
Intelligent Service Robotics (2024) 17:915–929
https://doi.org/10.1007/s11370-024-00544-3

ORIG INAL RESEARCH PAPER

ETQ-learning: an improved Q-learning algorithm for path planning

Huanwei Wang1 · Jing Jing1 ·Qianlv Wang1 · Hongqi He1 · Xuyan Qi1 · Rui Lou1

Received: 27 December 2023 / Accepted: 12 May 2024 / Published online: 26 June 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Path planning algorithmhas always been the core of intelligent robot research; a good path planning algorithm can significantly
enhance the efficiency of robots in executing tasks. As the application scenarios for intelligent robots continue to diversify,
their adaptability to the environment has become a key focus in current path planning algorithm research. As one of the classic
reinforcement learning algorithms, Q-learning (QL) algorithm has its inherent advantages in adapting to the environment,
but it also faces various challenges and shortcomings. These issues are primarily centered around suboptimal path planning,
slow convergence speed, weak generalization capability and poor obstacle avoidance performance. In order to solve these
issues in the QL algorithm, we have carried out the following work. (1) We redesign the reward mechanism of QL algorithm.
The traditional Q-learning algorithm’s reward mechanism is simple to implement but lacks directionality. We propose a
combined reward mechanism of "static assignment + dynamic adjustment." This mechanism can address the issue of random
path selection and ultimately lead to optimal path planning. (2) We redesign the greedy strategy of QL algorithm. In the
traditional Q-learning algorithm, the greedy factor in the strategy is either randomly generated or set manually, which limits
its applicability to some extent. It is difficult to effectively applied to different physical environments and scenarios, which
is the fundamental reason for the poor generalization capability of the algorithm. We propose a dynamic adjustment of the
greedy factor, known as the ε − acc− increasing greedy strategy, which significantly improves the efficiency of Q-learning
algorithm and enhances its generalization capability so that the algorithm has a wider range of application scenarios. (3) We
introduce a concept to enhance the algorithm’s obstacle avoidance performance. We design the expansion distance, which
pre-sets a "collision buffer" between the obstacle and agent to enhance the algorithm’s obstacle avoidance performance.

Keywords Q-learning · Path planning · Reinforcement learning · Reward mechanism · Greedy strategy

1 Introduction

In recent years, the mobile robotics industry has wit-
nessed remarkable development,with an increasingly diverse
range of applications. These applications include logis-
tics and warehousing, healthcare, agriculture, construction,
smart manufacturing and military fields. Additionally, the
unmanned aerial vehicle (UAV) industry has flourished,
encompassing areas such as surveillance, photography, agri-
culture, firefighting and, more, providing unique solutions
for various industries.

Huanwei Wang and Jing Jing have equally contributed to this work.

B Rui Lou
lourui@nudt.edu.cn

1 PLA Information Engineering University, Science Ave 62,
ZhengZhou 450001, Henan, China

Path planning plays a crucial role in a wide range
of applications [1]. It is a core component of intelligent
decision-making for mobile robots and UAV systems. Path
planning algorithm allows robots and UAVs to plan reason-
able paths in dynamic environments to accomplish tasks and
avoid collisions.

There are various path planning algorithms, each suitable
for different applications and scenarios. Based on their fun-
damentals and application fields, path planning algorithms
can be categorized as follows: (1) Based on graph the-
ory and search algorithms, including Dijkstra’s algorithm
and A* algorithm [2, 3]. They are suitable for shortest
path planning in static environments. (2) Sampling-based
algorithms, such as Rapidly exploring Random Tree (RRT)
and Probabilistic Roadmap (PRM), which are suitable for
high-dimensional environments and complex terrain. (3)
Reinforcement learning algorithms, such asQ-learning (QL),
which are designed for path planning in dynamic environ-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-024-00544-3&domain=pdf
http://orcid.org/0009-0004-5639-9724

916 Intelligent Service Robotics (2024) 17:915–929

ments. These algorithms enable intelligent agents to learn
optimal path strategies through interaction with the envi-
ronment, making them well suited for situations with high
uncertainty anddynamics.Compared to other algorithms,QL
algorithm can autonomouslymake decisions and learn online
for path planning in uncertain and dynamic environments. It
is capable of learning optimal path strategies without prior
knowledge and has significant advantageswhen used to solve
complex path planning problems.

In unfamiliar and complex environments, although QL
algorithmhasmany advantages, it still has somechallenges in
complex environments, such as easy to fall into local optimal
solutions, slow convergence speed and limited generalization
capability. Researchers have already recognized these chal-
lenges and have attempted to address them [4–7], but their
results have been unsatisfactory. To address these issues, we
propose a combined rewardmechanism of "static assignment
+ dynamic adjustment" to achieve the goal of planning the
optimal path. We propose a dynamic adjustment strategy for
the greedy factor, known as ε − acc − increasing greedy
strategy, to improve the algorithm’s convergence speed and
generalization capability. In addition,wedesign an expansion
distance to improve the obstacle avoidance performance of
the algorithm.

The primary contributions of this paper are summarized
as follows.

(1) Improvement in the reward mechanism of QL algorithm.
To the best of our knowledge, this is the first study to
introduce a combination of "static assignment + dynamic
adjustment" reward mechanism. This method is able to
plan the optimal path to overcome the issues of the local
optimal and the suboptimal paths.

(2) Improve the greedy strategy of QL algorithm. In tra-
ditional QL algorithm, the greedy factor is randomly
generated and lacks universality.We first propose a novel
ε − acc − increasing greedy strategy with dynamic
adjusted greedy factor, which effectively improves the
generalization ability and efficiency of QL algorithm.

(3) Enhanced obstacle avoidance capability. We design an
expansion distance, which presets a "collision buffer"
between theobstacle and agent to enhance the algorithm’s
obstacle avoidance performance.

The remaining part of the paper proceeds as follows.
Section 2 discusses the related works. Section3 covers the

preliminary reward mechanism and greedy strategy of QL
algorithm. In Sect. 4, we elaborate on the innovative design
of the algorithm. The experimental results and discussion are
presented in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Related work

QL algorithm is a classical algorithm in reinforcement learn-
ing for learning how to make optimal decisions to maximize
cumulative rewards in an unknown environment. Improv-
ing algorithm, path planning applications and reinforcement
learning optimization are several widespread research direc-
tions for QL algorithms. Researchers seek to enhance QL
algorithm to improve their performance and convergence
speed in improving algorithm.

2.1 Improving greedy strategy

Improving QL algorithm is an active research field that
involves exploring different learning rate strategies, explo-
ration strategy (e.g., e-greedy strategy) and initialization
methods. Variants of the algorithm, such as Dueling Q-
learning [8] and Double Q-learning [9], have also been
developed to further enhance performance.

Researchers improve the exploration strategy to explore
the state space more efficiently, using uncertainty informa-
tion, adaptive exploration strategy and information theory-
based methods. Traditional greedy strategies usually adopt
static and subjectively set greedy factors, which cannot effec-
tively deal with the "exploration–exploitation" balance in
different environments and can easily lead to a local opti-
mal solution. In reference [10], a dynamic search factor is
introduced to balance randomness and purposefulness by
adjusting its size, and experimental results show that this
effectively solves the problem of over-localized search. Lit-
erature [11] proposed an ε-DBE greedy strategy, in which the
value of the exploration greedy factor ε decreases with the
number of iteration steps, i.e., in the exploration phase, the
greedy factor decreases as the number of iterations increases,
and ultimately tends to be fully utilized, in order to avoid
over-exploration and over-utilization. In contrast, literature
[12] proposes a greedy strategy that combines the optimal
path and the maximum reward value, which is ultimately
used to plan out the fixed optimal path in unmanned ships.

Traditional ε-greedy strategies struggle to balance explo-
ration and exploitation effectively. Noisy networks involve
introducing noise into the weights of neural networks to
enhance exploration strategy, to make exploration more
random and effective, to make it more suitable for high-
dimensional and continuous action space problems [13].
While noisy networks improve exploration, they may intro-
duce a level of randomness that could lead to overly
exploratory behavior. Balancing exploration and exploitation
remains a challenge. Deep Deterministic Policy Gradients
(DDPG) algorithm [14, 15] is designed for continuous action
spaces. It improves exploration by using a deterministic pol-
icy and adding noise to explore the state space. In continuous
action spaces, traditional stochastic policies may not be as

123

Intelligent Service Robotics (2024) 17:915–929 917

effective. DDPGuses a deterministic policy and adds noise to
explore the state space more effectively, addressing the con-
tinuous action exploration challenge. DDPG provides better
exploration in continuous action spaces but may still require
careful tuning of noise parameters. Additionally, it could face
issues with convergence and exploration in complex environ-
ments. Policy gradient methods can often lead to unstable
exploration strategy updates. Trust Region Policy Optimiza-
tion (TRPO) [16] uses trust region techniques to limit policy
changes, ensuring robust and controlled improvements in
exploration performance. TRPO achieves better stability and
controlled exploration, but it can be computationally expen-
sive and may require fine-tuning of hyperparameters. It
doesn’t fully address exploration in large and complex state
spaces.

These researches represent various approaches to enhance
exploration strategies in QL, addressing issues such as insta-
bility, over-exploration or under-exploration in traditional
exploration policies. These methods provide more effective
and stable exploration strategies, thereby improving the per-
formance of reinforcement learning algorithms.

2.2 Improving rewardmechanism

The reward mechanism of the traditional QL algorithm is
relatively straightforward and lacks clear guidance, which
leads to the lack of smoothness in the planning path and the
frequent occurrence of "jump points" and "return points,"
which makes it impossible to obtain the optimal path. To
address this issue, many researchers optimize the reward
mechanism to provide well-defined guidance, resulting in
smoother optimal path planning. In literature [4], a distance-
based reward mechanism is proposed, which adjusts the
reward value according to the distance to the goal in the next
step, and achieves significant improvements in UAV appli-
cations. Literature [17] proposes a reward mechanism based
on the distance between the state node and the goal node,
which helps to avoid blind searching and over-exploration
by intelligent robots. On the other hand, literature [12]
proposed a comprehensive incentive function integrating dis-
tance, safety and comfort, which was successfully applied to
unmanned vessels with distinct guidance and obstacle avoid-
ance capabilities.

Conventional strategy gradient methods may exhibit
excessive updates, leading to instability and excessive explo-
ration. Proximal Policy Optimization (PPO) [18] improves
exploration strategies by limiting the range of strategy
changes, enhancing stability and sample efficiency. PPO
improves the stability of the strategy by applying the
"clip surrogate objective" technique to the reward mech-
anism. However, PPO mitigates some exploration issues,
but it doesn’t fully address the challenge of handling high-
dimensional state and action spaces. It also relies on finite

difference approximations, which can be computationally
expensive. Marcin Andrychowicz, et al. [19] present the
"Hindsight ExperienceReplay" (HER) technique for improv-
ing QL by learning from failures and enhancing exploration.
Tuomas Haarnoja et al. [20] introduce Soft Actor-Critic
(SAC), a deep reinforcement learning algorithm that incor-
porates a maximum entropy reward mechanism to enhance
exploration.

These studies represent innovative approaches on reward
mechanism optimization for QL algorithm in recent years.
They address issues in reward mechanism design, includ-
ing sparse rewards, human feedback and self-expressive
feedback. However, there are still some shortcomings such
as hyperparameter tuning, computational resource require-
ments and dependence on external information. The role
of reinforcement learning in the QL algorithm is primar-
ily to assist an agent in learning how to make decisions in
an environment to maximize cumulative rewards. It enables
the agent to learn autonomously through interactions with
the environment without the need for explicit supervision.
In QL, reinforcement learning is used to learn the opti-
mal action selection strategy, and it improves the quality of
decision-making by continuously exploring the state space to
attain higher rewards. Kumar et al. propose a reinforcement
learning approach for self-expressive feedback that addresses
issues in reward mechanism design, allows intelligences to
learn task goals autonomously and improves generalizability
[21, 22]. Allowing agent to receive additional reward signals
from human feedback helps solve the sparse reward problem.

However, there are still some existing issues in current
research. These methods require large amounts of train-
ing data and computational resources [14, 15, 23], and the
algorithms are inefficient. Algorithms usually have difficulty
generalizing the strategies learned in the training environ-
ment to different environments or tasks. This can lead to
performance degradation in new environments.

2.3 Path planning

QL algorithm is employed to tackle path planning and
obstacle avoidance for robots in dynamic environments. By
learning Q-values, the robot can select optimal paths to nav-
igate around obstacles and in dynamic settings. However,
the method’s applicability is constrained by the dimension-
ality of the state space, particularly in large environments,
as it requires a large Q-table. Additionally, QL may demand
substantial training data and may not be effective in rapidly
adapting to changing environments [5]. ZWang, et al. employ
QL for path planning of unmanned aerial vehicles (UAVs).
It addresses path planning and navigation for UAVs in dif-
ferent environments, aiding UAVs in finding optimal paths
to reach their goals. This approach may require a consider-
able amount of training data and prior information about the

123

918 Intelligent Service Robotics (2024) 17:915–929

environment, which could limit its effectiveness in complex
or partially known environments [24]. In addition, QL algo-
rithms have a wide range of applications in path planning for
UAVs [17, 25, 26].

Using the QL algorithm for path planning in robot navi-
gation, S Li, et al. [27] introduce an adaptive path planning
method that allows robots to dynamically adjust their paths
based on changing environmental conditions, enhancing
adaptability in navigation. The adaptability of this method
is limited, especially in highly dynamic environments, and it
may face challenges in such scenarios. QL is used to learn
adaptive strategies for path planning and collision avoidance
problems of robots in unknown environments [28]. How-
ever, this approach may have limited robustness in the face
of highly dynamic and unknown environments, and further
improvements are needed to enhance performance.

3 Preliminaries

In this section, we introduce the reward mechanism and ε-
greed strategy of QL algorithm.

3.1 Rewardmechanism

The reward mechanism is an important evaluating indica-
tor used to evaluate the action of agents. A larger reward
value indicates a better action selected by the agent. Other-
wise, reward mechanism is one of the factors that determine
the path planning results and algorithm efficiency. Reward
mechanism of QL algorithm is shown in Eq. (1).

Q =
⎧
⎨

⎩

C1, state = goal
−C1, state = obstacle
0, other

(1)

In Eq. (1), Q represents the reward function value, state
represents the state of the current node, goal represents
the path destination, obstacle represents the obstacle node,
and other represents other nodes except the destination and
obstacle.C1 represents a positive integer. The reward value
is set to−C1 when the agent encounters an obstacle. Reward
value is set to C1 when the agent reaches the goal node, and
reward values of other nodes are set to 0.

3.2 Greedy strategy

The principle of the ε-greedy strategy is as follows: QL algo-
rithm introduces a random exploration factor ε during the
initialization process, where 0 < ε ≤ 1. During the explo-
ration phase, when selecting actions, the algorithm generates
a random number between 0 and 1 and makes a decision. If
the generated random number is Greater than ε, it will ran-

domly choose an action. If this random number is less than
ε, it will select the action that currently gets the maximum
reward. After multiple iterations, the value of ε is gradually
set to 1 and enters the full exploitation phase, where it consis-
tently selects the action that can obtain the maximum reward
until the iteration is completed. ε -greedy strategy is denoted
by Eq. (2):

ε =
{
1, ep ≥ preep
r(0, 1), ep < preep

(2)

where ε denotes the exploration factor, ep denotes the
number of iterations, r(0, 1) denotes a random number of
(0,1) and preep denotes the pre-set iteration threshold.

From the above introduction, it is evident that the ε-greedy
strategy of the traditional QL algorithm has two issues.

1. ε is generated completely randomly in the initialization
phase, which is not necessarily the best choice for the
algorithm. If the initial value is set too large, it could
lead to the loss of the exploration phase’s significance,
resulting in the Q-table not receiving effective updates,
thus affecting the learning effect.

2. The preset value of preep is usually based on experience
or subjective preferences, which limits its applicability
to some extent. It is challenging to effectively apply it in
complex physical environments, which is the fundamen-
tal reason for the poor generalization ability of the QL
algorithm. In real-world path planning tasks, the physical
environment can vary significantly, leading to less than
ideal performance when the algorithm is applied in dif-
ferent environments, indicating a lack of generalization
capability.

4 Innovative design

4.1 Rewardmechanism design

To overcome the shortcoming of QL algorithm rewardmech-
anism, we redesign the reward mechanism and propose an
innovative two-step assignment strategy of "static assign-
ment + dynamic adjustment" reward mechanism.

4.1.1 Static assignment of reward mechanism

The basic principle of "static assignment" is as follows: the
rewardmechanism ofQL algorithm ismodified to effectively
assign values only to obstacles and goal node. Inspired by the
A * algorithm, it employs the distance relationship between
the current node of the path and the goal node and devel-

123

Intelligent Service Robotics (2024) 17:915–929 919

ops the static assignment process according to the distance
relationship. The implementation process is as follows:

1. Calculate the distance between the start node and goal
node. Assuming the coordinate of start node are (x0, y0)
and the coordinate of goal node are (x1, y1). The
Euclidean distance is used to get the distance between
the start node and goal node as D, as shown in Eq. (3).

D =
√

(x1 − x0)2 + (y1 − y0)2 (3)

2. Calculate the distance between each node and goal node.
Assume the coordinates of the current node are (x1, y1);
still using the Euclidean distance, the distance between
the current node and goal node is Di , as shown in Eq. (4).

D =
√

(x1 − xi)2 + (y1 − yi)2 (4)

3. Calculate the distance from each node to the diagonal.
Assume the coordinates of the current node are (xi , yi).
We can obtain the distance from the current node to the
diagonal, denoted as di , as shown in Eq. (5).

di = |xi − yi | /
√
2 (5)

4. Calculate reward value of the node. Di and di are
employed in the reward mechanism. The design prin-
ciple of reward mechanism is that the distance is far, but
the reward value is small. According to the distance rela-
tionship, the reward mechanism we design is shown in
Eq. (6) where qi is the reward value and n is the map size.

qi = −Di − di + 3
√
2

4
n (6)

5. Based on the above steps, the reward mechanism in the
"static assignment" stage is shown in (7):

Q =
⎧
⎨

⎩

C1, C1 > 0, state = goalnode
−C1, state = obstacle
qi , other

(7)

The above steps are the design process of the "static
assignment." The obstacle is still assigned−C1, and the goal
node is still assigned C1 in the reward mechanism. Other
nodes are no longer assigned to 0 but according to Eq. (7). In
this way, each node has a relatively reasonable initial value
when the algorithm is learning. After the design of static
assignment, the learning process ofQLalgorithm is no longer
completely random but canmove along the directionwith the
maximum reward value and the direction closest to the goal
node at the same time, so it has preliminary guidance.

4.1.2 Dynamic adjustment of reward mechanism

After completing the "static assignment," the reward mech-
anism starts to "Dynamic adjustment" the nodes in each
iteration learning. The basic principle of "dynamic adjust-
ment" is as follows: QL algorithm assigns values to nodes
again in each iteration according to the assignment strategy,
and the process is repeated. During the learning process of
the algorithm, each node is dynamically assigned a reward
value. And each assignment adjusts the reward value accord-
ing to state and action. The dynamic assignment strategy is
as follows.

1. If the next action of the agent makes it closer to the goal
node without collision, the reward value Qi of the original
state will be adjusted, and the strategy is shown in (8):

Qi = qi + C3 × Di

D
(8)

2. If the next action of the agent moves it further away
from the goal node without collision, the reward value Qi of
the original state will be adjusted, and the strategy is shown
in (9):

Qi = qi − C3 × Di

D
(9)

3. Based on the above steps, the reward mechanism in the
"Dynamic adjustment" stage is shown in (10):

Q =

⎧
⎪⎪⎨

⎪⎪⎩

C1, state = goalnode
−C2, state = obstacle
qi + C3 × Di

D , Di < Di−1

qi − C3 × Di
D , Di > Di−1

(10)

A comparison of the pre-improved rewardmechanism and
the improved reward mechanism is shown in Fig. 1.

The central idea of "dynamic adjustment" is to assign val-
ues according to the next action of the agent, that is, according
to the distance between the node to be visited and the goal
node. If it is close to the goal node, the reward value is
assigned a positive value based on the "static assignment"
or the previous assignment, and the reward value increases
as the distance decreases. Conversely, if the agent is moving
away from the goal, a negative reward value is assigned, and
the reward value decreases as the distance increases.

We redesigned the reward mechanism in the proposed
method. Through the dual design of "static + dynamic"
reward mechanism and the employment of distance factor in
the reward mechanism, the reward mechanism is more scien-
tific and efficient. The advantages of this reward mechanism
are mainly reflected in three aspects:

123

920 Intelligent Service Robotics (2024) 17:915–929

Fig. 1 Graph of pre-improved
and improved reward
mechanism

1. Guide the next action of the agent to always move toward
the goal node, which means that the algorithm is always
working toward the shortest and most reasonable path.

2. The rewardmechanism designed by distance relationship
gives different reward values to nodes, which guides the
direction of the path and solves the problem of without
guidance of the traditional reward mechanism.

3. The 8-direction omnidirectional search of path nodes
is realized, which not only solves the right-angle turn
problem of the 4-direction search planning path, but also
solves the disorder of 8-direction search and the problem
of jumping points.

4.2 Improving greedy strategy

How to achieve adaptive computation of the iteration thresh-
old is the key to solve the problemof algorithmgeneralization
ability. To address this key challenge,wepropose an ε−acc−
increasing greedy mechanism to improve the algorithm.
The idea of themechanism ismainly reflected in two aspects:
on the one hand, it promotes the greedy factor ε gradually
increases in the exploration stage, so that it is sufficiently
random in the exploration phase to fully update the Q-table.
As the algorithm approaches the exploit phase, it shifts to full
exploitation rather than random selection, thereby improving
efficiency.

On theother hand,weadopt "experiment–fitting–verification"
mode to automatically obtain the iteration threshold of the
greedy strategy reaching the exploit stage in different envi-
ronments. The algorithm adjusts the greedy factor before
reaching the iteration threshold, so that the agent can fully
explore and learn. After reaching the iteration threshold, the
greedy factor is set to 1 and enters the exploitation stage.
In the exploitation, it will longer time take time for random
exploration, which is more scientific and efficient.

The core of ε − acc− increasing greedy strategy is that
the algorithm automatically obtains the threshold of rein-
forcement learning iterations, so as to achieve adaptivity in

different maps. Whether the threshold can be automatically
and accurately obtained is the key factor to determine for
the success of the algorithm improvement. Through theory
and analysis, we know that the factors affecting the iteration
threshold aremaps, specifically themap scale and the propor-
tion of obstacles in the map. In this paper, the design process
of ε − acc− increasing greedy strategy is to use the meth-
ods of experiment, control variables, curve fitting, through
the engineeringmode of "experiment–fitting–verification" to
achieve the strategy design, so as to improve the QL algo-
rithm.

The specific steps are as follows:
Calculate the iteration threshold for a specific map. We

collect each iteration time of QL algorithm on a specific map
and curve fitting the data. In this experiment, the map scale
is 10×10, and the ratio of obstacles is 40%. We design a
functional relationship between QL algorithm iteration time
and the iteration threshold, as shown in Eq. (11).

f (x) =
(

1

19.947

)3

e−5.273x +
(

1

3.415

)3

e

(
1

2.541

)3
x

(11)

In Eq. (11), x represents the number of iterations.
Its derivative function is shown in Eq. (12).

f ′(x) = −
(

1

2.726

)5

e−5.273x +
(

1

2.946

)6

e

(
1

2.541

)3
x
(12)

2. We fixed the same proportion of obstacles in different
maps, changed the map scale and obtained the relationship
between the map scale and the iteration threshold. The same
method is used to obtain the number of iterations when the
algorithm iteration time is stable in othermap scale scenarios.
A total of 9 groups of data are collected and fitted. We design
a functional relationship between map scale and the iteration
threshold, as shown in Eq. (13).

f (s) = 1.131 ∗ s1.411 + 25.15 (13)

123

Intelligent Service Robotics (2024) 17:915–929 921

where s represents the map scale and f (s) is the iteration
threshold.

3.Wefixed themap scale, changed the proportion of obsta-
cles in the map and obtained the relationship between the
proportion of obstacles and the iteration threshold. The same
method is used to obtain the number of iterations when the
algorithm iteration time is stable in other proportion of obsta-
cles. A total of 9 groups of data are collected and fitted. We
design a functional relationship between proportion of obsta-
cles and the iteration threshold, as shown in Eq. (14).

f (r) = 398.5 ∗ r0.614 + 75.09 (14)

where r represents the proportion of obstacles and f (r)
is the iteration threshold.

4. As introduced above, the threshold is related to the
map scale and the proportion of obstacles in the map. We
weight Eqs. (13) and (14) to obtain the automatic calculation
equation of the iteration threshold. During the experiment,
it is found that the effect of the map scale on the iteration
threshold ismuch greater than that of the obstacle proportion,
so Eq. (13) should be assigned a larger weight as shown in
Eq. (15).

preep = n ∗ f (s) + (1 − n) ∗ f (r) (15)

Taking all the above factors into consideration, the itera-
tion threshold is automatically calculated as Eq. (16).

preep = 1.0179 ∗ s1.411 + 39.85 ∗ r0.614 + 30.144 (16)

5. Design a new “explore–exploit” mechanism function.
After obtaining the iteration threshold of any map, we need
to obtain a functional relationship that the exploration factor
ε changes as the number of iterations increases. The number
of iterations variable is denoted as ep. The function has two
restrictions.

First, the variation range of the exploration factor ε is
between 0.5 and 1, and the value range is selected accord-
ing to the characteristics of QL algorithm. The algorithm is
more greedy in the implementation process, and the selec-
tion of each step is in the direction of maximizing the reward
value. Therefore, the variation range of ε can not only take
into account the random effect in the early stage of explo-
ration, but also fully reflect the greedy characteristics of QL
algorithm.

Second, when ε changes from 0.5 to 1, the rate of change
is first fast and then slow. Since the environment is com-
pletely unfamiliar and the experience gained after iteration
is relatively rich, so the rate of change of ε is fast. However,
as the number of iterations increases, the experience of QL
algorithm gradually stabilizes, so the rate of change of ε is

slow and gradually tends to 1. When the iteration threshold
is finally reached, the exploration factor is set to 1.

We apply the logarithmic function for curve fitting and
design a function that ε changes with episode, as shown in
Eq. (17).

ε = 0.1 ·
(

ln

(
ep

preep
+ 0.97

)

+ √
33

)

(17)

Combining the above factors, the greedy strategy pro-
posed in this paper is shown in Eq. (18). This greedy strategy
is denoted ε − acc − increasing greedy strategy.

ε =
{
1, ep ≥ preep
0.1 ·

(
ln

(
ep

preep
+ 0.97

)
+ √

33
)

, ep < preep
(18)

6. To verify the scientific of ε−acc−increasing strategy,
the verification is carried out in a map scenario where no
experimental data are collected. Comparing the theoretical
valuewith the actual measured value, if there is no significant
difference, it can be proved that the theory is scientific and
reasonable. The experimental results show that the ε−acc−
increasing greedy strategy is correct and effective.

5 Experiment and discuss

5.1 Experimental setup

To test the universality of the improved QL algorithm in dif-
ferent physical scenarios, we design scenarios with different
map scales and different obstacle density in experiments to
verify the performance of the algorithm. Scenario 1, the map
scale is 20×20, the proportion of obstacles to the map scale
is 10%, the obstacles are sparse, and the task scenario is rel-
atively simple. Scenario 2, the map scale is 50×50, and the
proportion of obstacles to the map scale is 25%, the obstacles
are denser, and the task scenario is more complex. Scenario
3, the map scale is 100×100, the proportion of obstacles to
the map scale is 30%, the obstacles are very dense, and the
task scenario is very complex.

In the section, all tests were performed on a PC with Win-
dows 10 as OS with I7-8550U CPU 1.80GHz and 16GB
RAM.

5.2 Iteration threshold experiment

How to automatically obtain the iteration threshold of QL
algorithm? During the experiment, we collected the time of
each iteration and took the number of iterations when the
iteration time tended to be stable as the iteration threshold.
This article takes a 10*10 scalemap as the sample to describe

123

922 Intelligent Service Robotics (2024) 17:915–929

Fig. 2 Relationship between
iteration time and iterations

Table 1 Correspondence of
map size and iteration threshold

Map size preep

10*10 51

15*15 82

20*20 106

25*25 129

30*30 160

35*35 183

40*40 245

the automatic calculation process of the iteration threshold
in detail.

We collect each iteration time and fit the data. The fitting
curve is shown in Fig. 2, and the fitting function is shown in
(12):

In this test environment, the iteration threshold of the algo-
rithm is 51. According to the same theory, we calculate the
iteration threshold for fitting maps of different scales. We
analyzed the influencing factors of the iteration threshold
and found that it is mainly related to the map size and the
proportion of obstacles in the map.

1. We fixed the proportion of obstacles to 40%, changed
the size of the map and obtained the data of the map size and
iteration threshold through experiments, as shown in Table 1.

We perform curve fitting on the data to obtain the curve
of map scale and iteration threshold as shown in Fig. 3. The
curve function is Eq. (13).

2. We fixed the size of the map to 50×50, changed the
proportion of obstacles and obtained the proportion of obsta-
cles and iteration threshold through experiments, as shown
in Table 2.

We perform curve fitting on the data to obtain the curve
of proportion of obstacles and iteration threshold as shown
in Fig. 4. The curve function is Eq. (14).

3. We find that as the map scale increases, the effect of
iteration threshold becomes more significant. However, as
the obstacle proportion increases, the impact on the itera-
tion threshold becomes smaller. According to the theory we
proposed, we can derive function of the algorithm’s iteration
threshold concerning map scale and obstacle proportion, as
shown in Eq. (16).

4. According to Eq. (16), it can calculate the iteration
threshold of any map. To verify the correctness of this func-
tion, we choose a strange map as the verification sample. The
map scale is 100×100, of which the proportion of obstacles
is 40%. We can find that the effect of two thresholds can
be regarded as the same under the experimental conditions.
Therefore, we can draw conclusions that the fitting function
can adapt to map changes well.

5.3 Simulation experiment

In all the maps of the experiment, black squares indicate
obstacles, white squares indicate blank area, blue square
indicates the starting point of the path, the green square indi-
cates the end point of the path, the grey squares indicate
the expansion distance, and the red squares indicate the path
node. Obstacles are randomly generated on maps based on
the specified proportion.

In this article, we call the QL algorithm after the improve-
ment in the reward mechanism and “explore–exploit” mech-
anism as the TQ-learning algorithm. The TQ-learning algo-
rithm which increases the expansion distance strategy is
called ETQ-Learning algorithm. In this section, the tra-
ditional QL algorithm, TQ-Learning algorithm and ETQ-
Learning algorithm are carried out to verify the performance
and universality of the algorithm in different task scenarios.

123

Intelligent Service Robotics (2024) 17:915–929 923

Fig. 3 Relationship curve of
map scale and iteration
threshold

Table 2 Correspondence of
obstacle proportion and iteration
threshold

Obstacle proportion preep

0.10 172

0.15 200

0.20 223

0.25 243

0.30 269

0.35 283

0.40 302

5.3.1 Simulation experiment results

(1) algorithm testing in scenario 1
Iterations of each algorithm are set to 300. The path plan-

ning results of three algorithms in the Scenario 1 are shown
in Fig. 5:

In Fig. 5a, the path of QL algorithm has a relatively
obvious "round-trip" phenomenon, and the length of the
path increases significantly and obviously does not conform
to the optimal characteristic. In Fig. 5b, the path of TQ-
learning algorithm is always along the shortest path to the
end point. In Fig. 5c, the expansion distance is designed in the
algorithm, and ETQ-learning algorithm sets up a "collision
buffer " around obstacles, which reduces the risk of collision
during the robot’s travel. The reason for the "round-trip" phe-
nomenon shown in Fig. 5a is that the search process of QL
algorithm is random and disordered in the exploration phase.
The TQ-learning algorithm and the ETQ-learning algorithm
design a distance-guided reward mechanism in the explo-
ration phase, which makes the exploration factor change
regularly and makes the planning path orderly and smooth.

The iteration time curves of three algorithms are shown
in Fig. 6. The abscissa indicates the number of iterations,
and the ordinate indicates the iteration time. In Fig. 6, the
green curve indicates iteration time of the QL algorithm,

the orange curve indicates the iteration time of TQ-learning
algorithm, and the blue curve indicates the iteration time of
ETQ-learning algorithm (the same below).

The test data of three algorithms in scenario 1 are shown
in Table 3. Among them, the iteration time represents the
average time of a single iteration, which indicates the effi-
ciency of the algorithm. The number of path nodes represents
the length of the planned path. The number of critical nodes
represents the number of nodes adjacent to obstacles in the
path.

(2) algorithm testing in Scenario 2
Iterations of each algorithm are set to 800. The path plan-

ning results of three algorithms in the scenario 2 are shown
in Fig. 7:

In Fig. 7a, the path of QL algorithm still has a relatively
obvious "round-trip" phenomenon, while the paths of TQ-
learning algorithm and ETQ-learning algorithm belong to
the shortest and optimal paths. The iteration time curves of
three algorithms are shown in Fig. 8. The test data of three
algorithms in Scenario 2 are shown in Table 4.

(3) algorithm testing in Scenario 3. Iterations of three algo-
rithms are set to 1500 times. Thepath planning results of three
algorithms in the scenario 3 are shown in Fig. 9:

In the more complex Scenario 3, the characteristics of the
three algorithms are the same as those of Scenario 1 and
Scenario 2. The iteration time curves of three algorithms are
shown in Fig. 10. The test data of three algorithms in Scenario
3 are shown in Table 5.

5.3.2 Analysis and discussion

By testing the QL algorithm, TQ-learning algorithm and
ETQ-learning algorithm in three scenarios,weobtain the iter-
ation time, the path length and the number of critical nodes.
Analyzing these results will provide insights into the perfor-
mance of these algorithms.

123

924 Intelligent Service Robotics (2024) 17:915–929

Fig. 4 Curve of obstacle
proportion and iteration
threshold

Fig. 5 Paths of algorithm planning in scenario 1

Fig. 6 Graph of algorithms iteration time in scenario 1

1. In the experiment of Scenario 1, the path of QL algo-
rithm has a significant "round-trip" phenomenon, meaning
that following this path would lead to a detour. This phe-
nomenon is attributed to the non-guided nature of the reward
mechanism in the QL algorithm, resulting in the occurrence
of "return points" and "jump points" within the path. To

address this issue, we redesigned the reward mechanism
and applied it to both the TQ-learning algorithm and ETQ-
learning algorithm. These enhanced algorithms guide the
agent’s next action to consistently search for the goal node,
thereby planning the optimal path with the shortest and min-
imal right-angle turns.

Table 3 reveals that the path length of TQ-learning algo-
rithm is 44.18% of that of QL algorithm, and the path length
of ETQ-learning algorithm is merely 48.84% of the QL algo-
rithm’s path length. Consequently, whether considering the
"straight line" effect of the path or the path’s overall length,
both the path of TQ-learning algorithm and ETQ-learning
algorithm are significantly better than QL algorithm. This
superiority is indicative of a more global optimal solution.
Notably, this characteristic is consistently verified in Sce-
nario 2 and Scenario 3.

2. In the experiment of Scenario 1, the efficiency of TQ-
learning algorithm is 159% of that of QL algorithm. We
redesign the reward mechanism and the " explore–exploit
" mechanism (ε-acc-increasing greedy strategy), which is
the reason for improving the efficiency of TQ-learning algo-
rithm. This mechanism promotes TQ-learning algorithm to

123

Intelligent Service Robotics (2024) 17:915–929 925

Table 3 Statistics of algorithms
in Scenario 1

Name Iterations Time/s Number of path nodes Number of critical nodes

Q-learning 300 3.484 43 6

TQ-learning 2.184 19 2

ETQ-learning 1.047 21 0

Fig. 7 Paths of algorithm planning in scenario 2

Fig. 8 Graph of algorithms iteration time in scenario 2

gradually increase the exploration factor ε from small to
large in the exploration phase, so that it is sufficiently ran-
dom in the exploration phase to fully update the Q-table. As
the algorithm approaches the exploit phase, it shifts to full
exploitation rather than random selection, thereby improving
efficiency.

It’s worth noting that the efficiency of TQ-learning algo-
rithm is only improved by 59% in scenario 1, because the
map scale is small and the limited number of explorable
nodes. However, as the map scale gradually increases, the
more nodes can be explored, and the ε-acc-increasing greedy
strategy significantly improves efficiency. In Scenario 2,
the efficiency of TQ-learning algorithm improves by 101%,
and in Scenario 3, the efficiency of TQ-learning algorithm

improves by 173%. These experimental results verify the sci-
entific of the algorithm optimization theory.

3. The experiment results of scenario 1 are shown in
Fig. 5c. After utilizing the expansion distance, ETQ-learning
algorithm generates a "collision buffer" between the path and
obstacles. The statistical analysis shows that the critical node
count for theETQ-learning algorithmhas reduced to 0,which
can effectively reduce the risk of collision. This finding is
consistent and validated in Scenarios 2 and 3.

An additional advantage of employing the expansion
distance is its positive impact on algorithm efficiency. In sce-
nario 1, The efficiency of ETQ-learning algorithm is 233%
higher than QL algorithm. In Scenario 2, the efficiency of
ETQ-learning algorithm is 293% higher than QL algorithm,
and in Scenario 3, this value is 351%. It can be seen that the
above rules that as the proportion of obstacles in the map
increases, expansion distance improves the algorithm effi-
ciency more significantly.

To further validate the performance and generalization
capabilities of the ETQ-learning algorithm, we conducted
additional experiments using randomly generated maps in
addition to the above experiments. Specifically, we randomly
generated 5 maps for each scenario to simulate various com-
plex physical environments. We conducted repeated tests on
the 15 generated maps; the results were consistent with men-
tioned above.

Through testing in different scenarios, ETQ-learning algo-
rithmhas better adaptability to environments. From the above
analysis and discussion, ETQ-learning algorithm signifi-
cantly improves the performance of TQ-learning algorithm,
which mainly focuses on three aspects. Firstly, it optimizes

123

926 Intelligent Service Robotics (2024) 17:915–929

Table 4 Statistics of algorithms
in Scenario 2

Name Iterations Time/s Number of path nodes Number of critical nodes

Q-learning 800 6.821 117 22

TQ-learning 3.394 58 16

ETQ-learning 1.735 68 0

Fig. 9 Paths of algorithm planning in Scenario 3

Fig. 10 Graph of algorithms iteration time in Scenario 3

the planning path of QL algorithm, which is the most basic
and most important indicator of path planning. Secondly,
it improves the efficiency generalization ability of QL algo-
rithm,which is one of the important indicators tomake agents
work efficiently. Thirdly, the QL algorithm’s collision avoid-
ance performance has been improved to minimize collision
risks during the agents’ motion.

5.4 Comparison experiment

To verify the performance advantages of the ETQ-learning
algorithm and other QL optimization algorithms, in this sec-
tion, ETQ-learning algorithm is compared with AQ-learning
algorithm [4], IQ-FA algorithm [5], YQ-learning algorithm
[6] and EMQL algorithm [7].

1. Comparison of planning path
IQ-FA algorithm is an improved version of the QL algo-

rithm introduced in [13]. However, [13] does not provide the
planning path of IQ-FA algorithm. We analyze its optimiza-
tion method and find that IQ-FA algorithm does not solve
the issue of guiding the search, so the planned path still has
"round-trip point" " and "jumppoint."AQ-learning algorithm
is applied to three-dimensional map in [6]. Its path fluctu-
ates in the empty space as shown in Fig. 11a, indicating that
the path is not smooth. The planning path of YQ-learning is
shown in Fig. 11b, and the planning path of EMQL algorithm
is shown in Fig. 11c. Algorithm paths still directly exist the
phenomenon of path round trip, so they are not global optimal
solutions. Based on this analysis, the path planning effective-
ness of ETQ-learning algorithm is superior.

1. Comparison of algorithm efficiency
If absolute data are directly used for comparison, it may

seem unacceptable because efficiency of the algorithm is
affected by many factors, such as the programming language
and computer performance. Therefore, it may be unscientific
to use the absolute time. To reflect the scientific of compar-
ison, we adopt the proportional transformation comparison
method. This method is based on efficiency of the QL algo-
rithm in other experiment and calculates the ratio of the
two benchmarks: the efficiency of ETQ-learning algorithm
and the ratio are multiplied to obtain the relative efficiency.
The relative efficiency was used for comparison with other
method.

According to [6], the average iteration time of AQ-
learning algorithm is 5.31s.We select a group of datawith the
lowest efficiency of theETQ-learning algorithm.The average

123

Intelligent Service Robotics (2024) 17:915–929 927

Table 5 Statistics of algorithms
in Scenario 3

Name Iterations Time/s Number of path nodes Number of critical nodes

Q-learning 1500 26.046 227 41

TQ-learning 9.541 116 21

ETQ-learning 5.775 133 0

Fig. 11 Other algorithm paths

Table 6 Efficiency comparison
between ETQ-learning and
AQ-learning

Q-learning AQ-learning ETQ-learning

Time 7.45 5.31 –

This experiment time 3.484 – 1.047

Ratio 2.138 1 2.138

Relative time – 5.31 2.238

Table 7 Efficiency comparison between ETQ-learning and IQ-FA

Q-learning IQ-FA ETQ-learning

Time 3.71 4 –

This experiment time 3.484 / 1.047

Ratio 1.064 1 1.064

Relative time – 4 1.114

iteration time of the algorithm in Scenario 1 is 1.047s. Table 6
shows the comparison data between ETQ-learning algorithm
and AQ-learning algorithm. The efficiency of ETQ-learning
algorithm is 2.37 times that of AQ-learning algorithm, which
is superior to AQ-learning algorithm.

Using the same comparison method, the comparison data
of ETQ-learning algorithm and IQ-FA algorithm are shown
in Table 7. The efficiency of ETQ-learning algorithm is 3.59
times that of IQ-FA algorithm, which is also superior to IQ-
FA learning algorithm.

Similarly, the comparison data of ETQ-learning algo-
rithm and YQ-learning algorithm are shown in Table 8.
The efficiency of ETQ-learning algorithm is 1.78 times
that of YQ-learning algorithm. The comparison data of
ETQ-learning algorithm and EMQL algorithm are shown in

Table 9. The efficiency of ETQ-learning algorithm is 2.434
times that of EMQL algorithm which is also superior to YQ-
learning algorithm and EMQL algorithm.

In the comparison experiment, the data of ETQ-learning
select the test data with the lowest efficiency. If it is in a
larger map or a complex map with a higher proportion of
obstacles, the algorithm efficiency of ETQ-learning is better.
Through the above comparison, we can draw a conclusion
that the efficiency of ETQ-learning algorithm is better than
that of other QL optimization algorithms, which shows that
ETQ-learning algorithm is excellent in terms of efficiency.

6 Conclusion

The ETQ-learning algorithm designed in this paper repre-
sents a significant advancement over the QL algorithm. We
have redesigned the reward mechanism and greedy strategy
and fundamentally solved the many deficiencies of the QL
algorithm. We have focused on improving the algorithm’s
efficiency so that the agent performs tasks more efficiently.
We address the lack of

algorithm’s generalization to effectively apply to complex
physical environments. We introduced expansion distance

123

928 Intelligent Service Robotics (2024) 17:915–929

Table 8 Efficiency comparison
between ETQ-learning and
YQ-learning

Q-learning YQ-learning ETQ-learning

Time 4.45 2.24 –

This experiment time 3.484 – 1.047

Ratio 1.277 1 1.277

Relative time – 2.24 1.285

Table 9 Efficiency comparison between ETQ-learning and EMQL

Q-learning EMQL ETQ-learning

Time 7.0623 5.1649 –

This experiment time 3.484 – 1.047

Ratio 2.027 1 2.027

Relative time – 5.1649 2.122

that increase the algorithm’s obstacle avoidance perfor-
mance. Furthermore, we conducted comprehensive com-
parisons between the ETQ-learning algorithm and other
optimized QL algorithm and achieved significant break-
throughs in various aspects.

Author Contributions Conceptualization was performed by H.W.;
methodology by H.W. and J.J.; software by Q.W.; validation by Q.W.
and R.L.; formal analysis by H.H.; writing original draft by H.W.; writ-
ing review and editing by J.J. and R.L.; funding by X.Q.

Funding The government of Henan Province, China, supported the
research in the form of the Henan Provincial Key R & D Special
Funds(221111210300).

Data availability available inGitHub https://github.com/wanghw1003/
ETQlearning.

Declarations

Conflict of interest The authors declare that they do not have any con-
flict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Consent to Participate All authors agreed to participate the research.

Consent for Publication All authors read and approved the final
manuscript.

References

1. Costa MM, Silva MF (2019) A survey on path planning algo-
rithms for mobile robots. In: 2019 IEEE international conference
on autonomous robot systems and competitions (ICARSC), IEEE,
pp. 1–7

2. Wang H, Lou S, Jing J, Wang Y, Liu W, Liu T (2022) The EBS-
A* algorithm: an improved A* algorithm for path planning. PLoS
ONE 17(2):e0263841

3. Wang H, Qi X, Lou S, Jing J, He H, Liu W (2021) An efficient
and robust improved A* algorithm for path planning. Symmetry
13(11):2213

4. Li D, Yin W, Wong WE, Jian M, Chau M (2021) Quality-oriented
hybrid path planning based on A* and Q-learning for unmanned
aerial vehicle. IEEE Access 10:7664–7674

5. Wang B, Liu Z, Li Q, Prorok A (2020) Mobile robot path planning
in dynamic environments through globally guided reinforcement
learning. IEEE Robot Autom Lett 5(4):6932–6939

6. lipei S (2018) Research on intelligent vehicle dynamic path plan-
ning algorithm based on improved Q-learning

7. Zhao M, Lu H, Yang S, Guo F (2020) The experience-memory
Q-learning algorithm for robot path planning in unknown environ-
ment. IEEE Access 8:47824–47844

8. Wang J, Ren Z, Liu T, Yu Y, Zhang C (2020) Qplex: duplex dueling
multi-agent Q-learning, arXiv preprint arXiv:2008.01062

9. Hasselt H (2010) Double Q-learning, Advances in neural informa-
tion processing systems. 23

10. guojunM, shimin G (2021) Improved Q-learning algorithm and its
application to path planning. J Taiyuan Univ Technol 52(1):91

11. Yunjian P, Jin L (2022) Q-learning path planning based on
exploration-exploitation trade-off optimization. Comput Technol
Dev. 32(1–7)

12. chengbo W, zinyu Z, zhiqiang Z, shaobo W (2018) Path plan-
ning for unmanned vessels based on Q-learning. Ship Ocean Eng
47(5):168–171

13. FortunatoM,AzarMG,PiotB,Menick J,Osband I,GravesA,Mnih
V, Munos R, Hassabis D, Pietquin O et al (2017) Noisy networks
for exploration, arXiv preprint arXiv:1706.10295

14. Ates U (2020) Long-term planning with deep reinforcement learn-
ing on autonomous drones. In: Innovations in intelligent systems
and applications conference (ASYU). IEEE 2020:1–6

15. Zijian H, Xiaoguang G, Kaifang W, Yiwei Z, Qianglong W
(2021) Relevant experience learning: a deep reinforcement learn-
ing method for UAV autonomous motion planning in complex
unknown environments. Chin J Aeronaut 34(12):187–204

16. Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015)
Trust region policy optimization. In: International conference on
machine learning, PMLR, pp. 1889–1897

17. Zhang T, Huo X, Chen S, Yang B, Zhang G (2018) Hybrid path
planning of a quadrotor UAV based on q-learning algorithm. In:
37th Chinese control conference (CCC). IEEE 5415–5419

18. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O
(2017) Proximal policy optimization algorithms, arXiv preprint
arXiv:1707.06347

19. AndrychowiczM,Wolski F, Ray A, Schneider J, Fong R,Welinder
P, McGrew B, Tobin J, Pieter Abbeel O, Zaremba W (2017) Hind-
sight experience replay, Advances in neural information processing
systems 30

20. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning,
PMLR, pp. 1861–1870

123

https://github.com/wanghw1003/ETQlearning
https://github.com/wanghw1003/ETQlearning
http://arxiv.org/abs/2008.01062
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1707.06347

Intelligent Service Robotics (2024) 17:915–929 929

21. Kumar A, Gupta A, Levine S (2020) Discor: corrective feedback
in reinforcement learning via distribution correction. Adv Neural
Inf Process Syst 33:18560–18572

22. Kong D, Yang L (2022) Provably feedback-efficient reinforcement
learning via active reward learning. Adv Neural Inf Process Syst
35:11063–11078

23. Song Y, Steinweg M, Kaufmann E, Scaramuzza D (2021)
Autonomous drone racing with deep reinforcement learning. In:
2021 IEEE/RSJ international conference on intelligent robots and
systems (IROS), IEEE, pp. 1205–1212

24. Wang Z, Yang H, Wu Q, Zheng J (2021) Fast path planning for
unmanned aerial vehicles by self-correction based on Q-learning.
J Aerosp Inf Syst 18(4):203–211

25. YanC,XiangX (2018)Apath planning algorithm forUAVbasedon
improved q-learning. In: 2nd international conference on robotics
and automation sciences (ICRAS). IEEE :1–5

26. de Carvalho KB, de Oliveira IRL, Villa DK, Caldeira AG,
Sarcinelli-FilhoM,BrandãoAS (2022)Q-learningbasedpath plan-
ningmethod forUAVsusingpriority shifting. In: 2022 International
Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp.
421–426

27. Li S, Xu X, Zuo L (2015) Dynamic path planning of a mobile
robot with improved Q-learning algorithm. In: IEEE international
conference on information and automation. IEEE 409–414

28. Wang Y, Wang S, Xie Y, Hu Y, Li H (2022) Q-learning-based
collision-free path planning for mobile robot in unknown environ-
ment. In: 2022 IEEE 17th conference on industrial electronics and
applications (ICIEA), IEEE, pp. 1104–1109

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

	ETQ-learning: an improved Q-learning algorithm for path planning
	Abstract
	1 Introduction
	2 Related work
	2.1 Improving greedy strategy
	2.2 Improving reward mechanism
	2.3 Path planning

	3 Preliminaries
	3.1 Reward mechanism
	3.2 Greedy strategy

	4 Innovative design
	4.1 Reward mechanism design
	4.1.1 Static assignment of reward mechanism
	4.1.2 Dynamic adjustment of reward mechanism

	4.2 Improving greedy strategy

	5 Experiment and discuss
	5.1 Experimental setup
	5.2 Iteration threshold experiment
	5.3 Simulation experiment
	5.3.1 Simulation experiment results
	5.3.2 Analysis and discussion

	5.4 Comparison experiment

	6 Conclusion
	References

