Jan. 2005, Vol.20, No.1, pp.18-37 J. Comput. Sci. & Technol.

Parameterized Computation and Complexity: A New Approach
Dealing with NP-Hardness

Jian-Er Chen

College of Information Science and Engineering, Central South University, Changsha 410083, P.R. China
E-mail: jianer@mail.csu.edu.cn

Received May 21, 2004; revised October 1, 2004.

Abstract
science. The theory is aimed at practically solving a large number of computational problems that are theoretically intractable.
The theory is based on the observation that many intractable computational problems in practice are associated with a

parameter that varies within a small or moderate range. Therefore, by taking the advantages of the small parameters, many
theoretically intractable problems can be solved effectively and practically. On the other hand, the theory of parameterized

The theory of parameterized computation and complexity is a recently developed subarea in theoretical computer

computation and complexity has also offered powerful techniques that enable us to derive strong computational lower bounds
for many computational problems, thus explaining why certain theoretically tractable problems cannot be solved effectively and
practically. The theory of parameterized computation and complexity has found wide applications in areas such as database
systems, programming languages, networks, VLSI design, parallel and distributed computing, computational biology, and

robotics.

This survey gives an overview on the fundamentals, algorithms, techniques, and applications developed in the research

of parameterized computation and complexity. We will also report the most recent advances and excitements, and discuss

further research directions in the area.

Keywords
1 Introduction

One of the greatest achievements in theoretical com-
puter science is the development of NP-completeness
theory[ll. NP-completeness theory provides a solid and
convincing foundation for the study of intractable com-
putational problems. However, the theory does not ob-
viate the need for solving these hard problems because
of their practical importance. Many approaches have
been proposed, including polynomial time approxima-
tion algorithms[?!, randomized algorithms!®!, and heuris-
tic algorithms!¥. None of these approaches has satisfied
all needs requested from industry and applications: poly-
nomial time approximation algorithms can only provide
approximation solutions while certain applications may
require precise solutions; the success of a randomized al-
gorithm on a problem in general heavily depends on the
probabilistic distribution of the problem instances; and
heuristic algorithms in general do not have formal per-
formance guarantees.

The theory of parameterized computation and com-
plexity is a more recently developed new approach deal-
ing with hard computational problems arising from in-
dustry and applications. The theory is based on the ob-
servation that many intractable computational problems
in practice are associated with a parameter that varies
within a small or moderate range. Therefore, by taking
the advantages of the small parameters, many theoreti-
cally intractable problems can be solved effectively and
practically. The following are some examples.

algorithm, computational complexity, NP-completeness, parameterized computation, approximation algorithm

e The VERTEX COVER problem (given a graph G
and an integer k, determine if G has a vertex cover C
of k vertices, i.e., a subset C of k vertices in G such
that every edge in G has at least one end in C). Here
the parameter is k. The problem is a well-known NP-
complete problem(!l. On the other hand, the Computa-
tional Biochemistry Research Group at the ETH Zirich
has successfully applied algorithms for this problem to
their research in multiple sequence alignments!®®! where
the parameter value k£ can be bounded by 60. Af-
ter many rounds of improvement, the best known al-
gorithm for the VERTEX COVER problem runs in time
O(1.286% +kn)[3°]. This algorithm has been implemented
and is quite practicall®!.

e The ML TYPE-CHECKING problem (given an ML
program P, determine whether type declarations in the
program are consistent). Here the parameter k is the
maximum nesting depth of the type declarations!®!. The
problem is EXPTIME-complete!1%] (thus is even harder
than NP-complete problems). Normally, the number k
of depth of nested declarations is not larger than 10. Al-
gorithms of running time O(2%n) for this problem have
been developed®!, which is clearly practical for solving
the problem in most applications.

e The FAULT COVERAGE IN MEMORY ARRAY problem
(given a reconfigurable rectangle memory array with de-
fective elements, determine whether the array structure
can be repaired by replacing k; rows and kg columns).
Here the parameter is &k = ki + k3. The problem is

*Survey

This research is supported in part by the National Natural Science Foundation of China under Grants No.60373083 and No.60433020,
and by the Changjiang Scholar Reward Project of Ministry of Education, P.R. China.



Jian-Er Chen: Parameterized Computation and Complexity
NP-complete!]. A typical value for the parameter k is
bounded by 40. The problem has been extensively stud-
ied in the last two decades, by both computer theoreti-
cians and computer engineers. A recently developed al-
gorithm for the problem!!!] has its running time bounded
by O(1.26%n), which is again quite practical.

Therefore, one research direction in parameterized
computation and complexity theory is to fully take the
advantages of small parameter values and develop prac-
tically effective algorithms for computational problems
arising in applications which are theoretically intractable.
We will discuss designing techniques and algorithmic re-
sults in parameterized computation in Section 3.

The rich positive toolkit of novel techniques for devel-
oping efficient parameterized algorithms is accompanied
in the theory by a corresponding negative toolkit that
supports a theory of parameterized intractability. This
theory is based on the extensive research and experience
in computational practice showing that certain parame-
terized problems remain intractable even if the parameter
values are kept small. Consider the following problems.

e The INDEPENDENT SET problem (given a graph G
and an integer k, determine whether G contains an inde-
pendent set I of k vertices, i.e., a subset I of k vertices
in G such that no two vertices in I are adjacent). Here
the parameter is the integer k. The problem has appli-
cations in many areas such as network optimization and
computational biology. The best algorithm solving this
problem runs in time O(n0'792k)[12], based on currently
the best algorithm for matrix multiplication[3].

e The DATABASE QUERY EVALUATION problem (given
a query to a relational database, determine whether the
query has the value t¢rue). Here the parameter is the
size k of the query. The query size k is in general much
smaller than the database size n. The best known al-
gorithm for this important problem in database systems
runs in time O(n*)', which is not practical even for
very small parameter values.

Note that an algorithm of running time O(n*) for
solving the above problems is straightforward. For exam-
ple, to solve the INDEPENDENT SET problem, we can sim-
ply enumerate all subsets of k vertices in the given graph
of n vertices, and check if any of these subsets contains
no adjacent vertices. The running time of this trivial
algorithm is proportional to the number of subsets of k
vertices in the whole set of n vertices, and is of the order
of (}) (]2“) = O(n*). On the other hand, researchers have
struggled for many years trying to develop “smarter” al-
gorithms that avoid this exhaustive enumeration process.
All these efforts have unfortunately failed. Very recent
research['®] has shown strong evidences that for certain
problems such as INDEPENDENT SET, neither polynomial
time pre-processing nor thorough local optimization can
help avoiding the exhaustive enumeration. Therefore,
these problems seems to require computational time of
order of n®®),

Therefore, though both being NP-complete, VERTEX

19

COVER and INDEPENDENT SET seem to be significantly
different in terms of their computational complexity on
small parameter values. The O(1.286% + kn) time algo-
rithm for VERTEX COVER makes the problem practically
feasible for parameter values not larger than 60, while for
INDEPENDENT SET, even for parameter values as small
as 6, the O(n%"2k) time algorithm is already not prac-
tical: for n = 1,000 and k = 60, 1.286" + kn is less than
4 x 108, while for n = 1,000 and k = 6, n>792F is larger
than 18 x 10'3.

To distinguish these two different kinds of parame-
terized problems, a formal framework has been estab-
lished in the theory of fixed-parameter tractability. The
framework divides the parameterized problems into two
fundamental classes: the class of FIXED-PARAMETER
TRACTABLE problems (i.e., FPT problems), such as VER-
TEX COVER, and the class of fized-parameter intractable
problems (i.e., W[1l]-hard problems), such as INDEPEN-
DENT SET. This classification has been successfully
used to establish computational lower bounds for a large
number of problems of practical importance. For ex-
ample, In a special issue of Journal of Computer and
System Sciences (Volume 58, 1999), Papadimitriou and
Yannakakis('¥l used this framework and proved that the
DATABASE QUERY EVALUATION problem is W{[1]-hard.
The preliminary version of this result won the Best Paper
Award in the 16th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. This im-
plies that any algorithm solving the problem will be im-
practical even for small query size. The Guest Editor of
the special issue pointed out: “parametric complexity the-
ory s a productive framework for studying the complexity
of query languages.”

We should point out that the theory of fixed-
parameter tractability is not a simple refinement of the
concept of NP-completeness. As we have seen, there
are fixed-parameter tractable problems, such as the ML
TYPE-CHECKING problem, which are harder than NP-
complete problems. On the other hand, there are also
fixed-parameter intractable problems that seem easier
than NP-complete problems. The following are two ex-
amples.

e V-C DIMENSION: given a collection C of subsets in a
universal set U, and an integer k, decide whether there is
a subset S of k elements in U such that for every subset
T of S there is a subset Cr € C such that SN Cp = T.
Here the parameter is k.

The problem has important applications in compu-
tational learning theory'®l. It can be shown that the
size of the subset S is always bounded by log|C| (see
[17]). Therefore, the problem can be solved in time
O(n®e €)Y by enumerating all subsets of size bounded
by log|C|. In consequence, the problem is unlikely to be
NP-hard. On the other hand, the problem is W{1]-hard
(see [18]). Thus, even the problem seems easier than
NP-complete problems, according to the theory of fixed-
parameter tractability, it has no efficient algorithms even



20

for small parameter values.

e MOTIF FINDING: given k sample DNA sequences,
find an (I, d)-motif (i.e., find a pattern of length [ that
matches a subsequence in each given sequence with d
mismatches allowed). Here k is the parameter.

This is an important problem in computational biol-
ogy. A typical value for the parameter k is 20. Recently,
it has been proposed to solve the problem via solving the
problem of finding a clique of no more than 20 vertices
in a large graph G of n vertices (n is in general of the
order of at least 10,000)[19]. The problem is solvable in
time O(n?°) by enumerating all subsets of no more than
20 vertices in the graph. Thus, the problem is polyno-
mial time solvable. On the other hand, the problem is
W[1]-hard??]. This explains why this polynomial time
solvable problem has no practically efficient algorithms.

Therefore, the theory of fixed-parameter tractability
seems to well supplement the theory of NP-completeness.
In particular, the theory approaches from a more practi-
cal angle, studies the techniques that may be effectively
used in practice to solve certain theoretically intractable
problems, and identifies problems that are theoretically
tractable but have no practically effective algorithms.

We recommend the book by Downey and Fellows!®!
to interested readers for a more systematic treatment of
the theory of fixed-parameter tractability. The recently
published special issue in Journal of Computer and Sys-
tem Sciences (Volume 67, No.6, 2003, Guest Editors:
Chen J. and Fellows M.) provides updates and new de-
velopments in the area.

2 Fundamentals

The theory of parameterized computation and com-
plexity mainly considers decision problems (i.e., prob-
lems whose instances only require a yes/no answer). This
losses no generality. In fact, it has been a very natural
practice in the study of the NP-completeness theory!!! to
reduce an optimization problem to a decision problem by
introducing a parameter.

Definition 1. A parameterized problem Q is a deci-
sion problem (i.e., a language) that is a subset of ¥* x N/,
where ¥ is a fized alphabet and N is the set of all non-
negative integers. Thus, each element of Q is of the form
(z,k), where the second component, i.e., the integer k, is
the parameter.

A parameterized problem @ can take a more general
form such that the parameter is also a finite string in a
fixed alphabet['8]. Our discussion will be based on the
above simplified definition in which the parameter is a
nonnegative integer, as it is the case for most parameter-
ized problems.

We say that an algorithm A solves the parameter-
ized problem Q@ if on each input (z, k), the algorithm A
can determine whether (z,k) is a yes-instance of Q (i.e.,
whether (z,k) is an element of Q). We call the algo-
rithm A a parameterized algorithm if its computational

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

complexity is measured in terms of both the input length
|z| and the parameter value k.

Definition 2. The parameterized problem Q is fized-
parameter tractable if it can be solved by a parameterized
algorithm of running time bounded by f(k)|z|¢, where f
is a recursive function and c is a constant independent
of both k and |z|. Denote by FPT the class of all fized-

parameter tractable problems.

Many NP-hard parameterized problems, such as VER-
TEX COVER, are in the class FPT. For most developed
parameterized algorithms for FPT problems, the recur-
sive function f is moderate (e.g., f(k) = d* for a small
constant d > 1). Therefore, for small parameter values
of k, the running time f(k)|x|° of the algorithms for FPT
problems becomes practically acceptable.

A natural question is whether there are parameter-
ized problems (in particular, parameterized NP-complete
problems) that are not fixed-parameter tractable. In or-
der to discuss this, we first need to describe a group of
satisfiability problems on circuits of bounded depth. For
this, we first review some basic definitions and notations
related to circuits.

A circuit C of n variables is an acyclic graph, in which
each node of in-degree 0 is an input gate and is labelled by
either a positive literal x; or a negative literal T;, where
1 < i < n. All other nodes in C are called gates and
are labelled by a Boolean operator either AND or OR. A
designated gate of out-degree 0 in C is the output gate.
The circuit C' computes a Boolean function in a natural
way. The size of the circuit C' is the number of nodes in
C, and the depth of C'is the length of a longest path from
an input gate to the output gate in C'. The circuit C' is
a Il;-circuit if its output is an AND gate and its depth
is bounded by ¢. The circuit C is monotone (resp. an-
timonotone) if all its input gates are labelled by positive
literals (resp. negative literals). We say that an assign-
ment 7 to the input variables of the circuit C satisfies C
if 7 makes the output gate of C have value 1. The weight
of an assignment 7 is the number of variables assigned
value 1 by 7.

The parameterized problem weighted satisfiability on
II;-circuits, abbreviated Wcs[t], consists of the pairs
(C,k), where C is a II;-circuit and % is an integer, and
C has a satisfying assignment of weight k. The weighted
monotone satisfiability (resp. weighted antimonotone sat-
isfiability) problem on Il;-circuits, abbreviated wcs™|[t]
(resp. wWcs™[t]) is defined similarly as Wcs[t] except that
the circuit C is required to be monotone (resp. anti-
monotone). To simplify our discussion, we will denote
by wcs*[t] the problem wcs™[t] when ¢ is even, and the
problem wcs™[t] when ¢ is odd.

Finally, we define the problem weighted antimonotone
CNF 2-SAT (shortly WCNF-2SAT ™) to be the set of pairs
(F, k), where F is a CNF formula with only negative lit-
erals, in which each clause contains at most two literals
and F has a satisfying assignment of weight k.



Jian-Er Chen: Parameterized Computation and Complexity

Extensive computational experience and practice
have given strong evidences that the problem WCNF-
2sAT~ and the problems wcs*[t] for all ¢ > 1 are not
fixed-parameter tractable. The theory of fixed-parameter
intractability is built based on this working hypothesis,
which classifies the levels of fixed-parameter intractabil-
ity in terms of the parameterized complexity of the prob-
lems WCNF-2SAT~ and wcs*[t]. For this, we need to in-
troduce a new type of reduction.

Definition 3. A parameterized problem @ is fpt-
reducible to a parameterized problem Q' if there is an
algorithm that transforms each instance (z,k) of Q into
an instance (z',k') of Q' in time O(f(k)|z|®), where
k' = g(k), f and g are recursive functions and c is a
constant, such that (z,k) is a yes-instance of Q if and
only if (z', k') is a yes-instance of Q'.

It is easy to verify that the fpt-reduction preserves
the fixed-parameter tractability, in the following sense.
Suppose that @ is fpt-reducible to Q’. Then if Q’ is
fixed-parameter tractable then so is @, and if @ is not
fixed-parameter tractable then neither is Q’.

Lemma 2.1. Let Q1, Q2, and Q3 be parameterized
problems. If Q1 s fpt-reducible to Q2 and Qo is fpt-
reducible to Qs, then Q1 is fpt-reducible to Qs.

Now we are ready to define the W-hierarchy

Definition 4. A parameterized problem Q1 is in the
class W1] if Q1 is fpt-reducible to the problem WCNF-
2SAT™. A parameterized problem Q is in the class Wt]
fort > 1 if Q; is fpt-reducible to the problem wcs[t].

In particular, an FPT problem is in the class Wt], for
all ¢ > 1. Moreover, observe that the WCNF-2SAT™ prob-
lem is a subproblem of the wcs[2] problem (thus, WCNF-
2SAT™ is trivially fpt-reducible to wcs[2]) and that the
fpt-reduction is transitive, so we have W[1] C W[2]. By
the similar reason, for an integer ¢ > 1, since the problem
wcs|t] is trivially fpt-reducible to the problem wcs[t+1],
so W[t] C Wt + 1]. Thus, if we define W[0] = FPT,
then we obtain the fixed-parameter intractability hierar-
chy, the W -hierarchy Ut>0 W (t], with

W(o] € W[ CW[2] - CWHC--.

18]

In particular, by the definitions, the problem WCNF-
2SAT™ is in the class W[1] and the problem wcsJt] is in
the class Wt] for all ¢ > 1. According to our working hy-
pothesis, WCNF-2SAT™ is not fixed-parameter tractable,
which is equivalent to the statement FPT # WT1].

Following the same style of NP-hardness and NP-
completeness, we define:

Definition 5. Lett > 1 be an integer. A parameter-
ized problem Qy is Wt]-hard if all problems in W[t] are
fot-reducible to Q:, and is W{t]-complete if in addition
Q: 1is also in WTt].

By the definitions, we get a generic complete problem
for each level in the W-hierarchy.

Theorem 2.2. The problem WCNF-2SAT™ is W[1]-
complete, and for all integers t > 1, the problem wcCs|t]
is Wt]-complete.

21

Since the fpt-reduction is transitive, we have

Theorem 2.3. Fort > 1, if a W[t]-hard problem is
fized-parameter tractable, then FPT = W t].

Since it is commonly believed that for all ¢ > 1,
FPT # Wt], the W[t]-hardness of a parameterized prob-
lem provides a strong evidence that the problem is not
fixed-parameter tractable.

The transitivity of the fpt-reduction also provides a
convenient way for deriving hardness in the W-hierarchy.

Theorem 2.4. Lett > 1 be an integer. A param-
eterized problem @y is W[t]-hard if there is a W[t]-hard
problem that is fpt-reducible to Q.

In particular, for each integer t > 2, it can be shown
that the problem wcs[t] is fpt-reducible to the problem
wes*[t]1'8]. The problem wcs*[t] is obviously in the class
W t]. Therefore, for each t > 2, we get the second Wt]-
complete problem wcs*[t].

Using Theorem 2.4, researchers in the theory of pa-
rameterized computation and complexity have identified
over a hundred parameterized problems that are either
hard or complete for various levels in the W -hierarchy[*®!.
For example, the problems INDEPENDENT SET, CLIQUE,
and WEIGHTED 3-SAT are W/[1]-complete, the problems
WEIGHTED CNF-SAT, DOMINATING SET, SET COVER, HIT-
TING SET, and 0-1 INTEGER PROGRAMMING are W|[2]-
complete. Many of these problems have been well-known
for their theoretical and practical importance. Some of
them have been the main targets for algorithmic research
for many years. The fact that nobody has been able to
develop a fixed-parameter tractable algorithm for any of
these problems provides a strong support to our working
hypothesis.

We point out that each level W[t] of the W-hierarchy
can also be defined in terms of the traditional machine
models and of more “standard” complexity measures.
See [21-23] for detailed discussions.

3 How Easy Can FPT Be: Algorithmic
Techniques

We first describe how fixed-parameter tractability
helps solving difficult computational problems. Our prin-
ciple is “simpler computation and deeper theory”[?4l.
Therefore, we are not simply looking for purely theoret-
ical improvements over parameterized algorithms based
on the traditional asymptotical analysis. We also take
the practicality of the algorithms into consideration. In
particular, we insist that for practical effectiveness, our
algorithms must be structurally simple, avoiding as much
as possible lengthy case-by-case enumerations of tedious
local structures. The improvements on the algorithms
should be based on deep theoretical study of the intrin-
sic properties of the concerned problems. The techniques
described in this section have proven effective in the de-
velopment of efficient parameterized algorithms. Many of
these developed algorithms have been implemented, and
turn out to be quite practical in various applications.



22

3.1 Kernelization

Kernelization has been a well-known and effective
technique used in the development of efficient parame-
terized algorithms. However, only very recently, people
realized that kernelizability of a parameterized problem
is equivalent to the fixed-parameter tractability of the
problem. We first present a formal proof for this fact.

Definition 6. A parameterized problem Q is ker-
nelizable if there exist a polynomial time algorithm K
(the “kernelization algorithm”) and a recursive function
g such that on any instance (z,k) of Q, the algorithm
K produces an instance (', k") of Q (the “kernel”), such
that |2'| < g(k) and k' < k, and that (z,k) is a yes-
instance of Q if and only if (z',k') is a yes-instance of
Q.

The definition for kernelization given above is slightly
stronger than those given in [25] and [26], in the sense
that it requires that the reduction be strictly polynomial-
time bounded. Therefore, the following theorem is also
slightly stronger than the one given in [26]. Recall that
a decision problem (or more precisely, a language) is de-
ctdable if it can be solved by an algorithm.

Theorem 3.1. Let Q be a decidable parameterized
problem. Then Q is fized-parameter tractable if and only
if Q is kernelizable.

Proof. Since @Q is decidable, there is an algorithm
that solves Q. Let the running time of the algorithm
be bounded by h(|z|, k), where h can be any function.
Without loss of generality, we assume that the function
h is nondecreasing and unbounded. @

Suppose that @ is kernelizable. Then there exist a
kernelization algorithm K and a function g as given in
its definition. We solve the problem @ as follows. For
a given instance (z, k) of @, we call the kernelization al-
gorithm K to construct the instance (2', k"), which takes
time O(|z|°), where ¢ is a constant. Then we solve the
instance (z’,k") in time h(|z’|,k"). Since |z'| < g(k) and
k' < k, we have h(|2'|,k") < h(g(k),k) = h'(k), where
R/ (k) is a function of k. Therefore, the problem @ can
be solved in time O(h'(k) + |2|°), and hence is fixed-
parameter tractable.

Conversely, suppose that @ 1is fixed-parameter
tractable and can be solved by a parameterized algo-
rithm M of running time bounded by f(k)|z|®, where
f is a nondecreasing and unbounded function and c is a
constant. Fixed a yes-instance (zy,ky) of @ such that
ky is the minimum over all yes-instances of ), and a no-
instance (zn, kn) of @ such that ky is the minimum over
all no-instances of ). Consider the following algorithm
K that on an input (z,k) produces an instance (2',k’)
of Q as follows. If f(k) > |z|, then (2',k") = (x,k). In
case f(k) < |z|, K first calls the algorithm M to de-
termine if (z,k) is a yes-instance of Q. If (z,k) is a

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

yes-instance of @ then K outputs (zy, ky), and if (z, k)
is a no-instance of @ then K outputs (zn,ky). It is
clear that the algorithm K outputs a yes-instance of @
if and only if the input (z,k) to K is a yes-instance of
Q. Moreover, in case f(k) < |z|, the running time of
M is bounded by f(k)|z|® < |z|*. Therefore, K is a
polynomial time algorithm. Finally, in case f(k) > |z|,
the output (2/, k") = (z, k) of K satisfies |2’| < f(k) and
k" < k. On the other hand, in case f(k) < |z|, we have
either (z',k") = (zy,ky) or (zn,kn). By the definitions
of ky and ky, we must have k¥’ < k, and |z’| < ¢y, where
¢1 = max{|zy|,|zn]|} is a constant. In summary, on any
input (z,k), the output (z/,k') of K satisfies ¥’ < k and
|2'| < g(k), where g(k) = f(k) + ¢1. This proves that K
is a kernelization algorithm for @), and hence Q@ is kernel-
izable. m|

The first part of the proof for Theorem 3.1 has actu-
ally described a procedure for developing parameterized
algorithms for a kernelizable problem. In particular, the
smaller the size of the kernel (z’,k’), the more efficient
the resulting parameterized algorithm. Therefore, it is
of both practical and theoretical interests to study how
small the problem kernel can be for a fixed-parameter
tractable problem.

We illustrate the technique of kernelization by an ex-
ample. Recall that the VERTEX COVER problem is for
a given pair (G, k), where G is a graph and k is a non-
negative integer, to determine if G has a vertex cover C
of k vertices (i.e., a set C of k vertices in G such that
every edge in G has at least one end in C).

Suppose that the graph G has n vertices vy, ..., v,
we construct a new bipartite graph G’ as follows. The
graph G’ has 2n vertices that are bi-partitioned into two
sets {wy,...,w,} and {w,...,w/,}. There is an edge
[w;, w}] in the bipartite graph G if and only if [v;, v;] is
an edge in G. Construct any minimum vertex cover C’
of the bipartite graph G’ (a minimum vertex cover of a
bipartite graph G’ of 2n vertices can be constructed in
time O(n2%) via a maximum matching of the graph G,
see [27, 28] for detailed discussions). Now divide the ver-
tices in the original graph G into three disjoint subsets:
set Iy consists of all the vertices v; in G such that neither
w; nor w} is in C’; set Cy consists of all the vertices v; in
G such that both w; and w} are in C’; and set V;) consists
of all the vertices v; in G such that exactly one of w; and
w}isin C'.

Lemma 3.2(°l, Let G(V,) be the subgraph of G in-
duced by the vertex set V. Then every minimum vertex
cover of G(Vy) plus the set Cy forms a minimum vertex
cover for G. Moreover, a minimum vertex cover of G(Vp)
contains at least |Vo|/2 vertices.

We explain how Lemma 3.2 is used to kernelize the
VERTEX COVER problem. Given an instance (G,k) for

®Otherwise, we replace h by a larger function that is nondecreasing and unbounded. For the same reason, we will assume in this
paper that all complexity functions in our discussion have “nice” properties such as that the domain and range of the functions are
nonnegative integers, and that the values of the functions and their inverses can be computed in polynomial time.



Jian-Er Chen: Parameterized Computation and Complexity

vertex cover, apply Lemma 3.2 to the graph G to con-
struct in polynomial time the two subsets Cy and V.
By Lemma 3.2, the graph G has a vertex cover of size
k if and only if the induced subgraph G(V;) has a ver-
tex cover of size k — |Cp|. Since the minimum vertex
cover of the graph G(Vp) consists of at least |Vp|/2 ver-
tices, a necessary condition for the graph G(Vy) to have
a vertex cover of size k — |Cy| is that the number |Vj]
of vertices of the graph G(V}) is bounded by 2k — 2|Cy|.
Let G' = G(V) and k' = k — |Cy|, then we have con-
structed an instance (G’,k’) for VERTEX COVER, where
G’ has at most 2k’ < 2k vertices and k' < k, such that
the graph G’ has a vertex cover of k' vertices if and only
if the graph G has a vertex cover of k vertices. This gives
a kernelization for the VERTEX COVER problem, formally
stated as follows.

Theorem 3.3B%. There is a kernelization algorithm
of running time O(n?®) for the VERTEX COVER prob-
lem that for a given instance (G,k) of VERTEX COVER,
constructs another instance (G', k"), where the graph G’
contains at most 2k’ vertices and k' < k, such that the
graph G has a vertex cover of k vertices if and only if the
graph G' has a vertex cover of k' vertices.

There are two directions to improve Theorem 3.3: one
is to further reduce the kernel size, and the other is to
improve the running time of the kernelization algorithm.
Further reducing the kernel size seems difficult since it
would imply an improvement over the currently best ap-
proximation algorithms for the VERTEX COVER problem,
and hence resolving a very well-known open problem in
the research of approximation algorithms(?!. On the
other hand, the complexity of the kernelization algorithm
in Theorem 3.3 can be improved to O(kn+ k?) if another
preprocessing is used before we apply Lemma 3.2[30],

The investigation of kernelization of parameterized
problems has induced and motivated a number of new
research directions in algorithm design and graph the-
ory. A new technique, called the crown reduction/®!], has
been discovered in kernelizing parameterized problems,
which suggests a simpler procedure to construct a struc-
ture similar to the one given in Lemma 3.2, as follows.

A crown is a pair (Iy, Hy) of disjoint subsets of ver-
tices in a graph G satisfying the following conditions: (1)
Iy is an independent set; (2) Hy consists of all the ver-
tices adjacent to some vertices in Ip; and (3) there is a
matching M of |Hp| edges in G such that each edge in M
has an end in I and an end in Hy. It is easy to see that
there is a minimum vertex cover of G that contains all
vertices in Hy but excludes all vertices in Iy. Therefore,
we can simply work on searching for a vertex cover of
size k' = k — |Hy| in the subgraph G’ = G — Iy — Hy.
Repeatedly applying this technique, it can be shown that
a kernel of size bounded by 3k can be constructed for the
VERTEX COVER problem, which seems a very different ap-
proach from Lemma 3.2 based on Nemhauser-Trotter’s
theorem??!. Moreover, the crown reduction technique
can be applied effectively to other parameterized prob-

23

lems such as the SAVE-k-COLORS problem!®2.

Another interesting example for kernelization of pa-
rameterized problems is the study on PLANAR DOMINAT-
ING SET (i.e., determine for a given pair (G, k), where G
is a planar graph and & is an integer, whether G as a dom-
inating set of k vertices). Parameterized algorithms on
PLANAR DOMINATING SET have drawn much attention in
the study of parameterized computation and complexity
(see Subsection 3.3). The study has induced a highly non-
trivial and subtle kernelization algorithm, with a kernel
size bounded by 335k, for the problem[3].

3.2 Bounded Search-Trees

The branch-and-search process based on bounded
search-trees has been a very popular technique in the de-
velopment of exact algorithms and heuristic algorithms
for difficult computational problems!*34=36] The tech-
nique has also been a major tool in developing efficient
parameterized algorithms for fixed-parameter tractable
problems.

A typical branch-and-search parameterized algorithm
M solving a fixed-parameter tractable problem @ works
in the following recursive manner: to determine if a non-
trivial instance (z',k’) is a yes-instance of @, the al-
gorithm M constructs instances (x1,k1),...,(zs, ks) of
smaller parameter values, solves these instances recur-
sively, and finally derives a solution to (z’,k’) based on
the solutions to the instances of smaller parameter values.
This process can be depicted as a bounded search-tree
T, as follows. The execution of the algorithm M on the
instance (z', k') corresponds to a node labelled (z',k")
in T, with s children labelled (z1,k1), ..., (zs,ks), re-
spectively, corresponding to the s recursive executions of
M on these instances induced in the execution of M on
(2',k"). The root of the search-tree T is labelled by the
original input (z,k) to the algorithm M, and each leaf
of T is labelled by an instance which is simple enough to
be solved directly.

Therefore, the branch-and-search algorithm M is a
traversing process in the search-tree 7, typically in the
Depth-First-Search order, and its time complexity is pro-
portional to the size of the search-tree 7. Since the size
of T is bounded by twice of the number of leaves in T (we
suppose that each non-leaf node in 7 has at least two chil-
dren), we can use the number of leaves in T to evaluate
the computational complexity of the branch-and-search
algorithm. On the node 7 labelled (z/,%k') in T with s
children labelled (z1,k1),...,(zs, k), if we let T'(k') de-
note the number of leaves in the subtree rooted at 7, then
we have the following recurrence relation:

Tk =T(k1)+ -+ T(ks). (1)

The recurrence relation (1) is solved as follows (see [35]
for more detailed discussions). Suppose without loss of
generality that k' > k1 > ko > -+ > ks. Let T'(z) = o7,
where « is a constant to be determined. Then the re-
currence relation (1) becomes the following polynomial



24

equation:
P(O[) — ak',ks _ akl*ks .. ak5,17k5 —1=0. (2)

Note that each non-leaf node in 7 corresponds to a poly-
nomial equation of the form (2). It can be proved that
this polynomial equation has exactly one positive root o’
and that for all values o > o/, we have P(a) < 013
Therefore, if we let ag be the largest positive real num-
ber such that ag is the root of a polynomial equation
corresponding to a non-leaf node in the bounded search-
tree T, then it is easy to verify using induction that
T(k') < oF for any non-leaf node labelled (', k') in the
search-tree 7. In particular, the inequality holds for the
root of the search-tree 7. Hence, af serves as an effec-
tive upper bound on the computational complexity of the
branch-and-search algorithm M on the instance (z, k).

We again use VERTEX COVER as a concrete example
to illustrate this technique. Let (G, k) be an instance
of VERTEX COVER. First note that if all vertices in the
graph G have degree bounded by 2, then each connected
component of G is either a simple cycle or a simple chain,
and hence it can be decided in linear time whether (G, k)
is a yes-instance for VERTEX COVER. Therefore, we can
assume without loss of generality that the graph G has
a vertex of degree larger than 2. To determine if the
graph G has a vertex cover C of k vertices, we pick any
vertex v of degree d > 3 in G and “branch at v” by try-
ing the following two possibilities: either (1) v is in the
vertex cover C' thus there should be a vertex cover of
k1 = k — 1 vertices in the graph G; = G — {v}; or (2)
v is not in the vertex cover C, then all the d neighbors
uq,...,uq of v must be in the vertex cover C' (in order
to cover the edges [v,u1], ..., [v,uq]) and there should
be a vertex cover of k; = k — d vertices in the graph
G —{v,us,...,uq}. Therefore, by recursively working on
the instances (G, k1) and (Ga, ko), we can determine if
(G,k) is a yes-instance for VERTEX COVER. The recur-
rence relation corresponding to this branching process is
Tu(k) = Ta(k — 1) + Ty(k — d), and the associated poly-
nomial equation is Py(a) = a? — a4~ — 1. Solving the
polynomial equation P;(a) = 0, we get a root ag > 0.
In particular, we have a3 = 1.465..., ay = 1.380---,
as; = 1.324---, ag = 1.285---, ay = 1.255---, and
ag < 1.255 for d > 7.

This hints immediately a branch-and-search algo-
rithm for VERTEX COVER: for a given instance (G, k),
recursively branch at a vertex of degree larger than 2,
until there is no vertex of degree larger than 2 in the
graph, which now can be solved in linear time. Since
the largest real number that can be a root of a poly-
nomial equation induced by this branch-and-search al-
gorithm is ag = 1.465---, we conclude that the size of
the bounded search-tree for the algorithm is bounded by
1.47%. This, plus a general technique in analyzing pa-
rameterized algorithms[®”| derives a parameterized algo-
rithm of running time bounded by O(1.47* + kn) for the
VERTEX COVER problem.

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

The above discussion shows that the branch-and-
search algorithm for VERTEX COVER slows down when
it branches at low degree vertices. To further speed up
the algorithm, considerable efforts have been made to
deal with low degree graphs/25:30:38—40] " Intuitively, low
degree graphs have a simpler structure so that we may
take more effective manipulations. In the following, we
illustrate one of such techniques, and present a more ef-
ficient parameterized algorithm for VERTEX COVER on
graphs of degree bounded by 3.

Suppose v is a degree-2 vertex in a graph G such that
the two neighbors u and w of v are not adjacent to each
other. We construct a new graph G’ as follows: remove
the vertices v, u, and w and introduce a new vertex vg
that is adjacent to all neighbors of the vertices © and w in
G (of course except the vertex v). We say that the graph
G’ is obtained from the graph G by folding the degree-2
vertez v. See Fig.1 for an illustration for this operation.

v
u w Yo
A
1 2 xrs3 Y1 Y2 r1 T2 T3 Y1 Y2

Fig.1. Vertex folding.

Lemma 3.413%. Let G’ be a graph obtained by folding
a degree-2 vertex v in a graph G, where the two neighbors
of v are not adjacent to each other. Then the graph G
has a vertex cover C of k vertices if and only if the graph
G' has a vertex cover C' of k — 1 vertices. Moreover, the
vertex cover C' for G can be constructed from the vertex
cover C' for G' in constant time.

Therefore, we can work on the instance (G',k — 1) in-
stead of (G, k), and the vertex folding operation reduces
the parameter value k by 1 directly without any branch-
ing. There are another two possible cases when the graph
G has a vertex of degree less than 3: 1) the graph G has a
degree-1 vertex v. Then we can simply include the neigh-
bor of v in the vertex cover; and 2) the graph G has a
degree-2 vertex v whose two neighbors v and w are adja-
cent to each other. In this case, since every vertex cover
of G must contain at least two vertices in the triangle
(v,u,w), we can simply include the vertices v and w in
the vertex cover. In both cases, we can do at least as
well as vertex folding. Therefore, whenever the graph G
has a vertex of degree less than 3, we can always assume
that the vertex folding operation (or a better operation)
is applicable.

This suggests a branch-and-search parameterized al-
gorithm for VERTEX COVER on graphs of degree bounded
by 3, as given in Fig.2. By a simple preprocessing, we can
assume that the original input graph G to the algorithm
vc-degree3 contains a vertex of degree less than 3 (See
[30] for a detailed explanation). Note that this condition
is automatically satisfied for each intermediate recursive
execution of the algorithm, since any proper subgraph of



Jian-Er Chen: Parameterized Computation and Complexity

a graph of degree bounded by 3 must contain a vertex of
degree less than 3.

ve-degree3

1. C=0; {initialize the vertex cover C'}

2.  while |C| < k and G is not empty do

2.1. pick a degree-2 vertex v in G and fold v;

2.2. if the new vertex vg has a degree larger than 2
then branch at vg.

Fig.2. Algorithm for VERTEX COVER on graphs of degree bounded
by 3.

We consider the running time of the algorithm vc-
degree3. According to the given condition, before
branching at a vertex, we can apply the vertex folding op-
eration at least once, which reduces the parameter value
by 1. Moreover, we always branch at a vertex of degree
at least 3, which reduces the parameter value by 1 on
one side and by at least 3 on the other side. Combining
this with the vertex folding before the branching, we can
regard this process as a branching which reduces the pa-
rameter value by 2 on one side and by at least 4 on the
other side. Therefore, the branching can do at least as
well as the following recurrence relation:

T(k) =T(k — 2) + T(k — 4).

The polynomial equation z* — 22 — 1 = 0 corresponding

to this recurrence relation has a root « = 1.272- .. This,
combined with other techniques®®!, gives an O(1.273% +
kn) time algorithm for the VERTEX COVER problem on
graphs of degree bounded by 3.

This gives an immediate improvement on the algo-
rithm for VERTEX COVER on general graphs: for a given
general graph G, we can first branch at vertices of de-
gree larger than 3 until the graph contains no such ver-
tices, then we apply the algorithm vc-degree3. In this
new algorithm, the worst recurrence relation is T'(k) =
T(k—1)+T(k —4), which has a solution T'(k) < 1.381%,
implying an algorithm of running time O(1.39% + kn) for
VERTEX COVER on general graphs.

Other design and analysis techniques, by more care-
fully dealing with graphs of degree bounded by 4 and 5,
can be applied to further improve the algorithm°-38—40],
After many rounds of improvement, currently the best
parameterized algorithm for VERTEX COVER[? has its
running time bounded by O(1.286%+kn). This algorithm
has found important applications in computational biol-
ogy and computational biochemistry[®®!, and has been
implemented by a number of research and development
groups in the world. The implementations show that the
algorithm can effectively solve the VERTEX COVER prob-
lems for their applications (see, for example, [8]).

The advantage of branch-and-search algorithms for
fixed-parameter tractable problems is that the parame-
ter value k is in general small from their applications.
Therefore, a parameterized algorithm of running time
bounded by O(c*) plus a polynomial of n, where c is

25

a small constant, can be very efficient in practical appli-
cations, even for a moderate value of k. For example, the
O(1.286% + kn) time algorithm for the VERTEX COVER
problem seems to be practical for parameter values up to
k = 400 (see discussions in [8]).

3.3 Graph Separators

Graph separators have been used effectively in de-
signing efficient algorithms, in particular, in the develop-
ment of approximation algorithms for NP-hard optimiza-
tion problems[*42, In this subsection, we show how the
technique is used in the development of parameterized al-
gorithms for certain fixed-parameter tractable problems.
To be concrete, we take the PLANAR DOMINATING SET
problem as an example, which is defined as follows: for
a given pair (G, k), where G is a planar graph and k is
an integer, determine if G has a dominating set D of k
vertices (i.e., a set D of k vertices in G such that every
vertex in G is either in D or is adjacent to a vertex in
D).

Let G be a planar graph (not necessarily connected)
and 7(G) be a planar embedding of G. A vertex v is
in layer-1 in w(G) if v is on the boundary of the un-
bounded region of 7(G). Inductively, a vertex v is in
layer-¢, ¢ > 1, if v is on the boundary of the unbounded
region of the embedding induced from 7(G) by deleting
all layer-j vertices for all 1 < j < ¢— 1. The embedding
m(QG) is g-outerplanar if it has at most g layers.

Theorem 3.5[*1. Suppose that a graph G has a q-
outerplanar embedding mw(G). Then a minimum domi-
nating set D of G can be constructed in time O(c?|G|),
where ¢ is a constant.

Theorem 3.5 is obtained by applying the technique of
graph separators/4!l: starting with the g-outerplanar em-
bedding 7(G), we can recursively decompose the graph G
into “slices”. Each slice S is a subgraph of G with at most
q “left boundary vertices” and at most g “right boundary
vertices”, which are the only vertices in S that may be
adjacent to vertices not in S (hence, the boundary ver-
tices of S make a separator that separates the rest of the
vertices in S from the graph G). A trivial slice is simply
an edge in G. Two slices S; and S5 can be “merged” into
a larger slice if the right boundary of Sy is identical to the
left boundary of Sy. Baker[*! presented a linear time al-
gorithm to show how a g-outerplanar embedding 7(G) is
decomposed into slices and how the slices, starting from
trivial slices, are recursively merged to reconstruct the
original graph G.

Note that the minimum dominating set D uniquely
determines a “configuration” Cg for the boundary ver-
tices in a slice S, consisting of a status for each boundary
vertex v (represented by a color): (1) black: v is in D; (2)
gray: v is not in D and is adjacent to a vertex in S N D;
and (3) white: v is not in D and is adjacent to a vertex
in D — S. Since D is a minimum dominating set and the
boundary vertices of S separate S from the rest of the



26

graph G, D NS must be a minimum set in S such that
coloring all vertices in D NS “black” induces the config-
uration Cs (we will simply say “the set D NS achieves
the configuration Cg”). In fact, it is easy to see that any
minimum set Dg in S that achieves the configuration C'g
can replace DN S, and D' = D — S + Dg also makes
a minimum dominating set for the graph G. Therefore,
what is important is not the set D N S itself but the
configuration Cg of the boundary vertices of the slice S.
Hence, we can represent the dominating set D restricted
to the slice S, i.e., the set DN S, by an “augmented con-
figuration”, which is the configuration Cs plus the size
b(Cs) of a minimum set in S achieving Cg.

Based on this observation, a minimum dominating set
D for the graph G can be constructed using the following
dynamic programming process. For each slice S, we keep
the set Ag of all augmented configurations for S. Since
the slice S has at most 2¢q boundary vertices and each
vertex can be colored by one of the three colors, the set
Ag contains at most 32¢ augmented configurations. For a
trivial slice S, the value b(Cgs) can be computed directly
for each configuration Cgs. To compute the augmented
configurations for a larger slice S, suppose that the slice
S is obtained from two smaller slices S; and S2 by merg-
ing the right boundary of S; and the left boundary of
S5, and that the augmented configurations for S; and Sp
have been constructed. Then we can construct all aug-
mented configurations for the slice S by enumerating all
consistent pairs of augmented configurations of S; and
Sy. Note that there are at most 327 - 327 = 819 pairs
of augmented configurations for S; and S;. Therefore,
the set of augmented configurations for the slice S can
be constructed in time O(817). Using this dynamic pro-
gramming process plus Baker’s slice decomposition(*1],
from the g-outerplanar embedding 7(G) of the graph G,
we can construct a minimum dominating set for the graph
G in time O(817|G|).

Now we consider the problem for general planar
graphs. Let (G, k) be an instance for the PLANAR DOM-
INATING SET problem. By applying the kernelization
algorithm[®3, we can assume without loss of generality
that the number n of vertices in G is bounded by 335k.
Let m(G) be a planar embedding of G. Partition the
layers of 7(G) into “chunks”, each consisting of vk + 1
consecutive layers in m(G). By taking three consecutive
layers in each trunk, we get a set T of vertices in G. Note
that there are (\/E + 1)/3 such vertex sets, which are all
disjoint. Therefore, we can assume that the one Ty we
pick satisfies |To| < 335k/((Vk + 1)/3) = O(Vk). Sim-
ilar to the case for slices, a minimum dominating set D
for the graph G determines a unique color assignment to
the vertices in Typ. Note that this color assignment must
be “feasible” and not assign the color white to any ver-
tex in the middle layer in any three consecutive layers in
To. Therefore, the dominating set D can be constructed
by enumerating all feasible color assignments to the ver-
tices in Tp. For each feasible color assignment, since the

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

statuses of all vertices in the middle layer of any three
consecutive layers in Ty are completely decided (i.e., for
each v of such vertices, we not only know whether v is
in D, but also know, in case v is not in D, which ver-
tex in D is adjacent to v), we can remove these vertices
Note that these removed ver-
tices make a separator of the graph G that separates G
into components, each having a v/k-outerplanar embed-
ding (the vertices in the first and the last layers of each
component have pre-assigned colors). Now using Theo-

from the consideration.

rem 3.5, we can construct a smallest dominating set for
each component G’ that achieves the colors in the first
and the last layers of G’, in time 0(81‘/E|G'|). Combin-
ing these smallest dominating sets for the components
and the black vertices in T gives a smallest dominating
set for the graph G that is consistent with the color as-
signment in Ty. By trying all feasible color assignments
to the vertices in Ty (there are at most 31Tl = 20(Vk)
such feasible color assignments), we will get a minimum
dominating set for the graph G. In summary, the above
algorithm runs in time 20(‘@)|G| and solves the PLANAR
DOMINATING SET problem.

The same techniques can be applied to solve many
other parameterized problems on planar graphs, such
as PLANAR VERTEX COVER and PLANAR INDEPENDENT
SET. Note that the running time of the algorithm is
actually “subexponential” in terms of the parameter k.
More general, the technique can be used to develop fixed-
parameter algorithms for the WEIGHTED SATISFIABILITY
problem on planar circuits of constant depths, which im-
plies parameterized algorithms of similar running time
for most parameterized problems on planar graphs/*3].

The above discussion can be rephrased based on the
concept of the TREE DECOMPOSITIONS of graphs of small
treewidth*¥. As pointed out by Eppstein!*3, Baker’s
slice decomposition on a g-outerplanar embedding of a
graph G is actually a construction of a tree decompo-
sition of treewidth O(gq) for the graph. Moreover, the
dynamic programming process based on the slice de-
composition also resembles the standard dynamic pro-
gramming technique for solving problems on graphs of
[46] ' In particular, the standard dynamic
programming technique for graphs of small treewidth,

small treewidth

plus the vertex coloring method described above, gives
an O(3"|G|) time algorithm for the DOMINATING SET
problem on graphs with tree decompositions of treewidth
bounded by R4, Finally, based on the layered struc-
tures of a planar embedding of a planar graph, it can
be shown that a planar graph that has a dominating
set of k vertices has a tree decomposition of treewidth
bounded by 6v/34vk + 8, and the tree decomposition
can be constructed in polynomial timel*”). Combin-
ing these two results gives an algorithm of running
time 0(36\/§\/E|G|) for the PLANAR DOMINATING SET
problem!*”l. Continuous improvements over this algo-

rithm have appeared!*8:49.  The fastest known algo-



Jian-Er Chen: Parameterized Computation and Complexity

rithm for this problem has its running time bounded by
0(215'13\/Ek+n3) and was based on the concept of graph
branch decompositions[*8].

3.4 Graph Minor Theory and Others

There are other effective techniques developed in the
study of parameterized algorithms for fixed-parameter
tractable problems, such as the techniques of integer lin-
ear programming and color-coding and hashing. Using
the technique of color-coding and hashing, Alon, Yuster,
and Zwick[®®! were able to show that the LONGEST PATH
problem (determining if a given graph G has a simple
path of length k) is fixed-parameter tractable. Based on
a technique called greedy localization, efficient algorithms
for the problems 3D-MATCHING, 3-SET PACKING, and
SET SPLITTING have been developed[?1:92:53]  We recom-
mend Niedermeier’s recent thesis®¥ for a more compre-
hensive and detailed description.

Before we close this section, we briefly describe a
research area in graph theory, the graph minor theory,
which seems to be of great theoretical importance for
the study of fixed-parameter tractability of parameter-
ized graph problems.

Let e = [u,v] be an edge in a graph G. By contract-
ing the edge e, we mean that we remove the edge e then
identify the two ends u and v. We say that a graph H is
a minor of another graph G if H can be obtained from a
subgraph of G by a series of edge contraction operations.
We say that a class F of graphs is minor closed if for
each graph G in F, all minors of G are also in F. Let F
be a minor closed graph class. A graph G is a minimal
forbidden minor for F if G is not in F but every proper
minor of G is in F. The set of all minimal forbidden
minors for the graph class F is called the set of minimal
forbidden minors for F.

The study of graph minors, initialized by Robertson
and Seymour®®~57 has induced significant progress in
the research in graph theory. For example, the concept
of graph tree decompositions we described in Subsection
3.3 was a product of this research. In particular, we have
the following result (formerly known as “Wagner’s Con-
jecture”).

Theorem 3.65%, Any minor closed graph class has
a finite set of minimal forbidden minors.

Theorem 3.6 is a significant generalization of the fa-
mous Kuratowski-Theorem for planar graphs. Indeed,
the class of planar graphs is minor closed, and according
to Kuratowski-Theorem, the set of minimal forbidden mi-
nors for the class of planar graphs consists of two graphs:
the complete graph K5 and the complete bipartite graph
K3,3.

As indicated by Fellows and Langston!®®!, Theo-
rem 3.6 has a significant impact in deriving polynomial
time computability for many graph problems. Similarly,
from the theoretical point of view, Theorem 3.6 is very
significant in deriving the fixed-parameter tractability for

27

many parameterized graph problems. We consider as
an example the GRAPH GENUS problem (for a given pair
(G, k), determine if the minimum genus of the graph G
is bounded by k).

For a fixed integer k, the class of graphs whose min-
imum genus is bounded by k is clearly minor closed: in-
deed, if H is a minor of a graph G of minimum genus
bounded by k, then an embedding of genus bounded by
k for H can be obtained from an embedding of genus
bounded by k for the graph G by a series of edge dele-
tions and edge contractions. According to Theorem 3.6,
we have:

Theorem 3.75%. For a fized integer k > 0, the set
& of minimal forbidden minors for the class of graphs of
minimum genus bounded by k is finite.

In order to describe the parameterized algorithm for
GRAPH GENUS, we need another result by Robertson and
Seymour.

Theorem 3.8.57!, Let H be a fized graph. Then
there is an algorithm that for a given graph G decides in
time polynomial in |G| whether H is a minor of G.

Now for an instance (G, k) of the GRAPH GENUS prob-
lem, we first construct the set £ of minimal forbidden
minors for the graphs whose minimum genus is bounded
by k. The set & is finite and depends only on k. Thus,
the set & can be constructed in time f;(k) for a recur-
sive function f; by checking all the graphs of size bounded
by a function of k. The number of graphs in & is also
bounded by a function fo(k) of k. Now for each graph
H in &, we use Theorem 3.8 to test if H is a minor of
G, which takes time polynomial in |G|. If any graph in
& is a minor of G, then clearly (G, k) is a no-instance
of GRAPH GENUS. Otherwise, (G, k) is a yes-instance of
GRAPH GENUS. The running time of this algorithm is
bounded by O(f5(k)|G|¢), where f5 is a recursive func-
tion and c is a fixed constant. This shows that the GRAPH
GENUS problem is fixed-parameter tractable.

The algorithm given above is only of theoretical in-
terest. In fact, the number of graphs in the set & is an
impractically large function of k.

4 How Hard Can W|[1] Be: Lower Bound

Techniques

The establishment of NP-completeness theory en-
ables us to identify intractable problems, i.e., NP-hard
problems, whose intractability is not derived by formal
mathematical proofs, but is from the extensive compu-
tational experience and practice. Now it has become
widely accepted that NP-hard problems cannot be solved
by any computation models practically. Therefore, the
NP-hardness of a problem provides an effective compu-
tational lower bound for the problem.

The theory of fixed-parameter intractability was de-
veloped based on the similar philosophy. Our lower
bound techniques are based on the following working hy-
pothesis:



28

Working Hypothesis I. FPT # WJ1], i.e., no
W1]-hard problem is fized-parameter tractable.

In this section, we first discuss how solid our working
hypothesis is. We then describe techniques that enable
us to derive computational lower bounds for many pa-
rameterized problems, based on our working hypothesis.
In particular, we will see that for certain parameterized
problems, we can derive much stronger computational
lower bounds based on our working hypothesis than those
one may derive based on NP-completeness theory.

4.1 How Solid Our Working Hypothesis Is

A number of W[1]- or W[2]-complete problems, such
as the well-known INDEPENDENT SET, DOMINATING SET,
and WEIGHTED CNF-SAT problems, have been the main
targets for the research in exact algorithms for the last
three decades (see, for example, [59]). The fact that no
one has been able to develop a fixed-parameter tractable
algorithm for any of these problems provides the first ev-
idence supporting our working hypothesis.

We say that a problem is subexponential time solv-
able if it can be solved in time 2°(™ where n is the
length of the input. Our working hypothesis has a close
connection to the recent study of subexponential time
computability of NP-hard problems. In the study of ap-
proximability of NP-hard problems, Papadimitriou and
Yannakakis(® introduced the class SNP, which contains
all search problems expressible by second-order existen-
tial formulas whose first-order part is universal. The
class SNP contains many well-known NP-hard optimiza-
tion problems, and forms the core for the approxima-
tion class APX, which contains all NP optimization prob-
lems with constant-ratio polynomial-time approximation
algorithms?l. Impagliazzo and Paturil®!l introduced a
slight generalization of the class SNP, the size-constrained
SNP, and showed that the following problems are also
in the size-constrained SNP: CNF ¢-SAT for ¢ > 3, ¢-
COLORABILITY for ¢ > 3, ¢-SET COVER for g > 2, INDE-
PENDENT SET, CLIQUE, and VERTEX COVER.

Theorem 4.1. Unless all size-constrained SNP prob-
lems are solvable in subezponential time, FPT # W1].

Proof. Tt is known that FPT = W]1] would imply
that the problem CNF 3-SAT can be solved in subexpo-
nential timel®?!, According to Impagliazzo and Paturil®!l,
CNF 3-SAT is SERF-complete for the class size-constrained
SNP, in the sense that if CNF 3-SAT is subexponential
time solvable then all size-constrained SNP problems are
also subexponential time solvable. The theorem follows
directly from these two facts. O

The development of improved algorithms for certain
size-constrained SNP problems, such as CNF 3-SAT, 3-
COLORABILITY, INDEPENDENT SET, CLIQUE, and VER-
TEX COVER, has been an active research subarea in com-
puter science for many years(®dl. Each of these prob-
lems has passed through many rounds of improvement,
and has their best algorithm of running time of the form

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

O(c"), for a constant ¢ > 1. Further improvement on the
algorithm to even slightly decrease the constant ¢ seems
to be very difficult and involved, and requires smart new
ideas. Therefore, it would be a quite surprising break-
through that all size-constrained SNP problems, includ-
ing all the above problems, are solvable in subexponen-
tial time. This fact has become increasingly important
recently in the study of parameterized complexity, which
has allowed us to make our second working hypothesis as
follows.

Working Hypothesis II.
SNP problems are subexponential time solvable.

Note that Working Hypothesis I implies Working Hy-
pothesis I. A subclass of the class W[1], MINI[1], has been
introduced recently®3] that is closely related to Working
Hypothesis II. It can be shown that MINI[1] = FPT if
and only if all size-constrained SNP problems are subex-
ponential time solvable/®3. Therefore, Working Hypoth-
esis II can be rephrased as MINI[1] # FPT.

In applications, it has been a commonly accepted
practice for researchers in various areas to derive com-
putational lower bounds for their own problems based
on the working hypotheses. For example, Papadimitriou
and Yannakakis['¥l have used Working Hypothesis I to
show that the DATABASE QUERY EVALUATION problem is
W{1]-hard, and hence the problem is intractable even for
small query size. Bodlaender et al.l5% identified a num-
ber of problems in computational biology and showed
the hardness of these problems in various levels in the
W -hierarchy, thus establishing the intractability of these
problems even for small parameter values.

Not all size-constrained

4.2 Intractability of NP-Hard Problems

with Small Parameters

According to Working Hypotheses I, no W{1]-hard
problem is fixed-parameter tractable. Therefore, any pa-
rameterized algorithm solving a W[1]-hard problem must
have its running time taking the form O(n"®)), where
h(k) is an unbounded function. Since algorithms of run-
ning time larger than O(n'%) would be considered im-
practical, the W[l]-hardness of a parameterized prob-
lem provides strong evidence for the intractability of the
problem even for small parameter values.

Many parameterized problems are identified that are
hard or complete for various levels of the W-hierarchy.
We refer the readers to [65] and [18] for a comprehen-
sive summary. In particular, many well-known NP-hard
problems are included in this list: INDEPENDENT SET,
CLIQUE, WEIGHTED CNF ¢-SAT for any fixed constant
g > 2, and SET PACKING are W[l]-complete, DOMINAT-
ING SET, SET COVER, FEATURE SET, and WEIGHTED
CNF-SAT are W|[2]-complete.

We add a few more problems to this list, which were
discovered more recently.

Computational biology has become quite popular in
recent years. A frequently recurring problem in biology



Jian-Er Chen: Parameterized Computation and Complexity

applications is to find one substring of length n that ap-
pears (with a few substitutions) at least once in each of a
set of bad strings (such as bacterial sequences) and is not
“close” to any substring of length n in each of another set
of good strings (such as human and livestock sequences).
The problem has various applications in molecular biol-
ogy such as the design of universal PCR primers, iden-
tification of genetic drug targets, and design of genetic
probes. In particular, the genetic drug target identifica-
tion problem searches for a sequence of genes that is close
to bad genes (the target) but far from all good genes (to
avoid side-effects). This problem can be formulated as
follows. Consider all strings in a fixed alphabet. Denote
by |s| the length of the string s. The distance D(s1, s2)
between two strings s; and sa, |s1] < [s2/, is defined
as follows. If |s;| = |sa|, then D(s1,s2) is the Ham-
ming distance between s; and so, and if |s1| < |s2|, then
D(s1, s2) is the minimum of D(s1, s5) over all substrings
sh of length |s;] in ss.

DISTINGUISHING SUBSTRING SELECTION (DSSP)S for
a given pair (z,k), where x is a tuple (n, Sy, Sq,dp, dy),
with integers n, dp, and dg, dp < dg, Sp = {b1,...,bpn, }
is the set of bad strings, |b;| > n, and Sy = {g1,...,9n, }
is the set of good strings, |g;| = n, the parameter is
given as k = dy + dg, determine if there is a string s of
length n such that D(s,b;) < dp for all 1 < i < np, and
D(s,gj) > dgy for all 1 < j < ny.

The DssP problem is NP-hard[%]. Recently, it has
been shown!®” that Dssp is W[1]-hard. By a different
fpt-reduction from DOMINATING SET, we can improve this
result and prove:

Theorem 4.2[58]. The pssp problem is W[2]-hard.

Therefore, even for small string matching errors dp
and d,, the DSSP problem remains intractable.

Our second problem is motivated by applications
in VLSI design, communication networks, and data
mining!%3!, which for a given weighted graph, tries to re-
move an edge subset of small weight so that the graph
is split into many pieces. The problem is formally stated
as follows.

GRAPH CUT: for a given pair (z,k), where k is the
parameter, z = (G,w), G is a weighted graph and w is
an integer, determine if there is an edge subset C of total
weight bounded by w such that removing the edges in
C splits the graph into at least £ nonempty connected
components.

The GRAPH CUT problem is NP-hard/®. A classic
result for the problem is an algorithm of running time
O(n**) by Goldschmidt and Hochbaum!®®. The algo-
rithm is obviously not practical even for k = 3. It there-
fore is natural to ask if one can hope a significant im-
provement on the algorithm so that it will become prac-
tical at least for small parameter values k.

Theorem 4.3, The GRAPH cUT problem is W 1]-
hard.

Therefore, again, GRAPH CUT will remain intractable
even for small parameter values k.

29

4.3 Intractability of Problems That Are
Not NP-Hard

A nice contribution of the theory of parameterized
complexity is that it allows us to derive the intractability
for certain problems that may not be derivable based on
the NP-completeness theory. Indeed, W[1]-hardness does
not necessarily imply NP-hardness. Therefore, a problem
that may not be NP-hard can still be W{1]-hard, thus es-
tablishing the intractability for the problem.

We start by considering the v-C DIMENSION problem,
which is defined as follows: given a pair (C, k), where C is
a collection of subsets in a universal set U, decide whether
there is a subset S of k elements in U such that for ev-
ery subset T of S, there is a subset Cr € C satisfying
SN Cp =T. The cardinality of the largest such subset
S is called the V-C dimension of the collection C, which
is a measure of the “variability” of C and is a reasonably
precise estimate of the complexity of learning C when C
is thought of as a class of concepts to be learned!'¢!.

Close inspection reveals that the V-C dimension of a
collection C is always bounded by log |C| (see [17]). There-
fore, an instance (C,k) of the V-C DIMENSION problem
will become nontrivial only when k < log|C|. As a con-
sequence, the problem can be solved in time O(no(log |C|))
by enumerating all subsets of k elements in U. This shows
that the problem is unlikely to be NP-hard.

Theorem 4.48],
W(1]-complete.

Therefore, even the V-C DIMENSION problem seems
easier than NP-complete problems, according to our
working hypothesis, the problem is still intractable even
for small parameter values.

The v-C DIMENSION problem is

We give another example in computational biology. A
typical instance of the MOTIF FINDING problem is stated
as follows: given 20 sample DNA sequences, find an (I, d)-
motif (i.e., a pattern of length ! that matches a subse-
quence in each given sequence with at most d mismatches
allowed). Pevzner and Szel'®! proposed a graph theoret-
ical approach to the MOTIF FINDING problem, and con-
sidered the following graph problem:

CLIQUE IN k-GRAPHS: given a pair (G, k), where G is
a k-partite graph (i.e., the vertices of G are partitioned
into k groups and no two vertices in the same group are
adjacent), decide if G has a clique of size k.

In particular, the above MOTIF FINDING problem can
be approached by solving the CLIQUE IN 20-GRAPHS prob-
lem. Clearly, the CLIQUE IN 20-GRAPHS problem can be
solved in time O(n?°) by examining each subset of 20 ver-
tices in the given graph, hence it is polynomial time solv-
able. On the other hand, all proposed algorithms and im-
plementations for the problem so far are extremely time
consuming, taking a few days or even a few weeks[20].

Theorem 4.52°, The CLIQUE IN k-GRAPHS problem
is W[1]-complete.



30

Theorem 4.5 explains why the approach in [19] can-
not be very efficient: the CLIQUE IN k-GRAPHS problem is
intractable even for small parameter values k. In partic-
ular, for the parameter value k& = 20, which corresponds
to solving the original MOTIF FINDING problem, one may
not expect a very efficient algorithm for the problem.

We close this subsection with another example. Con-
sider the following problem:

PRECEDENCE CONSTRAINED PROCESSOR SCHEDUL-
ING (PCPS): given a pair (T, k), where T is a set of jobs of
unit length with a partial order defined on the jobs, and
a deadline D, decide if there is a scheduling of the jobs
on k identical processors that is consistent with the job
partial order and finishes all jobs within D time units.

When the number k of processors is fixed to 2, the
PCPS problem is solvable in polynomial time. However,
it has been an open problem for nearly 30 years whether
for any fixed number k > 3 of processors, the problem is
NP-hard[!,

Theorem 4.6, The problem pcps is W[2]-hard.

By Working Hypothesis I, therefore, we can obviate
the tricky question whether PcPs is NP-hard, but are
still able to conclude the intractability for the problem:
no matter whether the problem is NP-hard for a fixed
number k of processors, when k is not a very small con-
stant, the problem becomes intractable.

4.4 Strong Computational Lower Bounds

On the surface, the W[1]-hardness of a parameterized
problem implies that any algorithm solving the problem
must have its running time taking the form of O(n"*)),
where h(k) is an unbounded function. However, this
does not entirely exclude the possibility that a W/[1]-
hard problem becomes tractable for small parameter val-
ues. For instance, if the problem is solvable in time
O(n'°&'°8*) then the problem is feasible even for param-
eter values up to k£ = 1,000.

Very recent research has shown that based on the
working hypotheses, for many known W[1]-hard param-
eterized problems, we can actually derive much stronger
computational lower bounds.

Let wus consider the W][2]-complete problem
WEIGHTED CNF-SAT: “given a CNF formula F' and an
integer k, decide if the formula F has a satisfying assign-
ment of weight k.” The problem can be simply solved
by enumerating all weight-k assignments to the m in-
put variables in the formula F'. This process takes time
O(n*m?), where m = |F| is the instance size. Thus,
besides the parameter k and the instance size m, the
number n of input variables in F' has played an impor-
tant role in determining the computational complexity
of the problem. The above simple algorithm runs in
exponential time, but the exponential factor is in terms
of the number n of input variables in F', instead of the
instance size m. Note that the instance size m can be of
the order 2.

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

Each instance (F,k) of WEIGHTED CNF-SAT can be
regarded as a search problem, in which we need to select
k elements from a searching space consisting of a set of
n input variables, and assign them value 1 so that the
formula F' is satisfied. Many well-known computational
problems have similar formulations. For example, for the
SET COVER problem (given a collection C of subsets in a
universal set U, and an integer k, decide whether there is
a subcollection of k subsets in C whose union is equal to
U), the searching space is C; for the HITTING SET prob-
lem (given a collection C of subsets in a universal set U,
and an integer k, decide if there is a subset S of k ele-
ments in U such that S intersects every subset in C), the
searching space is U.

For many graph problems, the searching space seems
naturally the entire set of the vertices in the graph. In
this case, the size n of the searching space is polynomi-
ally related to the instance size m. For certain graph
problems, however, a polynomial time preprocessing on
the input instances may significantly reduce the size of
the searching space. For example, for finding a vertex
cover of k vertices in a graph of n vertices, where n can
be much larger than k, the kernelization algorithm de-
scribed in Subsection 3.1 can reduce the searching space
size to 2k. For finding a dominating set of k vertices in
a graph, a polynomial time algorithm has been proposed
in [68] that identifies a subset of vertices from which the
k vertices in the dominating set can be selected.

We will concentrate in this subsection on parameter-
ized problems that seek a subset in a searching space sat-
isfying certain properties. For most problems in our con-
sideration, the searching space can be easily identified.
For some other problems, such as DOMINATING SET, the
searching space can be identified by a polynomial time
preprocessing. If none of these is the case, we then sim-
ply pick the entire input instance as the searching space.
In the remaining discussion in this subsection, for each
problem instance, we will denote by n the size of the
searching space and m the size of the instance.

Theorem 4.7'%. If any of the following problems
can be solved in time O(n°*)p(m)) for a polynomial p,
then W[1] = FPT: WEIGHTED CNF-SAT, DOMINATING
SET, HITTING SET, and SET COVER.

Theorem 4.7 shows that a parameterized algorithm
solving any of the problems in the theorem must have
its running time of the order nﬂ(k)p(m) for any polyno-
mial p. This computational lower bound is asymptoti-
cally tight, in the sense that each of these problems can
be solved by a trivial algorithm of running time O(n*m?).
For example, for the WEIGHTED CNF-SAT problem, on an
input (F, k), we can simply pick every subset of k input
variables in the formula F', assign these k variables value
1 and the rest n — k variables value 0, and check if this
assignment satisfies the formula F.

Theorem 4.7 can be further strengthened.

Theorem 4.8%8], [f any of the parameterized prob-
lems in Theorem 4.7 can be solved in time f(k)n°*)p(m)



Jian-Er Chen: Parameterized Computation and Complexity

for any function f and any polynomial p, then W[1] =
FPT.

Therefore, for any function f(k) and any polynomial
p(m), a parameterized algorithm solving any of the prob-
lems in Theorem 4.7 still needs to take time of order
f(E)n®®)p(m). This result has the following interesting
interpretation. All problems in Theorem 4.7 have trivial
algorithms of running time O(n*m?) by the straightfor-
ward method of exhaustive enumerations. Much research
has tended to seek new approaches to improve this trivial
upper bound. One of the common approaches is to ap-
ply a more careful branch-and-bound search process try-
ing to optimize the manipulation of local structures be-
fore each branch. Continuously improved algorithms for
these problems have been developed based on improved
local structure manipulations. It has even been proposed
to automate the manipulation of local structures!%71 in
order to further improve the computational time needed
to solve the problems. Theorem 4.8, however, provides
strong evidence that the power of this approach is quite
limited in principle. The lower bound f(k)n*®)p(m) for
any function f and for any polynomial p in the theorem
indicates that, in principle, no local structure manipu-
lation running in polynomial time or in time depending
only on the parameter value k will obviate the need for
the exhaustive enumerations.

Theorem 4.9, Let u(n) = O(n€) be any nonde-
creasing and unbounded function, where 0 < € < 1 is a
constant. Then for each of the problems in Theorem 4.7,
there are two constants ¢1 and co, ¢1 < ca, such that the
problem cannot be solved in time O(n°®)p(m)) for any
polynomial p, even if we restrict the parameter values k
to be cipu(n) < k < cou(n), unless W[1] = FPT.

Theorem 4.9 shows that the problems in Theorem 4.7
are not only intractable in general, they are actually in-
tractable for every parameter value k. In particular, any
special range of the parameter values would not decrease
the complexity of the problems. Thus, for any polyno-
mial p, finding a satisfying assignment of weight log n for
a formula will take time of order at least n2(°8™)p(m),
and finding a satisfying assignment of weight /n for a
formula will take time of order at least n*(V™p(m).

All problems in Theorem 4.7 are W[2]-complete. For
certain W1]-complete problems, we have similar results.
Actually, the results are even stronger: the lower bounds
are now in terms of the instance size m. On the other
hand, instead of using Working Hypothesis I, we need to
use the stronger Working Hypothesis II.

Theorem 4.101'5, If any of the following prob-
lems can be solved in time O(mo(k)), then all size-
constrained SNP problems are solvable in suberponential
time: WEIGHTED CNF ¢-SAT for any constant q > 2,
CLIQUE, and INDEPENDENT SET.

Theorem 4.11[%8], If any of the parameterized prob-
lems in Theorem 4.10 can be solved in time f(k)m°*) for
any recursive function f, then all size-constrained SNP
problems are solvable in subexponential time.

31

Theorem 4.12[%8], Let u(m) = O(m) be any non-
decreasing and unbounded function, where 0 < € < 1
is a constant. Then for each of the problems in Theorem
4.10, there are two constants ¢; and ca, ¢1 < ca, such that
the problem cannot be solved in time m°¥) | even if we re-
strict the parameter values k to be cyu(m) < k < cau(m),
unless all size-constrained SNP problems are solvable in
subexponential time.

We point out that the list of parameterized prob-
lems studied in this subsection gives sample problems
with strong computational lower bounds. This list is far
from being exhaustive. The computational lower bounds
were first derived for the problems wcs*[¢] and WCNF-
25AT™ 8] The lower bounds for the problems in the list
were obtained by a refined fpt-reduction, the linear fpt-
reduction, from wWos*[t] and WONF-2SAT 8], Therefore,
in general, the computational lower bounds will hold for
any parameterized problem @ if either WCs*[t] or WCNF-
2SAT~ (or any of the problems listed in this subsection)
can be linearly fpt-reducible to Q.

4.5 Computational Lower Bounds for Certain
FPT Problems

Our computational lower bounds so far were derived
from the Wl1]-hardness of parameterized problems, using
our working hypotheses. In this subsection, we show that
computational lower bounds for certain fixed-parameter
tractable problems can also be derived using our working
hypotheses.

We start with the parameterized problem VERTEX
COVER. Note that all existing parameterized algorithms
for VERTEX COVER have their running time of the form
O(2%p(n)) for a constant ¢ > 0, where n is the number of
vertices in the input graph. Improved algorithms for the
problem have been focused on the improvement on the
constant ¢. Theoretically, we are interested in knowing
how far we can go with the constant ¢. Can the constant
¢ be arbitrarily close to 07

Theorem 4.13["2l, The VERTEX COVER problem is
solvable in time O(2°%)p(n)) for a polynomial p if and
only if all size-constrained SNP problems are solvable in
subexponential time.

Cai and Juedes["™ have shown that there are a num-
ber of fixed-parameter tractable problems for which the
lower bound in Theorem 4.13 also holds. These problems
include MAX-SAT, BOUNDED-DEGREE VERTEX COVER,
BOUNDED-DEGREE INDEPENDENT SET, and BOUNDED
DEGREE DOMINATING SET (i.e., the corresponding prob-
lems on graphs whose vertex degree is bounded by a con-
stant). These results show that for each of these prob-
lems, there is a constant c¢g > 0 such that the problem
cannot be solved in time O(2°*p(n)) for any polynomial
p.

This study has also led to computational lower
bounds for problems on planar graphs.

Theorem 4.14172, If the PLANAR VERTEX COVER



32

problem can be solved in time O(ZO(ﬂ)p(n)) for a polyno-
mial p, then all size-constrained SNP problems are solv-
able in subexponential time.

The lower bound in Theorem 4.14 can be extended to
other problems on planar graphs, such as PLANAR INDE-
PENDENT SET and PLANAR DOMINATING SET[™?. Note
that these computational lower bounds are tight since up-
per bounds of the same order for the problems have also
been developed using the technique of graph separators
(see Subsection 3.3).

5 Fixed-Parameter Tractability and
Approximability

One of the most active research areas currently in the-
oretical computer science is the study of approximation
algorithms for NP-hard optimization problems. Research
in parameterized complexity theory has shown that fixed-
parameter tractability and approximability of optimiza-
tion problems are closely related. In particular, the study
of fixed-parameter intractability has provided new tech-
niques and tools for the study of inapproximability of op-
timization problems. We first give a brief review on the
terminologies in approximation algorithms. The readers
are referred to [2] for more detailed definitions and more
comprehensive discussions.

An NP optimization problem @ is
(Ig,Sq, fq,opty), where

(1) I, is the set of input instances. It is recognizable
in polynomial time;

a 4-tuple

(2) For each instance & € Ig, Sg(x) is the set of fea-
sible solutions for z, which is defined by a polynomial p
and a polynomial time computable predicate 7 (p and

by a polynomial of |z|. Finally, an NP optimization prob-
lem Q has a fully polynomial time approximation scheme
(FPTAS) if it has a PTAS algorithm Ag such that the
running time of Ag is bounded by a polynomial of |z
and 1/e.

Definition 7. Let Q = (Ig,Sq, fg,optg) be an NP
optimization problem. The parameterized version of Q is
defined as follows:

(1) if Q is a mazimization problem, then the param-
eterized version of Q is defined as

Q> ={(z,k) | = € I and opiq(z) = k};

(2) if Q is a minimization problem, then the parame-
terized version of Q is defined as

Qg = {(z,k) | z € I and oth(a:) < k}.

The above definition offers the possibility for us to
study the parameterized complexity of NP optimization
problems in terms of their approximability. We start with
a simple but useful theorem.

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

m only depend on Q) as Sg(z) = {y : |y| < p(|z|) and
m(z,y)}

(3) fo(x,y) is the objective function mapping a pair
z € Ig and y € Sg(x) to a non-negative integer. The
function fg is computable in polynomial time;

(4) opty € {max,min}. Q is called a mazimization
problem if opt, = max, and a minimization problem if
optg = min.

An optimal solution yo for an instance xz € Ig
is a feasible solution in Sg(x) such that fg(z,yo) =
opto{fo(z, 2) | z € Sg(z)}. We will denote by opt ()
the value opto{fo(z,2) | z € Sq(x)}.

An algorithm A is an approximation algorithm for an
NP optimization problem @ if, for each input instance x
in I, the algorithm A returns a feasible solution ya(x)
in Sg(z). The solution y4(x) has an approzimation ratio
r(n) if it satisfies the following condition:

optq(z)/fa(z,ya(z)) < r(lz)
if @ is a maximization problem
fo(z,ya(z))/opty(x) < r(|x))

if @ is a minimization problem

The approximation algorithm A has an approzimation
ratio r(m) if for any instance  in Ig, the solution y4(z)
constructed by the algorithm A has an approximation
ratio bounded by r(|z]).

An NP optimization problem @ has a polynomial time
approzimation scheme (PTAS) if there is an algorithm
Ag that takes a pair (z,€) as input, where z is an in-
stance of @ and € > 0 is a real number, and returns a
feasible solution y for z such that the approximation ratio
of the solution y is bounded by 1 + ¢, and for each fixed
€ > 0, the running time of the algorithm A, is bounded

Theorem 5.1. Suppose that an NP optimization
problem Q = (Ig,Sq, fq,optg) has a PTAS A of run-
ning time bounded by B(|z|,1/€) on input (z,€), where
B is a function that is a polynomial of || for each fized
€ > 0. Then the parameterized version of Q can be solved
in time B(|z|, 2k).

Proof. We prove the theorem for the case when Q@ is
a maximization problem. Consider the following param-
eterized algorithm Ay for the parameterized version Q>
of @: on an instance (z, k) of @5, the algorithm A3 first
calls the PTAS algorithm A on input (z,1/(2k)) to con-
struct a solution yg for x, then reports “yes” if and only if
fo(z,y0) > k. Note that if fo(z,yo) > k then obviously
(z,k) is a yes-instance of Q> since @ is a maximization
problem. In case fo(z,y0) < k, because the solution yo
satisfies the relation optg(z)/fo(x,yo) < 1+ 1/(2k), we
have (note that fo(z,yo) < k and fo(=x,yo) is an integer)

fa(z,y) + fo(z,y)/(2k)
k—14+1/2=k—1/2< k.

optg(z)

NN

Therefore, the algorithm A3 correctly determines the re-
membership of the parameterized problem @>. More-
over, the running time of the algorithm Ay is clearly



Jian-Er Chen: Parameterized Computation and Complexity

bounded by S(|z|, 2k). O

5.1 FPTAS, SNP and FPT

Recall that an FPTAS algorithm for an NP optimiza-
tion problem @ is an approximation algorithm A for @
that on input (z,€) produces a solution y to z in time
polynomial in |z| and 1/e such that the approximation
ratio of the solution y is bounded by 1 + €. By Theorem
5.1, we get

Theorem 5.2!73, An NP optimization problem Q
with an FPTAS is fized-parameter tractable.

Theorem 5.2 immediately includes a number of
kapnsack-type problems and scheduling problems!!! into
the class FPT. On the other hand, it also provides a
tool for excluding certain NP optimization problems from
the class FPTAS: according to Working Hypothesis I, an
NP optimization problem whose parameterized version is
W{1]-hard would have no FPTAS.

More recent research!*3! has shown that under a very
general constraint, the approximation class FPTAS can
be precisely characterized in terms of parameterized com-
plexity. To describe this result, we first notice that an ap-
proximation algorithm for an NP optimization problem
constructs a solution for a given instance of the problem,
while a parameterized algorithm only provides a “yes/no”
decision on an input. To make the comparison meaning-
ful, we extend the definition of parameterized algorithms
in a natural way so that when a parameterized algorithm
returns a “yes” decision, it also provides an “evidence”,
i.e., a solution to the input instance, to support the con-
clusion (see [43] for more detailed discussions).

Definition 8. An NP optimization problem Q 1is ef-
ficiently fized-parameter tractable (efficient-FPT) if its
parameterized verston is solvable in time bounded by a
polynomial of |z| and k.

Note that efficient-FPT does not necessarily imply
polynomial time computability: NP optimization prob-
lems, in particular a large variety of scheduling problems,
may have their optimal values much larger than the in-
put size. In consequence, the parameterized versions of
these problems may have their parameter values & much
larger than the input size.

Definition 9. An optimization problem @ =
(Ig,Sq, fq,opty) is said to be scalable if there are poly-
nomial time computable functions g1 and g and a fized
polynomial q such that:

(1) for any instance x € Ig, and any integer d > 1,
zq = g1(z,d) is an instance of @ such that |v4| < q(|z])
and |opto(za) — optg(z)/d| < q(|z]); and

(2) for any solution yg to the instance x4, y =
92(zd,ya) s a solution to the instance x such that
Fo(@a,va) — fale,y)/d < allz]).

As shown in [43], most NP optimization problems are
scalable. In particular, if an NP optimization problem
Q@ has its optimal value opt(z) bounded by a polyno-
mial of |z| for all instances z, then the problem @ is

33

automatically scalable — simply let 4 = g1(z,d) = @
for any integer d, and for a solution y4 to z4 = z, let
92(2d, Ya) = Ya-

Theorem 5.3/43, Let Q be a scalable NP optimiza-
tion problem. Then Q has an FPTAS if and only if Q s
efficient-FPT.

In comparison to the previous characterizations of
FPTAS[™-76] Theorem 5.3 seems to have the advantage
of being more general and more constructive (see [43] for
detailed discussions).

Finally, we mention that Theorem 5.2 can be
extended to larger approximation -classes. Recall
that the class SNP introduced by Papadimitriou and
Yannakakis® has been an important approximation
class in the study of approximability of NP optimization
problems. Another important approximation class MIN
F*II; has been introduced by Kolaitis and Thakur("” in
their study of NP minimization problems.

Theorem 5.4, All NP optimization problems in
the class SNP or in the class MIN FTIl; are fized-
parameter tractable.

Again, Theorem 5.4 includes a large number of NP
optimization problems in the class FPT, and provides
new tools for excluding certain NP optimization prob-

lems from the classes SNP and MIN F*II;.

5.2 Efficient PTAS and FPT

Since the breakthrough research on PCP theory!™!,
approximation algorithms, in particular the study of
polynomial time approximation schemes for NP opti-
mization problems, have been probably one of the most
exciting research areas in theoretical computer science.
New computational lower bounds have been established
and new PTAS algorithms have been developed for a
large number of NP optimization problems!?.

By the definition, a PTAS algorithm for an NP opti-
mization problem @ is an approximation algorithm A for
@ such that on an input pair (z, €), where z is an instance
of @ and € > 0, the algorithm A produces a solution y
to = of approximation ratio bounded by 1 + €, and that
for any fixed € > 0, the running time of the algorithm A
is bounded by a polynomial of |z|. Therefore, the run-
ning time of the algorithm A can be either of the form
O(f(1/€)n®) where f is a function and ¢ is a constant,
or of the form O(n"(1/€)) where h is a function of 1/e.
For example, Baker’s PTAS for PLANAR INDEPENDENT
seT(*Y has its running time bounded by O(2%/¢n), and
the PTAS by Deng et al. for the DSSP problem!%¢! has its
running time of the form O(nl/es).

Obviously, a PTAS of the latter form is much less
efficient than one of the former form. Downey!™! has
surveyed a list of PTAS algorithms of the latter form
and demonstrated that even for a moderate error bound
€ = 20%, these algorithms on their current form are far
from being practical.



34

One might argue that these PTAS algorithms are im-
portant theoretically, and that practically, with more ef-
forts and better algorithmic techniques, faster and practi-
cal PTAS algorithms will be developed for the problems.

This raises the following important and interesting
question for the study of approximation algorithms.

Question: Are there PTAS problems that have no
PTAS algorithms whose running time is of the form
O(f(1/€)n®)? 1If the answer is yes, how do we identify
these PTAS problems?

To study this problem more thoroughly, we first in-
troduce a new definition.

Definition 10. An NP optimization problem Q
has an efficient polynomial time approximation scheme
(EPTAS) if it admits a polynomial-time approzimation
scheme whose running time is bounded by O(f(1/€)|z|¢),
where f is a recursive function and c is a constant.

In particular, an FPTAS problem has EPTAS. By
Theorem 5.1, we get immediately

Theorem 5.5[8%. If an NP optimization problem has
EPTAS, then it is fized-parameter tractable.

Therefore, according to our working hypotheses, any
W{1]-hard NP optimization problem will have no EP-
TAS. This, however, does not completely answer the
above question since it is not clear at all whether there
are NP optimization problems that are W{[1]-hard and
have PTAS.

By carefully examining the formulation proposed by
Khanna and Motwanil®! who attempted to characterize
the class PTAS by logic problems on planar structures,
Cai et al.[8 were able to show that a class in Khanna
and Motwani’s structure is W[1]-hard. To explain, we
first need a few terminologies. Let C be a collection of
DNF formulas (they may share common input variables).
The bipartite graph Ge associated with C, with vertex bi-
partition V = I U F, is defined as follows. Each input
variable in C corresponds to a vertex in I and each for-
mula in C corresponds to a vertex in F'. There is an edge
from a vertex x in I to a vertex f in F if and only if the
input variable x appears in the formula f.

Theorem 5.68182,  The following problem has
PTAS and is W{l]-hard. Therefore, the problem has
PTAS but has no EPTAS unless FPT = W|[1]:

PLANAR TMIN: gwen a collection C of DNF formulas,
with all literals positive and with the associated bipartite
graph being planar, construct an assignment of minimum
weight that satisfies all formulas in C.

Therefore, under the working hypotheses in parame-
terized complexity theory, PLANAR TMIN is such a prob-
lem whose (1+¢€)-approximation is theoretically tractable
(i.e., can be constructed in polynomial time) but practi-
cally infeasible (i.e., cannot be constructed by practically
efficient algorithms). Hence, the study in parameterized
complexity theory has provided new techniques to iden-
tify those PTAS problems that have no “practically ef-
fective” PTAS algorithms.

Finally, we point out that based on the framework

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

of parameterized complexity theory, by enforcing a pla-
nar structure on the parameterized classes in the W-
hierarchy, it seems possible to structurally characterize
most EPTAS problems(*3].

5.3 Lower Bounds on the Running Time of

PTAS

Let us re-consider the DISTINGUISHING SUBSTRING SE-
LECTION problem (DsSP) (see Subsection 4.2 for the def-
inition).

Theorem 5.7(%6], The pssp problem has PTAS.

Strictly speaking, the DSSP problem considered in [66]
does not take the standard definition of an NP optimiza-
tion problem, and the PTAS algorithm given in [66] for
DSSP is neither a standard PTAS algorithm. However,
by properly re-formulating the problem, we can make
the DSSP problem into a standard NP optimization prob-
lem and the PTAS algorithm given in [66] will become a
standard PTAS algorithm for the standard form (see [83]
for details).

Using the techniques of Subsection 4.4, and by a lin-
ear fpt-reduction from the DOMINATING SET problem, we
can prove:

Theorem 5.8%%. The Dssp problem is W |2]-hard.
Moreover, if DSSP can be solved in time O(f(k)n°*)) for
any recursive function f, then all size-constrained SNP
problems are solvable in subexponential time.

The following theorem is a corollary of Theorem 5.1.

Theorem 5.9183, [f an NP optimization problem Q
has a PTAS algorithm of running time O(f(1/e)n°1/))
for a recursive function f, then the parameterized version
of Q can be solved in time O(f(2k)n°™*)).

Combining Theorems 5.8 and 5.9, we get immediately

Theorem 5.10.
problems are solvable in subexponential time, the DSSP
problem has no PTAS of running time f(1/€)n°/¢) for
any recursive function f.

Theorem 5.10 seems the first result in which a specific
lower bound is derived on the running time of a PTAS
for an NP-hard problem. This result also demonstrates
potential applications of parameterized complexity the-
ory in the study of approximation algorithms. In most
cases, computational lower bounds and inapproximabil-
ity of optimization problems are derived based on ap-
proximation ratio-preserving reductions?, by which if a
problem Q1 is reduced to another problem @2, then Qs is
at least as hard as Q1. In particular, if (), is reduced to
Q)2 under an approximation ratio-preserving reduction,
then the approximability of Qs is at least as difficult as
that of Q1. Therefore, the intractability of an “easier”
problem in general cannot be derived using such a re-
duction from a “harder” problem. On the other hand,
our computational lower bound on the DSSP problem was
obtained by a linear fpt-reduction from the DOMINAT-
ING SET problem. It is well-known that DOMINATING
SET has no polynomial time approximation algorithms of

Unless all size-constrained SNP



Jian-Er Chen: Parameterized Computation and Complexity

constant ratiol?, while the DssP problem has PTASI®6].
Thus, from the viewpoint of approximability, DOMINAT-
ING SET is much harder than DssP, and our linear fpt-
reduction reduces a harder problem to an easier problem.
This hints that our approach for deriving computational
lower bounds and the linear fpt-reduction cannot be sim-
ply replaced by the popular approaches based on approx-
imation ratio-preserving reductions.

6 Conclusions and Further Research

In summary, the theory of parameterized computa-
tion and complexity is a recently developed new approach
dealing with intractable computational problems. The
study has developed new algorithmic techniques for prac-
tically solving a large number of computational problems
that are intractable in terms of the traditional complexity
theory. The study has also offered powerful techniques
for deriving strong computational lower bounds for com-
putational problems that may not be derivable based on
the traditional NP completeness theory. Before we close
this survey, we offer a few directions for further research.

New algorithmic techniques. New algorithmic
techniques for the development of parameterized algo-
rithms are highly desired. For some famous fixed-
parameter tractable problems, such as VERTEX COVER,
we are interested in further improving the existing al-
gorithms. For example, for VERTEX COVER, although
it is unlikely to have a parameterized algorithm of time
O(c*4kn) for a constant ¢ arbitrarily close to 1 (see The-
orem 4.13), we feel that there should be still some room
for further improvement. Note that a slight decrease on
the constant ¢ (e.g., from 1.286 to 1.2) will improve the
entire running time of the algorithm very significantly(25],
We point out that some powerful techniques developed
in the study of general algorithms, such as randomized
algorithms and amortized analysis, seem to have great
potential for further improvement of parameterized algo-
rithms.

Computational lower bounds. It will be impor-
tant to identify the Wl]-hardness for problems in a va-
riety of applications. Note that such research may have
significant impact in the applications, both theoretically
and practically (e.g., the DATABASE QUERY EVALUATION
problem[m). Moreover, development of tight computa-
tional lower bounds for famous NP-hard parameterized
problems (e.g., Subsection 4.4) and proving computa-
tional lower bounds on approximation algorithms for NP
optimization problems (e.g., Subsection 5.3) are still in
their very beginning stages, and should have a great po-
tential for further research.

Study in structural complexity. Many questions
have remained open concerning the structures of param-
eterized computation and complexity. For example, it is
still unknown whether the collapse of a particular level in
the W-hierarchy (i.e., W[t] = FPT for a particular ¢ > 0)
would induce the collapse of the entire W-hierarchy. Note

35

that this result holds trivially for most complexity hi-
erarchies proposed and studied in the traditional com-
plexity theory. The recently proposed fixed-parameter
intractable class MINI[1](%3] which is a subclass of W[1],
has turned out to be very important in the study of com-
putational lower bounds for parameterized problems. It
is not clear what is the precise relationship between W{1]
and MINT[1].

Implementation issues. Parameterized computa-
tion and complexity theory has become interesting and
important because of its close connection to practical
computations in a variety of applications. Besides its
theoretical study, we are interested in how practically
and how effectively parameterized algorithms work in the
real world. Therefore, implementations of the parameter-
ized algorithms in real computer systems to solve com-
putational problems in real world cannot be neglected.
Recently, research has started investigating implemen-
tations of parameterized algorithms in parallel and dis-
tributed systems!®, which has opened new challenging
research directions in the study of parameterized compu-
tation and complexity theory.

References

[1] Garey M R, Johnson D S. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[2] Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-
Spaccamela A, Protasi M. Complexity and Approximation —
Combinatorial Optimization Problems and Their Approxima-
bility Properties. Springer, 1999.

[3] Motwani R, Raghavan P. Randomized Algorithms. Cambridge
University Press, New York, 1995.

[4] Michalewicz Z, Fogel D B. How to Solve It: Modern Heuristics.
Springer, Berlin, 2000.

[5] Roth-Korostensky C. Algorithms for Building Multiple Se-
quence Alignments and Evolutionary Trees [Dissertation]. No.
13550, ETH Ziirich, 2000.

[6] Stege U. Resolving Conflicts from Problems in Computational
Biology [Dissertation]. No. 13364, ETH Ziirich, 2000.

[7] Cai L, Juedes D, Kanj I A. Inapproximability of non NP-hard
optimization problems. Theoretical Computer Science, 2002,
289: 553-571.

[8] Cheetham J, Dehne F, Rau-Chaplin A, Stege U, Taillon P J.
Solving large FPT problems on coarse-granined parallel ma-
chines. J. Computer and System Sciences, 2003, 67: 691-701.

[9] Lichtenstein O, Pnueli A. Finite state concurrent programs sat-
isfy their linear specification. In Proc. 12th ACM Symposium
on the Principles of Programming Languages, 1985, pp.97—-107.

[10] Henglein F, Mairson H G. The complexity of type inference
for higher-order typed lambda calculi. Journal of Functional
Programming, 1994, 4: 435-477.

[11] Chen J, Kanj I A. Constrained minimum vertex cover in bipar-
tite graphs: Complexity and parameterized algorithms. Jour-
nal of Computer and System Sciences, 2003, 67: 833-847.

[12] Nesetril J, Poljak S. On the complexity of the subgraph prob-
lem. Commentationes Mathematicae Universitatis Carolinae,
1985, 26: 415-419.

[13] Coppersmith D, Winograd S. Matrix multiplication via arith-
metic progression. J. Symbolic Logic, 1990, 9: 251-280.

[14] Papadimitriou C H, Yannakakis M. On the complexity of
database queries. Journal of Computer and System Sciences,

1999, 58: 407-427.



36

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

23]

24]

[25]

26]

(27]
(28]
[29]
30]

(31]

(32]
(33]
(34]
(35]

(36]

(37]

(38]

(39]

[40]

Chen J, Chor B, Fellows M, Huang X, Juedes D, Kanj I, Xia G.
Tight lower bounds for certain parameterized NP-hard prob-
lems. In Proc. 19th Annual IEEE Conference on Computa-
tional Complezity (CCC 2004), 2004, pp.150-160.

Anthony M, Biggs N. Computational Learning Theory. Cam-
bridge University Press, Cambridge, UK, 1992.

Papadimitriou C H, Yannakakis M. On limited nondetermin-
ism and the complexity of VC dimension. Journal of Computer
and System Sciences, 1996, 53: 161-170.

Downey R, Fellows M. Parameterized Complexity. Springer-
Verlag, 1999.

Pevzner P A, Sze S-H. Combinatorial approaches to finding
subtle signals in DNA sequences. In Proc. 8th International
Conf. Intelligent Systems for Molecular Biology (ISMB’00),
2000, pp.269-278.

Sze S H, Lu S, Chen J. Integrating sample-driven and pattern-
driven approaches in Motif finding, Lecture Notes in Computer
Science 3240, 2004, pp.438-449.

Cai L, Chen J, Downey R, Fellows M. On the structure of pa-
rameterized problems in NP. Information and Computation,
1995, 123: 38-49.

Chen Y, Flum J. Machine characterizations of the classes of
the W-hierarchy. Lecture Notes in Computer Science 2803
(CSL03), 2003, pp.114-127.

Flum J, Grohe M. Describing parameterized complexity classes.
Lecture Notes in Computer Science 2285 (STACS’02), 2002,
pp.359-371.

Chen J. Simpler computation and deeper theory: On devel-
opment of efficient parameterized algorithms. International
Workshop on Parameterized Complezity, Chennai, India, 2000.
Downey R, Fellows M, Stege U. Parameterized complexity:
A framework for systematically confronting computational in-
tractability. In Contemporary Trends in Discrete Mathemat-
tcs, Graham R, Kratochvil J, Nesetril J, Roberts F (eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, 1999, 49: 49-99.

Fellows M. Parameterized complexity: The main ideas and
some research frontiers. Lecture Notes in Computer Science
2228 (ISAAC’01), 2001, pp.291-307.

Cormen T, Leiserson C, Rivest R, Stein C. Introduction to Al-
gorithms. McGraw-Hill, Boston, 2001.

Lovasz L, Plummer M. Matching Theory. North-Holland, Am-
sterdam, 1986.

Nembhauser G, Trotter L. Vertex packing: Structural properties
and algorithms. Math. Programming, 1975, 8: 232—248.

Chen J, Kanj I A, Jia W. Vertex cover: Further observations
and further improvements. J. Algorithms, 2001, 41: 280-301.
Fellows M. Blow-ups, win/win’s, and crown rules: Some new di-
rections in FPT. Lecture Notes in Computer Science (WG’03),
2003, pp.1-12.

Chor B, Fellows M, Juedes D. An efficient FPT algorithm for
saving k colors. Manuscript, 2003.

Alber J, Fellows M, Niedermeier R. Polynomial time data re-
duction for dominating set. J. ACM, 2004, 11: 363—-384.
Robson J M. Algorithms for maximum independent sets. J.
Algorithms, 1986, 7: 425-440.

Tarjan R E, Trojanowski A E. Finding a maximum indepen-
dent set. SIAM J. Comput., 1977, 6: 537-546.

Woeginger G. Exact algorithms for NP-hard problems: A sur-
vey. Lecture Notes in Computer Science 2570, 2001, pp.185—
207.

Niedermeier R, Rossmanith P. A general method to speed up
fixed-parameter tractable algorithms. Inform. Process. Lett.,
2000, 73: 125-129.

Balasubramanian R, Fellows M R, Raman V. An improved
fixed parameter algorithm for vertex cover. Inform. Process.
Lett., 1998, 65: 163—168.

Chen J, Liu L, Jia W. Improvement on vertex cover for low-
degree graphs. Networks, 2000, 35: 253-259.

Niedermeier R, Rossmanith P. Upper bounds for vertex cover
further improved. Lecture Notes in Computer Science 1563

(STACS99), 1999, pp.561-570.

[41]
[42]

[43]

[44]

[45]

[46]

[47]

48]

(49]

50]

(51]

[52]

(53]

[54]

[55]

(56]

[57]
(58]
59]

[60]

[61]

[62]

[63]

[64]

[65]

J. Comput. Sci. & Technol., Jan. 2005, Vol.20, No.1

Baker B S. Approximation algorithms for NP-complete prob-
lems on planar graphs. J. ACM, 1994, 41: 153-180.

Lipton R, Tarjan R. Application of a graph separator theorem.
SIAM Journal on Computing, 1980, 9: 615—627.

Chen J, Huang X, Kanj I, Xia G. Polynomial time approxima-
tion schemes and parameterized complexity. In Proc. 29th In-
ternational Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2004), Lecture Notes in Computer Sci-
ence 3153, 2004, pp.500-512.

Bodlaender H L. A linear time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 1996,
25: 1305-1317.

Eppstein D. Diameter and treewidth in minor-closed graph
families. Algorithmica, 2000, 27: 275-291.

Arnborg S. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability — A survey. BIT, 1985,
25: 2-23.

Alber J, Bodlaender H L, Fernau H, Kloks T, Niedermeier
R. Fixed parameter algorithms for dominating set and related
problems on planar graphs. Algorithmica, 2002, 33: 461-493.
Fomin F V, Thilikos D M. Dominating sets in planar graphs:
Branch-width and exponential speed-up. In Proc. 14th Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA’03), 2003,
pp.168-177.

Kanj I, Perkovic L. Improved parameterized algorithms for pla-
nar dominating set. Lecture Notes in Computer Science 2420
(MFCS02), 2002, pp.399-410.

Alon N, Yuster R, Zwick U. Color-coding. Journal of the ACM,
1995, 42: 844-856.

Chen J, Friesen D, Kanj I, Jia W. Using nondeterminism to
design efficient deterministic algorithms. Algorithmica, 2004,
40: 83-97.

Jia W, Zhang C, Chen J. An efficient parameterized algorithm
for m-set packing. Journal of Algorithms, 2004, 50: 106—-117.
Dehne F, Fellows M, Rosamond F. An FPT algorithm for set
splitting. Lecture Notes in Computer Science 2880 (WG’03),
2003, pp.180-191.

Niedermeier R. Invitation to Fixed-Parameter Algorithms
[Thesis]. Universitat Tubingen, 2002.

Robertson N, Seymour P D. Graph Minors — A Survey. In
Surveys in Combinatorics 1985, Anderson I (ed.), Cambridge
Univ. Press, Cambridge, 1985, pp.153-171.

Robertson N, Seymour P D. Graph minors VIII. A Kuratowski
theorem for general surfaces. J. Combin. Theory Ser. B, 1990,
48: 255-288.

Robertson N, Seymour P D. Graph minors XIII. The disjoint
paths problem. J. Combin. Theory Ser. B, 1995, 63: 65-110.
Fellows M, Langston M. Nonconstructive tools for proving
polynomial-time decidability. J. ACM, 1988, 35: 727-739.
DIMACS Workshop on Faster Ezact Solutions for NP-Hard
Problems. Princeton, Feb. 23—-24, 2000.

Papadimitriou C H, Yannakakis M. Optimization, approxima-
tion, and complexity classes. Journal of Computer and System
Sciences, 1991, 43: 425-440.

Impagliazzo R, Paturi R. Which problems have strongly ex-
ponential complexity? Journal of Computer and System Sci-
ences, 2001, 63: 512-530.

Abrahamson K, Downey R, Fellows M. Fixed-parameter
tractability and completeness IV: On completeness of W[P]
and PSPACE analogs. Ann. Pure Appl. Logic, 1995, 73: 235—
276.

Downey R, Estivill-Castro V, Fellows M, Prieto-Rodriguez E,
Rosamond F. Cutting up is hard to do: The parameterized
complexity of k-cut and related problems. Electronic Notes in
Theoretical Computer Science, 2003, 78: 205-218.
Bodlaender H, Downey R, Fellows M, Hallett M, Wareham H.
Parameterized complexity analysis in computational biology.
Computer Applications in Biosciences, 1995, 11: 49-57.
Cesati M. Compendium of parameterized problems (2004 ver-
sion). Department of Computer Science, Systems, and Indus-
trial Engineering, University of Rome “Tor Vergata”, Italy.



Jian-Er Chen: Parameterized Computation and Complexity

http//bravo.ce.uniroma2.it/home/cesati/research /compendi-
um.ps.

[66] Deng X, Li G, Li Z, Ma B, Wang L. Genetic design of drugs
without side-effects. SIAM J. Comput., 2003, 32: 1073-1090.

[67] Gramm J, Guo J, Niedermeier R. On exact and approxima-
tion algorithms for distinguishing substring selection. Lecture
Notes in Computer Science 2751 (FCT03), 2003, pp.195-209.

[68] Chen J, Huang X, Kanj I A, Xia G. Linear FPT-reductions
and computational lower bounds. In Proc. 36th ACM Symp.
Theory of Computing (STOC 2004), 2004, pp.212-221.

[69] Goldschmidt O, Hochbaum D. Polynomial algorithm for the
k-cut problem. In Proc. 29th Ann. Symp. Foundations of
Computer Science (FOCS’88), 1988, pp.444-451.

[70] Bodlaender H, Fellows M, Hallett M. Beyond NP-completeness
for problems of bounded width: Hardness for the W-hierarchy.
In Proc. 26th Ann. ACM Symp. Theory of Computing
(STOC94), 1994, pp.449-458.

[71] Robson J M. Finding a maximum independent set in time

0(2"/4)? LaBRI, Universite Bordeaux I, 1251-01, 2001.

Cai L, Juedes D. On the existence of subexponential parame-

terized algorithms. Journal of Computer and System Sciences,

2003, 67: 789-807.

Cai L, Chen J. On fixed parameter tractability and approxima-

bility of NP optimization problems. Journal of Computer and

System Sciences, 1997, 54: 465-474.

[74] Ausiello G, Marchetti-spaccamela A, Protasi M. Toward a uni-

fied approach for the classification of NP-complete optimization

problems. Theoretical Computer Science, 1980, 12: 83-96.

Paz A, Moran S. Non deterministic polynomial optimization

[72]

[73]

73]
problems and their approximations. Theoretical Computer Sci-
ence, 1981, 15: 251-277.

[76] Woeginger G. When does a dynamic programming formulation
guarantee the existence of an FPTAS? In Proc. 10th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA’99), 2001,
pp-820-829.

[77] Kolaitis P, Thakur M. Approximation properties of NP mini-
mization classes. Journal of Computer and System Sciences,
1995, 50: 391-411.

[78] Arora S, Lund C, Motwani R, Sudan M, Szegedy M. Proof ver-
ification and hardness of approximation problems. Journal of
the ACM, 1998, 45: 501-555.

[79] Downey R. Parameterized complexity for the skeptic. In

Proc. 18th IEEE Conference on Computational Complezity

37

(CCC03), 2003, pp.147-169.

[80] Cesati M, Trevisan L. On the efficiency of polynomial time ap-
proximation schemes. Information Processing Letters, 1997,
64: 165-171.

[81] Khanna S, Motwani R. Towards a syntactic characterization of
PTAS. In Proc. 28th Ann. ACM Symp. Theory of Computing
(STOC96), 1996, pp.329-337.

[82] CaiL, Fellows M, Juedes D, Rosamond F. Efficient polynomial-
time approximation schemes for problems on planar structures:
Upper and lower bounds. Manuscript, 2001.

[83] Huang X. Parameterized complezity and polynomial-time ap-
prozimation schemes [Dissertation]. Department of Computer
Science, Texas A&M University, December, 2004.

Jian-Er Chen got his B.S. de-
gree in computer science in 1982 from
Central South University, China, and
his Ph.D. degree in computer science
in 1987 from Courant Institute, New
York University, USA, where he was
awarded the Janet Fabri Award for the
best Ph.D. dissertation. After gradu-
ation from NYU, he went to the De-
partment of Mathematics at Columbia
University, USA, where he received the Ph.D. degree in math-
ematics in 1990. Since then, he has been with the Department
of Computer Science at Texas A&M University, USA, where
he is a professor. Currently, he is a ChangJiang Scholar Pro-
fessor at Central South University, China. His research in-
terests include theoretical computer science, bioinformatics,
computer networks, and computer graphics. He has pub-
lished over 120 journal and conference papers in these areas,
and received numerous awards, including the Research Initi-
ation Award in 1991 from US National Science Foundation,
TEES Select Young Faculty Award in 1993 and Distinguished
Faculty Achievement Award in 1998 from Texas A&M Uni-
versity, Oversea Distinguished Young Scholars Award in 2000
from the National Natural Science Foundation of China, and
Natural Science Award (first class) in 2003 from MOE, China.




