
Intelligent Service Robotics (2024) 17:401–418
https://doi.org/10.1007/s11370-024-00537-2

ORIG INAL RESEARCH PAPER

MAP3F: a decentralized approach to multi-agent pathfinding and
collision avoidance with scalable 1D, 2D, and 3D feature fusion

Marzie Parooei1 ·Mehdi Tale Masouleh1 · Ahmad Kalhor1

Received: 7 October 2023 / Accepted: 16 March 2024 / Published online: 22 April 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Path planning and collision avoidance are vital aspects of successful development and utilization of robots in complex
and multi-agent environments. With the integration of robots into social settings, the significance of this issue becomes
more apparent. This paper introduces a decentralized management approach based on deep reinforcement learning, where
each agent learns independently based on its local observations. The proposed method employs a feature fusion technique
which combines 1D, 2D, and 3D features. In order to streamline computation and optimize the training process, an established
separation indexmethod is utilized. This approach strategically selects a subset of themost informative features. The presented
approach outperforms classical and learning-based methods in various environments with differing densities. Performance
evaluation metrics include the interaction index, which indicates the percentage of collision-free scenarios, the reachability
index, measuring the time for the slowest agent to reach its goal, the field of view index, demonstrating reduced computation
time by narrowing the field of view without compromising interaction, and the scalability index, quantitatively measuring a
system’s capability to efficiently handle increasing amounts of work or its ability to be enlarged to accommodate that growth.
The performance of this method, compared to PRIMAL, ORCA, and ODRM* methods, has shown an increase of over 30%
in situations where the environment is more complex and the number of agents is higher.

Keywords Multi-agent · Deep reinforcement learning · Scalability · Path finding · Feature fusion

1 Introduction

In the realm of multi-agent systems, the pervasive challenge
of pathfinding and collision avoidance has emerged as a
foundational concern, attracting the attention of researchers
across various domains. This challenge has notably cap-
tivated experts in fields such as automated guided vehi-
cles, autonomous mobile robots, quadcopter robots, and
quadruped robots [1–4]. The primary objective is to equip
agents with the ability to navigate through a common envi-
ronment while simultaneously avoiding collisions with other

B Mehdi Tale Masouleh
m.t.masouleh@ut.ac.ir

Marzie Parooei
parooie@ut.ac.ir

Ahmad Kalhor
akalhor@ut.ac.ir

1 Human and Robotic Interaction Laboratory, School of
Electrical and Computer Engineering, University of Tehran,
Tehran, Iran

agents and obstacles. This challenge is pertinent to a wide
range of applications, including robotics, transportation sys-
tems, and video game development [5, 6].

Multi-agent pathfinding (MAPF), a subset of multi-agent
systems (MAS), focuses on delineating collision-free paths
for multiple agents, taking them from initial positions to
predefined goals. The complexity of MAPF is particularly
pronounced in densely populated environments where agents
should harmonize their movements, further compounded by
diverse sensing capabilities, distinct movement speeds, and
varying objectives [7, 8].

The data-driven approach begins with the concept of
deep learning, a subset of the machine learning domain
that employs neural networks to analyze and learn from
large datasets [9]. This technique enables the development of
sophisticated algorithms capable of handling complex tasks,
such as robot motion planning. Robots can utilize deep learn-
ing to extract patterns and insights from extensive datasets,
allowing them to generalize from past experiences. Building
on this, reinforcement learning (RL) emerges as a special-
ized field of machine learning where agents learn to make

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-024-00537-2&domain=pdf
http://orcid.org/0000-0001-8249-1998

402 Intelligent Service Robotics (2024) 17:401–418

decisions based on local observations through interactions
with their environment, as outlined in [10]. RL is particularly
effective in scenarios where decision-making is sequential
and dependent on the state of the environment. This learning
process makes RL a popular technique in multi-agent path
finding (MAPF) algorithms, as noted in [11].

Deep reinforcement learning (DRL) combines the depth
and complexity of deep learning with the decision-making
process of RL. This hybrid approach is adept at tackling intri-
cate tasks in robot motion planning, especially in complex
environments populated by numerous agents, as demon-
strated in [12]. By integrating the robust pattern recognition
capabilities of deep learning with the dynamic decision-
making strategies of RL, DRL equips robots with enhanced
adaptability and efficiency in diverse and challenging sce-
narios.

An innovative framework called Pathfinding via Rein-
forcement and Imitation Multi-Agent Learning (PRIMAL)
[12], for MAPF is introduced which combines RL and imita-
tion learning to train both fully centralized and decentralized
policies. This approach [12] allows agents to reactively plan
paths online in a partially observable world while exhibiting
implicit coordination. PRIMAL, in environments character-
ized by low obstacle density, agents can maneuver around
each other with relative ease. However, the performance of
such systems can diminish in denser environments where
coordinated actions between agents are required to reach
their goals, often necessitating significant alterations in their
paths. The training of policies in PRIMAL requires a large
amount of data, which is a common challenge in RL-based
approaches. Nevertheless, decentralized MAPF algorithms,
such as those proposed in PRIMAL, have been shown to
be effective in complex environments with a large num-
ber of agents [12]. The framework [13] leverages imitation
learning, a prominent paradigm in machine learning and
robotics, which involves training an agent to acquire a
desired behavior or skill by observing and mimicking the
actions of an expert demonstrator. Thismethod [13] leverages
the wealth of knowledge embodied in expert demonstra-
tions, enabling the agent to learn complex tasks and make
informed decisions in a manner akin to how humans acquire
skills through observation and mimicry. Imitation learn-
ing [13] typically employs techniques such as behavioral
cloning and inverse reinforcement learning to model the
expert’s actions and underlying decision-making processes.
This learning paradigm finds applications in a wide range
of domains, including autonomous driving, robotic manipu-
lation, and natural language processing, where it facilitates
the rapid acquisition of valuable expertise and can signifi-
cantly enhance the performance of autonomous systems [13].
As such, PRIMAL represents a significant advancement in
MAPF, energizing the strengths of RL and imitation learn-

ing to provide a robust solution for navigating multi-agent
systems in complex environments.

Traditional Q(λ)-learning algorithm is enhanced through
the incorporation of the obstacle area expansion strategy,
as described in [14]. The resulting algorithm, termed as
OAE -Q(λ)-learning, is applied to address path planning
challenges in complex environments. The contributions of
OAE -Q(λ)-learning are as follows. Primarily, the concave
obstacle area within the environment is expanded, aimed
at preventing repetitive erroneous actions when the agent
becomes positioned within the obstacle zone. Secondar-
ily, the extended obstacle area is eliminated, resulting in a
reduction in the dimensionality of the learning state space.
This reduction subsequently leads to an acceleration in the
rate of algorithmic convergence. Empirical investigations
substantiate the effectiveness and feasibility of the OAE
-Q(λ)-learning technique for path planning within intri-
cate environmental settings. Exploration of DRL methods
for multi-agent domains is presented in [15]. The authors
discuss the challenges faced by traditional algorithms in
multi-agent scenarios, highlighting that Q-learning struggles
with the environment’s inherent non-stationarity, and pol-
icy gradient methods grapple with escalating variance as the
number of agents increases. Subsequently, they introduce a
modified actor-critic approach that incorporates the action
policies of other agents, enabling the successful learning
of policies necessitating intricate multi-agent coordination.
The methodology presented in [15] undergoes evaluation
across a variety of benchmark tasks, with its performance
juxtaposed against other leading-edge approaches. The out-
comes indicate that this method surpasses its counterparts
in both learning velocity and ultimate efficacy. This study
furnishes valuable perspectives on the application of DRL
for tackling intricate issues in multi-agent environments,
offering a beneficial resource for both researchers and prac-
titioners engaged in related fields. The work presented in
[16] introduces a decentralized multi-agent collision avoid-
ance algorithm based on a novel application of DRL. This
approach effectively offloads the online computation, neces-
sary for predicting interaction patterns, to an offline learning
procedure.

In this study, a significant contribution is made in the field
ofMAPFby introducing a decentralized approach employing
DRL. This novel approach empowers agents to indepen-
dently make decisions based on local observations, thus
eliminating the need for centralized control. Each agent is
outfitted with a camera which can rotate to capture images
from amultitude of angles. By amalgamating these images, a
composite is constructed which emulates the perspective and
information a top-view image would offer. This approach
ensures that each agent can independently form a detailed
understanding of its surroundings, facilitating a truly decen-
tralized mode of operation. The proposed method enhances

123

Intelligent Service Robotics (2024) 17:401–418 403

Table 1 Comparative overview of key previous methods from multiple perspectives

Reference Centralized/decentralized Continuous/discrete Scalable/not
Scalable

Field of
view

Single/multi-
Target

Uncertainty
acceptance

[17] Decentralized Continuous Scalable Full Multi Very low

[18] Centralized Discrete Not scalable Full Multi No

[19] Centralized Continuous Not scalable Full Multi No

[15] Hybrid Continuous Not scalable Full Single Yes

[16] Centralized Continuous Not scalable Full Multi Yes

[20] Hybrid Continuous Not scalable Full Multi Yes

[21] Centralized Discrete Not scalable Full Multi No

[22] Centralized Continuous Scalable Full Single Yes

[23] Hybrid Continuous Not scalable Full Multi Yes

[12] Decentralized Discrete Scalable partially Multi Yes

Theproposed
method

Decentralized Discrete Scalable partially Multi Yes

path planning accuracy and integrates 1D, 2D, and 3D fea-
tures, making it adaptable to environments with varying
density levels. An in-depth analysis of ten influential works
in the field is conducted, as outlined in Table 1, highlight-
ing aspects such as centralization, scalability, environmental
characteristics, field of vision, objective types, and the capac-
ity to handle uncertainty.

The remainder of this paper is organized as follows. Sec-
tion2 provides a general description of the proposedmethod,
referred to as MAP3F. In order to the details of the pro-
posed method, it is divided into two subsections: the network
architecture (Sect. 2.1) and feature selection (Sect. 2.2). Sec-
tion2.2 discusses the selection of important features using
the separation index (Sect. 2.2.1) and themulti-head attention
layer (Sect. 2.2.3) methods. Section3 introduces the method-
ologies employed for goal assignment to agents (Sect. 3.1),
examines and assesses scenarios generated by the presented
approach, and conducts a comparative analysis against pre-
viously established techniques using four distinct indices,
namely the interaction index (Sect. 3.2), the reachability
index (Sect. 3.3), the field of view index (Sect. 3.5), and scal-
ability index (Sect. 3.4). Finally, Sect. 4 provides a concise
summary of the findings and outlines potential avenues for
future research.

2 Multi-agent pathfinding with feature
fusionmethod

The multi-agent pathfinding with feature fusion (MAP3F)
method presents a decentralized DRL method in which each
agent acts as an independent decision-making unit with a
limited field of view. This model is generally trained using
DRL, but to accelerate the training process, the initialweights
are not considered randomly. Using a dataset prepared from

previous methods in this field, the network is first trained in a
supervisedmanner, and its weights are then used as the initial
weights for DRL. The general architecture and stages of the
proposed method are described in this section. The overall
process presented in this paper is shown in Fig. 1, and the
proposed stages consist of four main parts.

In the first part, a dataset is prepared using successful
previous methods which is shown in Fig. 2. As it can be
observed from Fig. 3, obstacles are indicated by hatched cells
and goals are represented by destination icons in different
colors for each agent. Each agent is identified by a specific
color, which corresponds to the goal assigned to that agent.
In order to collect data, ORCA [17], ODRM* [24], and PRI-
MAL [12] methods were used. In each scenario, agents are
assigned distinct objectives based on the strategies outlined
by these methods. Subsequently, these algorithms engage
in path planning for the agents, capturing an image of the
environment’s top view at each timestep. This process is sys-
tematically repeated for 1000 different scenarios, ensuring a
diverse and comprehensive dataset is accumulated. In the pre-
processing phase, a deliberate strategywas employed to label
the data. Acknowledging the importance of a discrete and
streamlined representation for efficient decision-making, the
environment was conceptualized as discrete. It was assumed
that each agent couldmove in one of four principal directions:
up, down, left, or right, or choose to stay still. This sim-
plification is compatible with the capabilities of the ORCA,
ODRM*, and PRIMALmethods and is crucial for enhancing
the efficiency of the decision-making process. The data were
carefully organized based on the subsequent action chosen by
each agent. For instance, if an agent opts to move ’up’ in the
next step, that particular instance is classified as ’up.’ This
systematic approach to classification is uniformly applied
across all possible actions, resulting in the data being sorted
into five distinct categories: up, down, left, right, and stop.

123

404 Intelligent Service Robotics (2024) 17:401–418

Fig. 1 Overall workflow of the
proposed method, the so-called
MAP3F

Developing a multi-agent simulation

environment

Using previous methods to solve multi-

agent pathfinding problems

ORCA / ODRM* / PRIMAL

(Run these methods for 1000 scenarios)

Convert to suitable input for network

Categorize data to 5 category: Up,

Down, Left, Right and stop.

Using the generated data to initialize

the network
Train Network with DQN in 3 branches

Training only with

1D features

Training only with

2D features

Training only with

3D features

Concatenate Features & Feature

Selection

Create Dataset Preprocess

Plan

Define 3 Indexes

Evaluate

Interaction Index Field of view Index Reachability Index

In the third stage, a combined network is presented for
training the data. This network consists of three separate
branches. Each branch extracts one-dimensional (1D), two-
dimensional (2D) and three-dimensional (3D) input image
features. After combining all features, to the end of select-
ing important and influential features accurately and remove
features which have repetitive information and make the net-
work complex, even in complex scenarios which sometimes
cause confusion for the agent in decision-making, two fea-
ture selector functions have been used whose process is fully
explained in Sects. 2.2.1 and 2.2.3. In the final stage, the pro-
posed method is evaluated using three defined indicators.

2.1 StructuringMAP3F within a deep reinforcement
learning paradigm

Deep learning techniques have made significant advance-
ments in various fields in recent years. The unique structure
of convolutional neural networks (CNNs) enables them to
extract deep features from images. This paper proposes a
feature fusionmodel which leverages deep features extracted
from 1D CNN, 2D CNN, and 3D CNN in order to develop
a higher-performance classifier. The network architecture,
as presented in this paper and illustrated in Fig. 4, takes
three current frames per agent as input. These frames are fed

123

Intelligent Service Robotics (2024) 17:401–418 405

Fig. 2 Workflow of dataset
creation

01 02 03 04 05

Initial Config

Select number

of agents and

obstacles

Select goal

assignment

method

Preparing the

simulation

environment

Taking an

image from

above of the

simulator

environment

Implementa-

tion of men-

tioned method

ODRM*

PRIMAL

ORCA

Repeat

Saved results

Fig. 3 Schematic representation
of the MAP3F simulation
environment

into three parallel branches, each responsible for extracting
different features. The two branches which extract 1D and
2D features are responsible for general feature extraction,
whereas the 3D feature extraction branch is responsible for
partial feature extraction [25]. Since the input images may
be crowded or sparse, feature extraction is crucial to ensure
robust performance. The heterogeneous features extracted
from the three branches are combinedusing ahybrid network.

2.1.1 State representation

Using multidimensional complexity function, whether 1D,
2D, or 3D, has different effects on agent decision-making

in dense and sparse environments. In dense environments
where there are numerous obstacles and nearby agents, the
choice of dimensionality of the complexity function can
influence the agents’ ability to perceive and reason about
the environment. 1D features operate along a single axis and
is typically used for analyzing sequential data. In the context
of agent decision-making, 1D features can be useful for pro-
cessing temporal sequences of agent states or actions. This
complexity function can capture temporal dependencies and
behavioral patterns of the agent over time. In dense environ-
ments, 1D features can be employed to analyze the temporal
dynamics of motion and agent interactions, assisting agents
in decision-making based on past experiences and observed

123

406 Intelligent Service Robotics (2024) 17:401–418

Fig. 4 The MAP3F neural
network architecture

patterns. Consider a 1D CNN scenario with an input signal
x[n] and a filter h[k]. Here, k is the index used to iterate over
the elements of the filter. The convolution of x[n] with h[k]
is defined as:

y[n] = (x ∗ h)[n] =
∞∑

k=−∞
x[k] · h[n − k] (1)

where:

• x[n] is the input signal at time n;
• h[k] is the filter response at time k;
• y[n] is the output signal at time n;
• k iterates over the elements of the filter in the 1D convo-
lution;

123

Intelligent Service Robotics (2024) 17:401–418 407

2D features operate on two-dimensional grids and are
commonly used for image analysis. In the context of agent
decision-making, 2D features can be valuable in less dense
environments where agents have more spatial freedom for
movement and interaction. It allows agents to observe and
analyze spatial relationships, such as distances between
agents and obstacles or access to free paths. By applying
2D complexity to sensory input, agents can extract spatial
features and make informed decisions based on their percep-
tion of the environment. In the context of a 2D CNN, the
convolution operation applied to an input image and a filter
can be mathematically described as follows:

S(i, j) = (I ∗ K)(i, j)

=
∑

m

∑

n

I (m, n) · K (i − m, j − n) (2)

• I : The input image to the CNN;
• K : The kernel or filter applied to the input image;
• m, n: Indices iterating over the dimensions of the filter

K in a 2D CNN. These typically represent the rows and
columns of the filter, respectively;

• i, j : Indices representing the position in the output fea-
ture map;

Equation (2) represents the sum of element-wise products
between the filter K and the input image I as the filter is slid
across the image. Each position (i, j) in the output feature
map S is computed by this convolution, resulting in a new
representation of the original input, capturing the presence
of specific features defined by the filter K .

3D features extend this concept to three dimensions and
is typically used for volumetric data analysis. In the context
of agent decision-making, 3D features may be applicable in
dense environments where agents need to reason simultane-
ously about spatial and temporal aspects. This complexity
function enables agents to comprehend spatial relationships
and temporal patterns in a unified manner. By utilizing 3D
features, agents can analyze the three-dimensional structure
of the environment, including the positions of other agents,
obstacles, and their previous trajectories, to make decisions
which account for both the current state and the histori-
cal context of the environment [26]. While 3D data may
encompass elements of 1D and 2D data, it is a distinct entity
with its own unique characteristics. 3D data is not merely
a combination of 1D and 2D data; rather, it adds a critical
dimension which is essential for understanding and process-
ing spatial-temporal information. This distinction is crucial
for the effective application of convolutional neural networks
in diverse data types, ensuring that each dimension’s inherent
properties are optimally utilized. For a given input volume
V and a filter D, where m, n, and l are the indices iterating
over the three dimensions of the filter in a 3D CNN (rep-

resenting width, height, and depth or time respectively), the
convolution operation can be defined as:

T (i, j, k) = (V ∗ D)(i, j, k)

=
∑

m

∑

n

∑

l

V (m, n, l) · D(i − m, j − n, k − l) (3)

• T (i, j, k) represents the output of the convolution at posi-
tion (i, j, k);

• V (m, n, l) refers to the value at position (m, n, l) in the
input volume;

• D(i − m, j − n, k − l) is the value at the corresponding
position in the filter;

The summations overm, n, and l iterate through the entire fil-
ter, applying it to the input volume to produce the convolved
output. In summary, the choice of multidimensional com-
plexity function depends on the specific characteristics of the
environment and the type of information agents need to pro-
cess for decision-making.While 1D features can be useful for
analyzing temporal sequences, 2D features are effective for
spatial analysis in less dense environments, and 3D features
are suitable for understanding simultaneous spatial and tem-
poral aspects in dense environments. The selection should
alignwith the agents’ perception requirements and the nature
of the decision-making tasks they need to perform [27].

Combining the outputs of 1D, 2D, and 3D CNNs can
be beneficial for decision-making agents in environments
with varying densities. By combining these different con-
volutional dimensions, agents can leverage the strengths of
each dimension to enhance their perception and decision-
making abilities. In environments with variable densities,
the information available to agents can significantly differ.
Using a combination of 1D, 2D, and 3D CNNs allows agents
to process and analyze various aspects of the environment
simultaneously. By integrating the outputs of 1D, 2D, and 3D
CNNs, agents can create a comprehensive understanding of
the environment. This composite representation provides rich
and diverse inputs for decision-making processes, enabling
agents to make informed decisions while considering the
contextual information of the environment across different
densities.

To illustrate the significance of multi-dimensional fea-
ture fusion, a test was conducted using data derived from
the database created for this study. The data were divided
into two categories, training and testing. The result of this
comparison is displayed in Sect. 3.

2.1.2 DQN training formulation in MAP3F

In the MAP3F framework, each state st is an amalgamation
of observations derived from 1D, 2D, and 3D data sources,
offering a comprehensive environmental context that informs

123

408 Intelligent Service Robotics (2024) 17:401–418

the agent’s decision-making process. At any given timestep,
the agent is presented with the possibility to execute a move-
ment in one of four cardinal directions: up, down, left, right
and stop. This set of potential movements constitutes the
agent’s action space at .

The reward function within MAP3F is meticulously
crafted to mirror the intricacies of the decision-making envi-
ronment encountered by the agent. It encompasses rewards
for successful goal attainment (Rgoal), penalties for any colli-
sions (Rcollision), and incentives designed to promote efficient
and strategic pathfinding (Rstep and Refficient). In this struc-
tured methodology, the focus is on steering the agent toward
behaviors that epitomize the principles of efficient navigation
and secure interactions within the multi-agent framework.
The intent is to align the agent’s actions with the overarching
objectives of optimizing pathfinding efficiency while ensur-
ing safety and collaboration among agents in the system.

The aggregate reward guides agents toward effective
decision-making:

Rtotal = Rgoal + Rcollision + Rstep + Refficient.

The adaptive deep Q-learning with feature fusion for
trajectory planning algorithm encapsulates the innovative
essence of the MAP3F method, marking a significant leap
in the domain of autonomous decision-making within multi-
agent systems. This algorithm commenceswith the initializa-
tion of a replay memory and an action-value function, both
equippedwith pre-trainedweights. This preparatory step lays
the foundation for an advanced integration of deep learn-
ing insights into the decision-making process. The algorithm
further defines a comprehensive action set, which, through
the process of feature fusion, is augmented to ensure that
every decision made by an agent is informed by a rich, multi-
dimensional understanding of the environment.

This feature fusion process is pivotal to MAP3F’s capa-
bility to extract and synthesize insights from diverse data
dimensions-spanning temporal, spatial, and spatiotempo-
ral dynamics-thereby enabling agents to navigate complex
environments with unprecedented precision and adaptabil-
ity. A novel aspect of this algorithm is the introduction of a
context score (Ct), a metric designed to dynamically mod-
ulate the exploration rate (ε) based on the current state and
performance of the agent. This dynamic adjustment mech-
anism allows for a more nuanced exploration-exploitation
balance, catering to the evolving challenges and complexities
encountered by agents. High context scores prompt increased
exploration to tackle unfamiliar or challenging scenarios,
whereas lower scores reduce exploration in well-understood
contexts, optimizing the learning trajectory.

Through the strategic application of DRL principles, com-
plemented by the integration of 1D, 2D, and 3D features,
the MAP3F approach not only enhances the agents’ capabil-

ity to make informed decisions but also ensures continuous
learning and adaptation. This algorithmic realization, under-
scored by the dynamic adjustment of ε and the strategic
fusion of multi-dimensional features, sets new benchmarks
for efficiency, adaptability, and decision-making acumen in
multi-agent systems. It illustrates the potential of leveraging
deep learning and feature fusion in harmony to navigate the
complexities of autonomous pathfinding and collision avoid-
ance. DQN integrates deep neural networks with Q-learning,
updating Q-values based on the equation [28]:

Qnew(s, a) ← Q(s, a)

+α

[
r + γ max

a′ Q(s′, a′) − Q(s, a)

]
, (4)

Incorporating experience replay and fixed Q-targets, DQN
iteratively adjusts the neural networkweights tominimize the
difference between predicted and target Q-values, optimiz-
ing the policy for navigating complex environments [28]. By
detailing the convolutional operations of 1D CNN, 2D CNN,
and 3D CNN alongside the DQN training formulation, this
section provides a holistic view of how MAP3F processes
environmental data and learns optimal paths for multi-agent
systems in diverse and dynamic settings.

This comprehensive integration of deep learning architec-
tures with reinforcement learning principles forms the core
of the MAP3F approach, offering a nuanced and effective
methodology for addressing the challenges of pathfinding
and collision avoidance in multi-agent systems.

2.2 Feature selectionmethods employed in MAP3F

After integrating the features, in this section, two indexes
have been used to extract important features, namely the
separation index (SI) criterion [29] and multi-head atten-
tion layer. The model’s response quality exhibits significant
differences both before and after applying feature selectors.
Before using a feature selector, the model’s response quality
without employing the feature selector would depend on the
architecture’ and training of the model.

The architecture of the proposed model, is trained on a
wide range of data, but it may not always produce accu-
rate or contextually appropriate responses.Without explicitly
incorporating feature selection mechanisms like multi-head
attention or SI, the model’s responses may not be optimized
for selecting the most relevant features from the input. It
may generate responses based on the overall input informa-
tion without explicitly emphasizing or downplaying specific
features. After employing a feature selector, the model gains
the ability to assign diverse attention weights to various input
features. This helps in emphasizing themost relevant features
for the given task. Consequently, the model’s responses are
more likely to focus on the crucial information and exhibit

123

Intelligent Service Robotics (2024) 17:401–418 409

improved relevance. Feature selector allows the model to
capture diverse patterns and dependencies within the input
sequence. This enhances the model’s understanding of the
contextual relationships between different features.

As a result, the model can generate responses which
exhibit better contextual coherence and understanding. Fur-
thermore, feature selector enables the model to assign higher
attention weights to features which are more informative and
relevant. This mechanism aids in feature selection, as impor-
tant features receive more attention, while less relevant or
noisy features receive lower attentionweights. Consequently,
the model’s responses are likely to be more focused on the
salient features, improving the overall quality of the gener-
ated output. The maximum impact of feature selection was
observed in complex scenarios.

2.2.1 Separation index

A novel distance-based index is introduced in [29] for eval-
uating the flow of input data through layers of a CNN
in classification problems. This index focuses on assess-
ing the complexity of the dataset and the separability of
classes. A dataset is considered complex when its sam-
ples are distributed in overlapping regions across different
classes, posing challenges for classification. On the other
hand, class separability refers to the extent to which sam-
ples of a class are not located in overlapping regions. Let
{xq , lq}Qq=1 denote the pairs of input patterns and output tar-

get labels, and let {xqL}Qq=1 represent the dataflow in layer
L ∈ (1, 2, . . . , nLayer). The SI at layer L is defined as fol-
lows:

SIL = {xqL}Qq=1 (5)

SI({xqL}Qq=1, {lq}Qq=1) = 1

Q

Q∑

q=1

φ(lq − lq
L
near) (6)

qL
near = argmin

∥∥∥xqL − xhL

∥∥∥ (7)

In the context of evaluating the data flow through the layers
of a CNN for classification tasks, a distance-based index, as
introduced in [29], serves as a metric for assessing dataset
complexity and class separability. Here’s an explanation of
the variables used in Equations (1) to (3), which define the
separability index (SI) at a given layer L within the CNN:

• xq : Represents an input pattern to the CNN, where q
indexes the input instances, ranging from 1 to Q, with Q
being the total number of instances in the dataset.

• lq : Denotes the output target label associated with the
input pattern xq , indicating the class towhich xq belongs.

• {xq , lq}Qq=1: This notation encapsulates the pairs of input
patterns and their corresponding output target labels for
all instances in the dataset.

• xqL : Refers to the representation of the input pattern x
q at

layer L of the CNN, effectively capturing the data flow
within that layer. Layer L can be any layer within the
network, from the first to the nLayerth layer, where nLayer
represents the total number of layers in the CNN.

• SIL : The separability index at layer L , initially defined
as {xqL}Qq=1, which represents the set of all transformed
input patterns at layer L .

• SI({xqL}Qq=1, {lq}Qq=1): Represents the computed separa-
bility index, which quantifies the class separability based
on the transformed input patterns at layer L and their
corresponding labels. It is calculated as the average over
all input instances q, where φ(lq − lq

L
near) evaluates the

difference between the label of xq and the label of its
nearest neighbor within the same layer.

• φ: A function applied to the label difference, which could
be an indicator function or another function designed to
measure the discrepancy between labels.

• qL
near: Identifies the index of the nearest neighbor to x

q
L at

layer L , based on a distance metric. The nearest neighbor
is the instance xhL that has the minimum distance from
xqL , as determined by the argmin operation over the norm∥∥xqL − xhL

∥∥.

These equations collectively provide a methodological
framework for quantifying how well-separated the classes
are within the feature space defined by the activations at
layer L of the CNN. This separation is a crucial factor in
the network’s ability to distinguish between different classes,
thereby directly impacting classification performance. Equa-
tions (4) to (6) describe the core logic of method SI. The
proof of these equations and further details of this method
are discussed in [29]. This index quantifies the proportion of
samples within the overlapped area relative to the total sam-
ple count, offering an insight into the dataset’s complexity.
Saffar et al. (2023) delve deeper into categorizing features
as exclusive or common and delineate conditions for class
separability using this framework. Additionally, they under-
score the integration of the separation index (SI) into the suite
of complexity measurement indices, underpinned by proba-
bilistic evidence.

Several case studies [29, 30] are presented to demon-
strate the benefits of the SI. Firstly, the index is employed
to rank various supervised datasets based on their level of
challenge. Secondly, the separability of dataflow is evaluated
across layers of two pre-trained VGG-16 networks in clas-
sifying CIFAR-10, CIFAR-100, and Caltech-101 datasets.
Additionally, the dataflow evaluation is extended to a trained
ResNet-18 model using the Fashion-MNIST dataset. The

123

410 Intelligent Service Robotics (2024) 17:401–418

Fig. 5 Separation index in path
planning

Get all

features

Calculate

Separation

Index

Remove a

feature

Calculate

Separation

Index

Get the best

subset

0504030201

paper [29] also observes a strong correlation between the
correct classification rate and the SI throughout the layers,
particularly as the SI increases.

2.2.2 Separation index in path planning

In this section, the procedure for employing a SI as a fea-
ture selector is elucidated in the study. After integrating
1D, 2D, and 3D features into a set of attributes, a subset
of these attributes with significance needs identification. In
each step of thismethod, one attribute is removed through the
backward selection approach, and the fully connected layers
are retrained while assessing the SI. This iterative process
persists until the backward selection method successfully
identifies the most optimal features. As Fig. 5 demonstrates,
the workflow of this index is as follows: Initially, it receives
all the features and calculates the value of the SI. Then, at
each stage, it removes one of the features using the backward
selection algorithm and recalculates the value of the SI. This
process continues until an optimal and influential subset of
these features is selected.

2.2.3 Multi-head attention layer for feature
selection

The multi-head attention layer can be beneficial for feature
selection in certain contexts. The multi-head attention mech-
anism is commonly used in transformer-based models, such
as the Transformer architecture, which has gained significant
popularity in natural language processing tasks. In a multi-
head attention layer, the input features are transformed using
multiple attention heads, each capturing different aspects
of the input representation. These attention heads allow the
model to focus on different parts of the input sequence simul-
taneously, enabling it to extract relevant and informative
features. The multi-head attention layer for feature selection
is a sophisticated component in neural network architec-

tures, particularly beneficial in the realmof path planning and
decision-making tasks. This layer operates on the principle of
attention mechanisms, which allow the network to focus on
different parts of the input sequence, crucial for understand-
ing complex patterns. In the context of feature selection for
path planning, the multi-head attention layer simultaneously
processes multiple ’heads’ of attention. Each head indepen-
dently attends to different parts of the input, capturing diverse
aspects of the data, such as spatial relationships and temporal
dynamics in a path planning scenario. This parallel process-
ing enhances the model’s ability to discern pertinent features
from a vast set of input data, leading to more informed and
accurate decision-making. By integrating multiple attention
heads, the layer offers a comprehensive view of the input,
significantly improving the model’s performance in com-
plex environments where understanding of intricate patterns
is essential.

By using multiple attention heads, the model can learn
diverse and complementary representations, as each head
attends to different parts of the input. This helps in capturing
various patterns and dependencies within the data. Addition-
ally, the attention mechanism assigns weights to different
input elements based on their relevance, effectively perform-
ing a form of feature selection. Features which are more
relevant to the task at hand tend to receive higher attention
weights, while less relevant features receive lower weights.
Through this process, the multi-head attention layer can
effectively capture and emphasize important features while
downplaying or ignoring less relevant ones. This inherent
feature selection capability can enhance the model’s ability
to focus on relevant information, improving its overall per-
formance on tasks such as sequence classification, machine
translation, text generation, and more. It is worth noting that
while the multi-head attention layer can assist with feature
selection, it is typically used as part of a larger neural net-
work architecture. The effectiveness of feature selection also
depends on the specific task, dataset, and the overall archi-
tecture and training process of the model [31].

123

Intelligent Service Robotics (2024) 17:401–418 411

Table 2 Comparative analysis of model performance across four scenarios with distinct feature combinations

Feature extractor Confusion matrix Description

UP DOWN LEFT RIGHT

1D Feature UP 0.64 0.18 0.15 0.03 1D features extract, and the training and evaluation
stage perform only with these features

DOWN 0.13 0.55 0.23 0.09

LEFT 0.06 0.12 0.71 0.11

RIGHT 0.02 0.08 0.18 0.72

2D Feature UP 0.7 0.15 0.07 0.08 2D features extract, and the training and evaluation
stage perform only with these features

DOWN 0.1 0.6 0.3 0.0

LEFT 0.06 0.07 0.8 0.07

RIGHT 0.03 0.04 0.16 0.77

3D Feature UP 0.8 0.15 0.02 0.03 3D features extract, and the training and evaluation
stage perform only with these features

DOWN 0.15 0.6 0.15 0.1

LEFT 0.15 0.01 0.78 0.06

RIGHT 0 0.02 0.18 0.8

Feature fusion UP 0.8 0.05 0.15 0 1D, 2D, and 3D features extract. The training and
evaluation stage performed with the combination
of all features

DOWN 0.17 0.68 0.07 0.08

LEFT 0.07 0.01 0.82 0.10

RIGHT 0.03 0 0.17 0.80

3 Results and discussion

The approach presented in this article has been examined
and compared with previous methods from three distinct per-
spectives. These perspectives have been defined under three
specific indicators: interaction index, reachability index, and
field of view index. Considering the negative correlation
between obstacle density and the performance of the pro-
posed method observed in this study, the results of these
indicators have been reported at three different levels of
density to compare with previous published articles. The
interaction index indicates the percentage of scenarios where
no collision occurred, while the reachability index represents
the time taken by the slowest agent to reach its goal. The
field of view index shows the observable region for an agent.
The results of the presented method have been compared
with benchmark methods such as ORCA [17], ODRM* [24],
and PRIMAL [12], which can be regarded as state-of-the-art
approaches presented in the motion planning literature.

The approach presented in this article utilizes the combi-
nation of 1D, 2D and 3D features for action selection by
each agent. The goal of this approach is to select appro-
priate actions by agents in various types of environments
(both dense and sparse). By combining the outputs of these
different CNN dimensions, agents can gain a comprehen-
sive understanding of the environment and make decisions

Table 3 Performance metrics for different features

Feature type Accuracy Precision Recall F1 Score

1D Feature 0.655 0.6653 0.655 0.6601

2D Feature 0.7175 0.7307 0.7175 0.7240

3D Feature 0.7450 0.7487 0.7450 0.7469

Feature fusion 0.7750 0.7901 0.7750 0.7825

which consider both global and local perspectives. This
combination enables agents to maintain a balance in their
decision-making process by considering the overall context
and patterns (global decisions) while also taking into account
immediate spatial interactions and local interactions (local
decisions). This combination provides agents with the abil-
ity to make more complex and informed decisions which
consider both macro and micro aspects of the environment.

To illustrate the significance of multi-dimensional feature
fusion, an experimentwas conducted using a specifically pre-
pared dataset, which was split into training and testing sets.
The proposed architecture, detailed in this paper, underwent
training in four distinct modes, with the results subsequently
evaluated. This network is characterized by its three-branch
structure.

Table 2 aids in understanding the impact of each branch.
Specifically, the first row presents the Confusion Matrix for
the scenario where only the 1D branch was utilized. The sec-

123

412 Intelligent Service Robotics (2024) 17:401–418

ond and third rows reveal the outcomes when exclusively the
2D and 3D branches were employed, respectively. Contrast-
ingly, the fourth row provides insights into the performance
when all three branches were concurrently trained. These
results clearly indicate that the integration of 1D, 2D, and 3D
features significantly enhances the model’s decision-making
capabilities. Furthermore,Table 3offers a comparative analy-
sis of the four aforementioned scenarios, employing relevant
metrics. Notably, the combined-feature scenario outperforms
the individual ones, as evidenced in the table. The feature
selectionmethods employed in this study are elaborated upon
in Sect. 2.2.

In terms of manageable agent count, ORCA, PRIMAL,
and MAP3F are capable of handling a large number of
agents, while ODRM* incurs higher computational costs
with an increase in the number of agents. In terms of the
quality of generated paths, ODRM* and PRIMAL guarantee
global optimization, while ORCA may lead to local optima.
In terms of scalability, ORCA, PRIMAL, and MAP3F are
considered efficient methods. ORCA is an online method
capable of managing a large number of agents in real-time,
while PRIMAL and MAP3F are offline methods that can
also handle a large number of agents but require more com-
putational resources compared to ORCA. ODRM* is a more
computationally expensive method that can manage a large
number of agents but generally operates slower than ORCA,
PRIMAL, and MAP3F. Additionally, the MAP3F and PRI-
MALmethods, which are learning-based approaches, have a
higher capacity for accepting uncertainty compared to the
classical methods of ORCA and ODRM*. The investiga-
tions conducted in this article demonstrate that the proposed
method, MAP3F outperforms ORCA, ODRM*, and PRI-
MAL in dense and complex environments.

In terms of quality, all four methods have demonstrated
effectiveness in solving multi-agent pathfinding problems.
However, the findings indicate that ORCA is more con-
servative and cautious in its approach, leading to more
conservative paths for the agents. ODRM* is more aggres-
sive in its approach, resulting in more aggressive paths for
the agents. PRIMAL andMAP3F achieve a balance between

ORCAandODRM*, leading to pathswhich are both efficient
and safe. The results are summarized in Table 4.

3.1 Goal assignment

Goal assignment in multi-agent path planning refers to the
process of determining which goals or tasks should be
assigned to each individual agent in a system composed of
multiple autonomous agents. It involves assigning specific
objectives or destinations to agents in a coordinated manner
to achieve the overall goals of the system. The importance of
goal assignment in multi-agent path planning lies in its role
in optimizing system performance and achieving efficient
task completion [32]. In this article, the method of assigning
the target to the agents is done based on the following three
simple functions.

1. Worst-Case Assignment: In the context of the worst-
case assignment, the primary objective is either to minimize
the overall completion time or maximize the cost of the
entire system. This form of goal assignment typically relies
on the maximum distance or cost incurred by an agent to
reach a specific goal. Considering the agents’ movement in
four directions: up, down, left, right, and stop. the distance
between two points is defined as the number of cells an agent
traverses between them. This definition of distance is inte-
gral to the calculations of goal priority (GP), formulated as
follows:

GPdis = n
max
i=1

Dis(agenti , goali) (8)

GPcost = n
max
i=1

Cost(agenti , goali) (9)

In the above equations, GPdis and GPcost represent the
maximum distances and costs, respectively, for all agents
to reach their assigned goals. The term ’Dis’ denotes the
distance, calculated based on the number of cells an agent
must navigate through, and ’Cost’ reflects the resources or
effort required for an agent to move from its current location
to its goal. These formulations capture the essence of the

Table 4 Comparison of pathfinding methods

Feature/method ORCA ODRM* PRIMAL MAP3F

Handle agent count High Moderate High High

Path quality Locally optimal Globally optimal Balanced Balanced

Scalability High Low High High

Computational efficiency High Low Moderate Moderate

Uncertainty tolerance Low Low High High

Approach Conservative Aggressive Balanced Balanced

Performance in dense environments Moderate Low High Very High

123

Intelligent Service Robotics (2024) 17:401–418 413

approach to goal assignment in scenarios demanding maxi-
mal efficiency or cost.

2. Best-Case Assignment: The best-case assignment
focuses on minimizing the completion time or cost for indi-
vidual agents, irrespective of the overall systemperformance.
Here, the goal assignment can be determined based on the
minimum distance or cost to reach a specific goal. which can
be formulated as follows:

GP dis = min(Dis(agent, goal)) (10)

GP cost = min(Cost(agent, goal)) (11)

3. Middle-Case Assignment: The middle case assignment
aims to balance the completion time or cost among all agents,
focusing on both individual and overall system performance.
In this scenario, the goal assignment is determined based on
optimizing a combination of distance or cost metrics. This
optimization is articulated through the following formulas,
where the objective is to maximize the respective distance
and cost for each agent-goal pairing across all agents n. The
maximum distance (GPdis) and cost (GPcost) are calcu-
lated as follows:

GPdis = n
max
i=1

Dis(agenti , goali) (12)

GPcost = n
max
i=1

Cost(agenti , goali) (13)

In these equations, GPdis represents the greatest distance
any individual agent is required to travel to its assigned goal,
whileGPcost signifies the highest cost incurred by any agent
to reach its goal. These calculations are crucial for ensuring a
balanceddistribution of tasks and resources among all agents.

3.2 Interaction index

The interaction index was defined as the percentage of sce-
narios, in which no collisions occurred.

Success rate = number of non-collision scenarios

All executed scenarios
(14)

Fig. 6 compares this index for the ORCA, ODRM*, PRI-
MAL, and MAP3F algorithms. These results are related to
an environment with a density of 0.3, where the goal assign-
ment to agents has been challenging. Table 5 displays the
comparison results of the interaction index of these algo-
rithms in environments with different densities and varying
numbers of agents. As observed in Table 5, the interaction
index significantly decreases as the environment becomes
more complex. This reduction occurs with a lower slope in
the proposed method compared to previous approaches. The
interaction index increased by twenty percent after applying
the feature selection phase.Among the two selectedmethods,

In
te

ra
c
ti

o
n
 I

n
d
e
x

ORCA

ODRM*

PRIMAL

MAP3F

1.0

0.8

0.6

0.4

0.2

0.0

40 50100 20 30

Number of agents

Fig. 6 Interaction index (worst-case assignment)

the SI method led to the selection of higher-quality features
and, consequently, higher accuracy in decision-making. The
results of this method are presented in Sect. 3.

3.3 Reachability index

Figure 7 displays the reachability index, which compares the
time it takes for the last agent to reach its target across dif-
ferent algorithms. As Fig. 7 clearly shows, as the number
of agents increases, the computational time also increases.
This increase follows different trends in various algorithms.
Figure7 compares this index in the ORCA, ODRM*, PRI-
MAL, and MAP3F algorithms. These results are related to
an environment with a density of 0.3, where the goal assign-
ment to agents is worst case. Table 6 displays the comparison
results of the reachability index of these algorithms in envi-
ronments with different densities and varying numbers of
agents. As can be observed from Table 6, the execution
time of a scenario significantly increases as the environ-
ment becomes more complex. This increase in time occurs in
the proposed method with a lower slope compared to previ-
ous methods. To quantify these observations, Equations (15)
and (16) express the reachability outcomes mathematically.
Equation (15) defines RO as the time taken by the slowest
agent in the RRT* algorithm, disregarding inter-agent colli-
sions. Equation (16) defines RP as the corresponding time
in the proposed algorithm.

RO = TRRT*
slowest (Ignoring inter-agent collisions) (15)

RP = T Proposed
slowest (16)

3.4 Scalability index

In the domain of multi-agent systems, scalability serves as a
pivotal metric for assessing a system’s capability to effec-
tively manage an escalating number of agents without a

123

414 Intelligent Service Robotics (2024) 17:401–418

Table 5 Interaction index for
different methods

Number of agents Density ORCA ODRM* PRIMAL MAP3F

10 0.1 1 1 1 1

20 1 0.99 1 1

30 0.99 0.97 1 1

40 0.98 0.95 1 1

50 0.97 0.92 1 0.99

10 0.2 0.95 0.9 0.99 0.99

20 0.94 0.8 0.97 0.98

30 0.91 0.87 0.94 0.97

40 0.86 0.75 0.89 0.93

50 0.76 0.65 0.81 0.89

10 0.3 0.7 0.8 0.9 0.95

20 0.5 0.68 0.8 0.85

30 0.2 0.46 0.77 0.8

40 0 0.21 0.61 0.75

50 0 0 0.32 0.68

ORCA

ODRM*

PRIMAL

 MAP3F

 Straight Time

R
e
a
c
h
a
b
il

it
y
 I

n
d
e
x

100

80

60

40

20

0

100 504020 30

Number of agents

Fig. 7 Reachability index (worst-case assignment)

marked decline in performance. Here, performance specif-
ically refers to the time each agent requires to reach its
designated goal. The scalability of a system is quantitatively
evaluated through a formula which inversely correlates the
increase in the average goal-reaching time experienced by the
system as the number of agents, A, grows, against a predeter-
mined maximum allowable time increase. This relationship
is encapsulated in the following mathematical expression:

Scalability(A)

= 100 −
(
Average Time Increase to Goal(A)

Maximum Time Increase

)

×100 (17)

In this refined context, scalability is gauged on a scale
ranging from 0 to 100, where a perfect score of 100 signi-
fies unparalleled scalability, implying no increase in the time
required for agents to achieve their objectives as the system

Table 6 Reachability index in different methods including MAP3F

Agents Density ORCA ODRM* PRIMAL MAP3F

10 0.1 0.25 0.26 0.2 0.2

20 0.26 0.28 0.2 0.2

30 0.28 0.3 0.2 0.2

40 0.37 0.45 0.2 0.2

50 0.52 0.65 0.25 0.2

10 0.2 0.28 0.3 0.2 0.22

20 0.38 0.45 0.3 0.3

30 0.5 0.61 0.54 0.54

40 1.8 3.5 1.7 1.8

50 4.5 6.8 5.3 4.4

10 0.3 15.6 15 8.4 6.8

20 25.3 36.2 11.9 9.3

30 36.4 58.9 20.7 12.6

40 59.3 70.2 34.11 25.6

50 84.6 100.8 52 45.9

scales. The term “Average Time Increase to Goal” computes
the escalation in the time it takes for agents to reach their
goals as A expands, whereas “Maximum Time Increase”
denotes a threshold, the highest tolerable increment in goal-
reaching time, determined through empirical studies or
theoretical estimations. This formula facilitates a standard-
ized comparison of scalability across different algorithms or
systems, highlighting their efficiency in accommodating a
burgeoning agent count without compromising on the time
efficiency of goal attainment. It’s crucial to customize the
“Maximum Time Increase” parameter in line with the spe-

123

Intelligent Service Robotics (2024) 17:401–418 415

Table 7 Scalability index across different methods, including MAP3F

Agents Density ORCA ODRM* PRIMAL MAP3F

10 0.1 95 94 98 98

20 93 91 97 98

30 90 88 96 98

40 85 80 95 97

50 75 70 92 96

10 0.2 92 90 97 98

20 88 85 94 96

30 75 70 90 91

40 65 55 85 88

50 50 40 80 83

10 0.3 40 35 70 76

20 36 31 64 69

30 31 25 58 63

40 22 22 54 58

50 20 16 48 51

cific experimental framework or application scenario to yield
precise scalability evaluations.

Table 7 exemplifies the scalability index recalculated to
emphasize the time efficiency of goal attainment, providing
a direct measure of how well various algorithms or systems
sustain their performance in terms of time to reach goals as
the number of agents increases.

3.5 FOV index

Increasing the size of the agent’s perspective can have a sig-
nificant impact on its ability to make informed decisions
about its next actions. Having a broader perspective allows
the agent to understand a wider range of the environment. By
observing a larger portion of its surroundings, the agent gains
access to more information about spatial composition, object
presence, and motion of entities. This broader perspective
enables the agent to develop a comprehensive understand-
ing of the current state and potential future states, leading to
more informed decision-making [33].

With a broader perspective, the agent can acquire back-
ground information which may be vital for decision-making.
It can observe object relationships, detect patterns, and iden-
tify relevant spatial cues. This contextual awareness provides
the agent with a better understanding of the environment
and allows it to make decisions which consider the overall
state and long-term consequences rather than just reacting
to immediate local observations. Additionally, it enables the
agent to anticipate potential future states and plan its actions
accordingly. By observing distant objects or events, the agent
can predict obstacles, identify opportunities, and plan com-
plex action sequences. This ability to consider a broader

context empowers the agent to make decisions which opti-
mize long-term goals or adhere to specific path densities.
While having a broader perspective brings benefits, it also
comes with increased computational complexity.

Processing a large volume of visual information requires
additional computational resources. The agent needs to ana-
lyze and interpret a large volume of sensory data, which
can result in longer processing times and increased mem-
ory requirements. Therefore, when deciding on the size of
the perspective, it is necessary to consider computational
limitations and available resources. Additionally, expanding
the perspective distributes the agent’s focus over a larger
area, which may lead to reduced clarity or details in the
observed scene. Furthermore, the agent may need to spend
more time processing the increased information, resulting
in higher time demands or response times. Thus, finding
the appropriate balance between a broad perspective for
comprehensive understanding and a focused perspective for
efficient decision-making is crucial. As a result, increasing
the size of the agent’s perspective provides benefits such
as improved understanding, increased contextual awareness,
and enhanced action planning. However, it also poses chal-
lenges in terms of computational complexity and efficiency.
Finding the right balance between a broad perspective and
efficient decision-making is essential to ensure optimal per-
formance of the agent in its environment.

The proposed solution in this study considers a bounded
range around the agent as the focus, where the combina-
tion of features extracted from 1D, 2D, and 3D CNN layers
can help overcome the agent’s perspective limitations and
aid in decision-making about the next action. Each type of
CNN layer has its strengths in capturing different types of
information. 1D CNNs are effective in modeling temporal
dependencies, 2D CNNs excel in detecting spatial patterns,
and 3D CNNs are suitable for capturing spatial and tem-
poral features in videos or volumetric data. By combining
these different types of CNNs, the agent can leverage multi-
ple perspectives and extract a richer set of features from its
environment. The combination of 1D, 2D, and 3D CNN lay-
ers enables the agent to encompass multi-scale information
from the environment. While 1D CNNs capture local tempo-
ral patterns, 2D CNNs capture spatial relationships in a local
neighborhood, and 3D CNNs consider spatial and temporal
dependencies in a larger region.

By integrating features from all three types of CNNs, the
agent can attend to different extents of the background simul-
taneously and provide a comprehensive understanding of the
environment. The combination of different CNN layers pro-
vides flexibility and adaptability to inputs with various types
and sizes. The agent can adjust the settings of CNN layers
based on the specific task and environmental characteristics.
This flexibility allows the agent to adjust the field of view
within the constraints of the perspective and leverage relevant

123

416 Intelligent Service Robotics (2024) 17:401–418

Table 8 Execution time comparison for different input resolutions on
NVIDIA GPU GTX 2080 and CPU i7@3.6 GHz

NVIDIA GPU GTX 2080 CPU i7@3.6 GHz

Input res-
olution

Execution
time for
each stage
(ms)

Execution
time for
worst
scenario
(ms)

Execution
time for
each stage
(ms)

Execution
time for
worst
scenario
(ms)

256×256 3̃.49 2̃0.94 9̃7.73 5̃86.38

128×128 2̃.64 1̃6.44 3̃6.69 2̃20.14

64×64 2̃.63 1̃5.88 3̃1.46 1̃84.56

32×32 2̃.6 1̃4.33 2̃3.05 1̃28.40

16×16 2̃.55 1̃3.6 2̃0.45 1̃20.30

8×8 2̃.48 1̃3.44 1̃8.07 9̃3.30

information for optimal decision-making andmore informed
choices. Table 8 presents the results of testing a consistent
scenario with different agent’s field of view. As observed, the
execution time significantly increases with the expansion of
the field of view.

3.6 Paths generated by the proposedmethod

In this section, a scenario is examined using MAP3F algo-
rithm. The same scenario is presented in Fig. 8, 9a, b. The
number of agents and goals, as well as their positions in the
scene, are identical. The distinction among these three figures
lies in how the goals are assigned to the agents. In Fig. 8, the
goals are assigned to the agents using the best-case method.
In Fig. 9a, b, the worst-case method is utilized to assign the
goals to the agents. Figure8, corresponding to the Best Case,
assigns the nearest goal to each agent and is solved by all
four algorithms at approximately the same time. However,
due to the overlap of the paths proposed by the algorithms
and the density of the environment in Fig. 9a, b, this scenario
has becomemore intricate than before. Nevertheless, Fig. 9a,
b is exclusively solved by the MAP3F algorithm without any
collisions. The proposed paths by the MAP3F method are
exhibited in the subsequent figures.

4 Conclusions

The paper introduced a decentralized approach for navigat-
ing multiple agents and avoiding collisions within intricate
environments. The proposedmethod, calledMAP3F, utilized
DRL and combined 1D, 2D, and 3D features to enhance
agent decision-making. The paper compared MAP3F with
other methods and evaluated its performance using three
indices, namely the interaction index, reachability index,
and FOV index. The outcomes demonstrate that MAP3F

Fig. 8 Paths suggested by MAP3F in the best-case situation

surpasses both classical and learning-based methods in a
range of environments with varying densities. When bench-
marked against the PRIMAL,ORCA, andODRM*methods,
MAP3F’s efficacy shows a notable enhancement, surpassing
these methods by more than 30% in complex environments
with an increased number of agents. It achieved a higher
interaction index in avoiding collisions, reduced the time for
the slowest agent to reach its goal, and demonstrated that
decreasing the field of view can decrease computation time
without affecting interaction indices. Additionally, MAP3F
exhibited scalability potential, indicating that it could han-
dle an increased number of agents without compromising
computation time. The paper highlighted the advantages
of decentralized approaches in multi-agent systems, such
as scalability, flexibility, and robustness. It also discussed
the challenges and limitations of centralized methods. By
utilizing DRL and leveraging multidimensional complex-
ity functions, MAP3F enabled agents to make independent
decisions based on their local observations. Furthermore,
the paper provided insights into the architecture and stages
of the proposed method. It described the dataset prepara-
tion, preprocessing, network architecture, and mathematical
computations involved in MAP3F. The feature fusion model
combined deep features extracted from 1D, 2D, and 3D
CNNs to develop a higher-performance classifier. Overall,
the paper contributed to the development of decentralized
approaches for multi-agent pathfinding and collision avoid-
ance. It demonstrated the effectiveness ofMAP3F in complex
environments and provided valuable insights for researchers
and practitioners working in this field. Future work could
further explore and refine the proposed method, considering

123

Intelligent Service Robotics (2024) 17:401–418 417

Fig. 9 Paths suggested by MAP3F in the worst-case situation

different factors such as uncertainty, real-time constraints,
and dynamic environments.

References

1. Le-Anh T, De Koster MBM (2006) A review of design and control
of automated guided vehicle systems. Eur J Oper Res 171(1):1–23

2. Alatise MB, Hancke GP (2020) A review on challenges of
autonomousmobile robot and sensor fusionmethods. IEEEAccess
8:39830–39846

3. Mehdi F, Sefidgari BL, Barenji AV (2013) An adaptive neuro
pid for controlling the altitude of quadcopter robot. In 2013 18th
International Conference on Methods & Models in Automation &
Robotics (MMAR), 662–665. IEEE

4. RaibertM, Blankespoor K, Nelson G, Playter R (2008) Bigdog, the
rough-terrain quadruped robot. IFAC Proc Vol 41(2):10822–10825

5. Walker Thayne T, Sturtevant Nathan R (2019) Collision detection
for agents in multi-agent pathfinding. arXiv e-prints, pages arXiv–
1908,

6. Cheng PDC, Indri M, Possieri C, Sassano M, Sibona F (2023)
Path planning in formation and collision avoidance for multi-agent
systems. Nonlinear Anal Hybrid Syst 47:101293

7. Andreychuk A, Yakovlev K, Surynek P, Atzmon D, Stern R
(2022) Multi-agent pathfinding with continuous time. Artif Intell
305:103662

8. Pianpak P, Son TC (2021) Dmapf: A decentralized and distributed
solver for multi-agent path finding problem with obstacles. Elec-
tronic Proceedings in Theoretical Computer Science 345

9. Chehelgami S, Ashtari E, Basiri MA, Masouleh MT, Kalhor A
(2023) Safe deep learning-based global path planning using a fast
collision-free path generator. Robot Auton Syst 163:104384

10. Qiang W, Zhongli Z (2011) Reinforcement learning model, algo-
rithms and its application. In 2011 International Conference on
Mechatronic Science, Electric Engineering and Computer (MEC),
1143–1146. IEEE

11. Reijnen R, Zhang Y, Nuijten W, Senaras C, Goldak-Altgassen M
(2020) Combining deep reinforcement learningwith search heuris-
tics for solving multi-agent path finding in segment-based layouts.
In 2020 IEEE Symposium Series on Computational Intelligence
(SSCI), 2647–2654. IEEE

12. Sartoretti G, Kerr J, Shi Y,Wagner G, Satish Kumar TK, Koenig S,
Choset H (2019) Primal: Pathfinding via reinforcement and imita-
tionmulti-agent learning. IEEERobotAutomLett 4(3):2378–2385

13. HusseinA,GaberMM,ElyanE, JayneC (2017) Imitation learning:
A survey of learning methods. ACM Computing Surveys (CSUR)
50(2):1–35

14. Chen H, Ji Y, Niu L (2020) Reinforcement learning path planning
algorithm based on obstacle area expansion strategy. Intel Serv
Robot 13(2):289–297

15. LoweR,WuYI, TamarA, Harb J, Abbeel OAIP,Mordatch I (2017)
Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments. Adv Neural Inf Process Syst 30:96

16. Chen YF, Liu M, Everett M, How JP (2017) Decentralized
non-communicatingmultiagent collision avoidancewith deep rein-
forcement learning. In 2017 IEEE international conference on
robotics and automation (ICRA), 285–292. IEEE

17. NiuH,MaC,Han P (2021) Directional optimal reciprocal collision
avoidance. Robot Auton Syst 136:103705

18. Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based
search for optimal multi-agent pathfinding. Artif Intell 219:40–66

19. Felner A, Stern R, Shimony S, Boyarski E, Goldenberg M, Sharon
G, Sturtevant N, Wagner G, Surynek P (2017) Search-based opti-
mal solvers for the multi-agent pathfinding problem: Summary
and challenges. In Proceedings of the International Symposium
on Combinatorial Search 8:29–37

20. Long P, Fan T, Liao X, Liu W, Zhang H, Pan J (2018) Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning. In 2018 IEEE international conference on
robotics and automation (ICRA), 6252–6259. IEEE

21. HönigW,Kiesel S, TinkaA, Durham J, AyanianN (2018) Conflict-
based search with optimal task assignment. In Proceedings of the
International Joint Conference on Autonomous Agents and Multi-
agent Systems

22. Chen C, Liu Y, Kreiss S, Alahi A (2019) Crowd-robot interaction:
Crowd-aware robot navigationwith attention-based deep reinforce-
ment learning. In 2019 international conference on robotics and
automation (ICRA), pages 6015–6022. IEEE

23. Li Q, Gama F, Ribeiro A, Prorok A (2020) Graph neural
networks for decentralized multi-robot path planning. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 11785–11792. IEEE

123

418 Intelligent Service Robotics (2024) 17:401–418

24. Ferner C, Wagner G, Choset H (2013) Odrm* optimal multirobot
path planning in low dimensional search spaces. In 2013 IEEE
International Conference on Robotics and Automation, 3854–
3859. IEEE

25. Teixeira EÁ,Wesley B, Arjona RM (2022) Evaluation of 1d and 2d
deep convolutional neural networks for driving event recognition.
Sensors 22(11):4226

26. Li Q,Wang Q, Li X (2020) Mixed 2d/3d convolutional network for
hyperspectral image super-resolution. Remote Sens 12(10):1660

27. Li J, Cui R, Li B, Li Y, Mei S, Du Q (2019) Dual 1d-2d spatial-
spectral cnn for hyperspectral image super-resolution. In IGARSS
2019-2019 IEEE International Geoscience and Remote Sensing
Symposium, 3113–3116. IEEE

28. Jafari R, Javidi MM, Rafsanjani MK (2019) Using deep rein-
forcement learning approach for solving the multiple sequence
alignment problem. SN Appl Sci 1:1–12

29. Saffar M, Kalhor A (2023) Evaluation of dataflow through layers
of convolutional neural networks in classification problems. Expert
Syst Appl 224:119944

30. Haghpanah MA, Masouleh MT, Kalhor A (2023) Determining the
trustworthiness of dnns in classification tasks using generalized
feature-based confidence metric. Pattern Recogn 142:109683

31. Zhu H, Lee KA, Li H (2022) Discriminative speaker embedding
with serialized multi-layer multi-head attention. Speech Commun
144:89–100

32. Zhong X, Li J, Koenig S, Ma H (2022) Optimal and bounded-
suboptimal multi-goal task assignment and path finding. In 2022
International Conference on Robotics and Automation (ICRA),
10731–10737. IEEE

33. Qiu J, Chen C, Liu S, Zhang H-Y, Zeng B (2021) Slimconv:
reducing channel redundancy in convolutional neural networks by
features recombining. IEEE Trans Image Process 30:6434–6445

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

	MAP3F: a decentralized approach to multi-agent pathfinding and collision avoidance with scalable 1D, 2D, and 3D feature fusion
	Abstract
	1 Introduction
	2 Multi-agent pathfinding with feature fusion method
	2.1 Structuring MAP3F within a deep reinforcement learning paradigm
	2.1.1 State representation
	2.1.2 DQN training formulation in MAP3F

	2.2 Feature selection methods employed in MAP3F
	2.2.1 Separation index
	2.2.2 Separation index in path planning
	2.2.3 Multi-head attention layer for feature selection

	3 Results and discussion
	3.1 Goal assignment
	3.2 Interaction index
	3.3 Reachability index
	3.4 Scalability index
	3.5 FOV index
	3.6 Paths generated by the proposed method

	4 Conclusions
	References

