kNN moderating algo-
rithm which controls the sampling process and marginal-
izes the kNN estimates using the Bayesian priorl!6].
In fact, the BagRAW algorithm attempts to introduce
some merits of the subspace algorithm to adapt the Bag-
ging algorithm to nearest neighbor classifiers while Bag-
InRandRAW attempts to further improve BaglnRand
with these merits. On the other hand, since the nearest
neighbor classifiers used in this paper make predictions
through majority voting instead of soft voting among
training examples, merits of the kNN moderating algo-
rithm are not exploited.

Since there are eight k£ values and nine ensemble
sizes tested on 20 data sets, reporting on the average
10 times 10-fold cross validation results requires a table
with 8,640 table entries (8 x 9 x 20 x 6), or 180 figures
(9 x 20) each depicting for each data set the error of
the six algorithms according to different k& values under
a fixed ensemble size and another 160 figures (8 x 20)
each depicting for each data set the error of the six al-
gorithms according to different ensemble sizes under a
fixed k value. It is evident that it will be too tedious to
present these detailed experimental results in the paper.
So, only the summaries are given below. o

If the 10 times 10-fold cross validation result of an
ensemble is significantly better than that of a single k-

DThe detailed experimental results can be accessed

annex/jcst05-expdata.rar.

at http://cs.nju.edu.cn/people/zhouzh/zhouzh. files/publication/
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Table 3. Comparing Bagging with Single Nearest Neighbor Classifier (win/tie/lose)

k sz =3 sz=25 sz =T sz2=9 sz=11 sz=13 sz=15 sz=17 sz=19

3 3/1/16 4/5/11 4/8/8  4/10/6 4/12/4 4/13/3 6/11/3 7/10/3 10/7/3

5 1/5/14 2/6/12 3/8/9  2/11)T 2/12/6  5/9/6  6/10/4  7/9/4  9/7/4

T 0/6/14 0/9/11 1/10/9 0/14/6 2/14/4 4/11/5 4/12/4  4/12/4  7/9/4

9 2/7/11 3/9/8 3/11/6 2/13/5 4/11/5 6/10/4 5/12/3  4/13/3  6/11/3

11 3/7/10 3/11/6 4/12/4 6/13/1 6/11/3 7/12/1 7/12/1 7/10/3 7/12/1

13 3/7/10 3/9/8  2/13/5 3/15/2 5/13/2 4/14/2 4/14/2  4/14/2  6/11/3

15 8/5/12 3/7/10 5/7/8 5/11/4 6/11/3 5/11/4 5/11/4 5/12/3 6/11/3

17 8/4/18 1/10/9 2/11)7 2/14/4 2/13/5 3/12/5 3/12/5 4/10/6  5/9/6

Table 4. Comparing InRand with Single Nearest Neighbor Classifier (win/tie/lose)

k sz =3 sz=25 sz=1T sz =9 sz =11 sz =13 sz =15 sz=17 sz=19

3 6/10/a 8/8/4 9/7/4 10/3/7 9/3/8 _ 8/8/4 _ 9/6/5 _ 9/9/2 _ 8/8/4

5 7/4/9 6/8/6  9/5/6 9/6/5 9/6/5  9/6/5  9/5/6  9/5/6  7/9/4

7 6/9/5 6/7/T 8/a/8  8/5/T  9/a)T  8/6/6  8/6/6  7/9/4  11/4/5

9 8/7/5 10/5/5 9/6/5 8/7/5 7/7/6  10/6/4  10/6/4 11/5/4  12/4/4

11 9/6/5 10/5/5 9/6/5 10/5/5 10/5/5 12/5/3 10/6/4 11/5/4 12/3/5

13 8/7/5 9/8/3 9/9/2  8/8/4 11/4/5 11/4/5  9/6/5  11/4/5 10/6/4

15 9/6/5 8/9/3 10/6/4 11/6/3 10/7/3 11/6/3  11/4/5  12/4/4 12/4/4

17 8/s/4 8/8/4 8/7/5 10/5/5 10/7/3 10/6/4 10/8/2 10/6/4  10/6/4

Table 5. Comparing BagInRand with Single Nearest Neighbor Classifier (win/tie/lose)

k sz =3 sz=25 sz=1T7 sz =9 sz =11 sz =13 sz =15 sz =17 sz =19
3 3/6/11 6/7/7 _7/8/5 10/6/4 10/9/1  8/11/1 12/7/1 11/7/2 12/6/2
5 1/7/12  5/8)7 5/10/5  7/9/4  8/11/1  11/7/2 13/5/2 14/3/3 13/5/2
T 3/4/13 4)7/9 4/10/6  8/7/5 7/7/6 9/7/4 9/8/3  11/6/3  9/8/3
9 4/5/11 6/9/5 7/9/4 10/8/2 11/7/2  10/9/1 12/6/2 12/6/2 12/6/2
11 4/8/s  5/8/T 9/7/4 9/10/1 10/10/0 10/10/0 10/9/1 12/7/1 11/8/1
13 5/7/8  8/8/4  8/9/3 11/8/1  8/9/3 12/7/1  10/8/2 12/6/2 11/7/2
15 4/9/7  6/9/5 10/6/4 8/8/4  10/9/1  11/8/1 11/8/1 12/7/1 11/7/2
17 4/8/8 4/10/6 9/4/7  10/6/4  10/6/4  11/8/1 11/7/2 10/7/3  11/6/3

Table 6. Comparing BaginRandRAW with Single Nearest Neighbor Classifier (win/tie/lose)

k sz =3 sz=125 sz=1T sz=29 sz=11 sz=13 sz=15 sz=17 sz=19
3 1/0/19 1/2/17 1/4/15 3/2/15 8/4/13 4/4]/12 6/3/11 7/3/10 6/4/10
5 0/1/19 1/0/19 1/0/19 1/1/18 1/3/16 1/2/17 2/8/15 8/3/14 2/4/14
7 0/0/20 0/1/19 0/1/19 0/2/18 0/4/16 1/5/1} 2/3/15 2/4/14  2/6/12
9 0/1/19 0/2/18 1/4/15 1/4/15 1/4/15 1/4/15 1/6/18 1/6/18 1/6/13
11 o0/1/19 1/4/15 1/3/16 2/2/16 1/4/15 1/4/15 1/6/13 1/8/11 3/4/13
13 1/1/18 1/4/15 2/3/15 4/3/13 38/8/14 3/5/12  3/5/12  4/4/12 4/4/12
15 1/2/17 1/4/15 8/3/14 8/3/14 4/3/13 3/4/13  5/2/13  5/2/13  4/6/10
17 1/3/16 2/4/14 1/5/14 3/3/14 4/2/14 2/5/13  4/2/14 5/3/12 5/2/13
Table 7. Comparing BagRAW with Single Nearest Neighbor Classifier (win/tie/lose)
k sz =3 sz=5 sz =17 sz =29 sz=11 sz=13 sz=15 sz=17 sz=19
3 2/3/15 2/7/11 5/5/10 6/5/9 8/6/6 8/6/6 8/9/3 12/4/4 10/6/4
5 0/2/18 2/3/15 2/5/13 4/8/8 6/8/6 4/10/6 7/8/5 7/9/4 8/7/5
7 0/38/17 1/6/18 5/4/11 5/7/8 5/5/10 4/7/9 6/6/8 10/2/8 6/6/8
9 1/4/15 2/6/12 4)7/9  6/3/11  5/8)7  7/5/8  8/6/6  T/5/8  6/7)7
11 2/3/15 2/8/15 4/5/11 5/6/9 4/7/9 5/7/8 6/5/9 6/7/7 8/5/7
13 2/2/16 3/4/18 3/6/11 4/9/7 5/6/9 5/6/9 6/7/7 7/8/5 6/8/6
15 2/2/16 3/8/14 8/3/14 2/7/11 4/6/10 4/7/9 5/5/10 7/4/9 7/4/9
17 2/38/15 2/4/14 8/3/14 2/5/18 8/7/10 3/9/8 4/8/8 4/6/10 7/4/9

nearest neighbor classifier on a data set (pairwise two-
tailed t-test at 0.05 significance level), then the ensemble
algorithm is deemed to win single classifier for one time.
The win/tie/lose appearances of Bagging, InRand and
BagInRand are summarized in Tables 3 to 7, where “sz”
denotes ensemble size. Boldfaced and italicized table en-
tries respectively indicate that the ensemble algorithm
is significantly better or worse than single nearest neigh-
bor classifier (sign test at 0.05 significance level).

Table 3 shows that Bagging is never significantly bet-
ter than single classifier, and when the ensemble is rel-
atively small (sz < 7), Bagging is often significantly
worse than single classifier. This confirms Breiman’s
result!¥ that Bagging cannot work on nearest neighbor
classifiers. Table 4 shows that although InRand is never
significantly worse than single classifier, it is rarely sig-
nificantly better. This reveals that the scheme of inject-
ing randomness to distance metrics does not work well
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on nearest neighbor classifiers either. Table 5 shows
that although there are rare cases where BagInRand is
significantly worse than single nearest neighbor classi-
fiers (sz = 3 and k = 5 or 7), it is often significantly
better than them when sz > 11. This discloses an in-
teresting fact, that is, although neither perturbing the
training set nor injecting randomness to the learning al-
gorithm works well solely on nearest neighbor classifiers,
the combination of them can work well.

Unfortunately, Tables 6 and 7 show that neither Bag-
InRandRAW nor BagRAW is significantly better than
single nearest neighbor classifier. Even worse, Bagln-
RandRAW seems almost always significantly worse than
single classifier, so does BagRAW when the ensemble
is relatively small (sz < 7). These observations sug-
gest that simply introducing random attribute weight to
Bagging is not helpful. We guess that this might due to
the following reasons. Perturbing the input attributes,
such as the subspace algorithm, can usually successfully
generate quite diverse component kNN classifiers. How-
ever, the accuracy of the component classifiers is often
not good. This might be because in an original training
set there are usually some attributes irrelevant to the
learning target, which might interfere with the learning
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on the relevant attributes, especially considering that
kNN classification relies on the computation of distances
in attribute spaces. When random attribute weight is di-
rectly exerted on many bootstrap samples, the influence
of irrelevant attributes might increase to such a degree
that the accuracy of the component learners is injured so
much that the ensemble could not work. However, this
conjecture has to be justified in the future. Since Bag-
InRandRAW and BagRAW are not effective and BagIn-
Rand has not exploited random attribute weight, in the
following analyses we do not consider BagiInRandRAW
and BagRAW further.

Tables 3 to 5 also suggest that relatively big ensemble
sizes might be beneficial to all these three ensemble algo-
rithms, because as ensemble size increases, the number
of times that Bagging is significantly worse than single
classifier tends to become smaller, the number of times
that BagInRand is significantly better than single classi-
fier tends to become bigger, and although InRand is al-
most always comparable to single classifier, the number
of data sets it wins tends to become bigger. In addition,
Tables 3 to 5 suggest that these ensemble algorithms be
not sensitive to the value of k because in most cases the
table entries in the same column look comparable.
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Fig.1. Impact of ensemble size for credit-a, heart-c, sonar and soybean (k = 11). (a) credit-a. (b) heart-c. (c) sonar. (d) soybean.
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However, since above verdicts are made based on
the observations of the overall performance of the algo-
rithms on the twenty data sets, it is not clear whether
or not they are applicable when only a concrete data
set is concerned. So, the experimental results have
been further analyzed. As mentioned before, it is hard
to present all the detailed results and analyses, there-
fore here we only report the results on four typical
data sets, i.e., large data set credit-a, median data set
heart-c, small data set somar and tiny data set soy-
bean. The type of a data set is decided according to

size
COEF =
#attributes X #classes’

size of the data set relative to its dimensionality and
its quantity of classes. The COEF values of these four
typical data sets are 21.77, 4.55, 1.73, and 0.85, respec-
tively. The performance of Bagging, InRand and Bag-
InRand are shown in Figs.1 and 2, where the relative
errors are obtained through dividing the averaged er-
rors of the ensembles by those of single nearest neighbor
classifiers. For reference, the relative errors (1.0 accord-
ing to the definition of relative error) of single classifiers
are also depicted in these figures.

Fig.1 shows that relatively big ensemble size is bene-
ficial for heart-c and soybean but not beneficial for credit-
a and sonar. Therefore, although Tables 3 to 5 suggest
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that relatively big ensemble size be beneficial, it is only
an overall tendency while for concrete data sets the in-
fluence of the ensemble size on the performance might
be different. This also indicates that selective ensemble
paradigm[!”l which selects a subset of trained compo-
nent learners instead of using all the component learn-
ers to comprise an ensemble can be a good choice. On
the other hand, Fig.2 shows that the k value does have
some influence on the performance of the ensembles, but
the influence is quite complicated. In detail, the rela-
tive errors of the ensembles tend to decrease for credit-a,
sonar, and soybean while fluctuate for heart-c as k in-
creases. Therefore, although Tables 3 to 5 suggest that
the overall performance of the ensemble algorithms be
not sensitive to the value of k, the impact caused by k
value might be different for concrete data sets.

Note that in Figs.1 and 2 when we study the impact
of the ensemble size, the k value is fixed to the median
of the tested values; while when we study the impact
of the k value, the ensemble size is fixed to the median
of the tested sizes. So, the analyses reported above are
only about 1/8 (eight other ensemble sizes, seven other
k values) of the analyses we have made on these four
data sets. However, the other portions of our analyses
(including analyses on other data sets) disclose similar
facts, i.e., on concrete data sets the impact of the ensem-



54

ble size and the k value on these ensemble algorithms
might be different.

4 Conclusion

In this paper, a new ensemble learning algorithm
BagInRand is proposed, which is designed for building
ensembles of nearest neighbor classifiers. This algorithm
works through employing two schemes for constructing
diverse component nearest neighbor classifiers, that is,
perturbing the training set with bootstrap sampling and
injecting randomness to distance metrics. A large scale
empirical study shows that although this algorithm is
simple, it can effectively improve the accuracy of near-
est neighbor classifiers. This might be quite good be-
cause simple but effective algorithms might have better
application potentials than complicated ones.

Dietterich!) indicated that roughly there are four
schemes for introducing diversity, that is, perturbing
the training set, perturbing the input attributes, per-
turbing the output representation, and injecting ran-
domness to the learning algorithm. The success of Bag-
InRand suggests that although neither the first nor the
fourth scheme is effective solely in building ensembles of
nearest neighbor classifiers, their combination can be ef-
fective. We have tried to introduce into the combination
the second scheme, i.e., perturbing the input attributes
through assigning a random weight to each attribute,
but unfortunately failed. It will be interesting to ex-
plore whether or not we can build ensembles of nearest
neighbor classifiers through combining more than two of
these schemes, and how if we can.
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