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Abstract
The indoor positioning problem is a critical research domain essential for real-time control of mobile robots. Within this
field, Monte Carlo-based solutions have been devised, leveraging the processing of diverse sensor data to address numerous
challenges in local and global positioning. This study focuses on resampling strategies within the conventional Monte Carlo
framework, which directly impact positioning performance. From this perspective, in contrast to the conventional method
of employing weight thresholding and full particle scattering when the robot becomes disoriented, this study proposes an
alternative approach. It advocates for a localized space resampling strategy, adaptive noise injection guided by likelihood,
and the incorporation of beam rejection modifications to address dynamic (unmapped) obstacles effectively. The real-time
experimental results, conducted with varying particle counts, demonstrate that the proposed scheme effectively manages the
presence of unmapped obstacles while employing fewer particles than the standard Monte Carlo implementation.
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1 Introduction

The pursuit of accurate and efficient indoor localization
for mobile robots is a fundamental challenge in the field
of robotics. It involves the intricate task of determining a
robot’s precise position and orientation in real-time, rela-
tive to a predefined map of the environment and incoming
sensor data. At its core, indoor localization represents the
task of compensating for sensor noise, requiring the mobile
robot to deduce its state from inherently noisy and indirectly
observable information [1]. Over the years, the localiza-
tion problem has garnered substantial attention within the
realm of robotics, establishing itself as a pivotal and pri-
mary concern in the context of autonomous guided vehicle
(AGV) navigation and broader mobile robotic applications
[2]. This multifaceted problem can be categorized into two
distinct scenarios: the initial knowledge of the robot’s pose
narrows uncertainty to a local scale, transforming the pose
estimation problem into a localized position tracking chal-
lenge. When the robot’s initial pose remains unknown, it
engenders global localization, giving rise to a more exten-
sive realm of uncertainty. In a contrasting scenario, when
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an autonomous robot finds itself relocated to an arbitrary
position during operation, the problem is further compli-
cated, leading to the so-called “kidnapped robot problem”
[3]. This latter scenario poses formidable challenges beyond
those of global localization. Within the extensive landscape
of indoor localization techniques, a diverse array of methods
has been proposed and explored, encompassing approaches
such as the Extended Kalman Filter (EKF) [4], grid-based
algorithms [5], multi-hypothesis tracking [6], and the Monte
Carlo Localization (MCL) [7] methodology, among others.
Notably, MCL stands as a prominent subset of techniques
designed to effectively address the challenge of uncertainty.
It leverages a probabilistic framework to compute the instan-
taneous uncertainty of a robot, proving versatile for both local
and global pose estimation problems. Nevertheless, conven-
tional MCL is not without its limitations. As it represents the
posterior probability distribution by a collection of weighted
samples via particle filtering, the number of samples required
for global localization can be substantial, elevating the algo-
rithm’s computational complexity and resource demands [8].
Furthermore, the resampling process, employed to counter-
act localization failures or unexpected sensor noise, poses its
own set of challenges. Augmented MCL attempts to allevi-
ate such issues by introducing random samples throughout
the map, but this stochastic approach can inadvertently dis-
card poses in close proximity to the true robot’s position,
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thereby impairing real-time performance. MCL has found
widespread adoption in mobile robotics and autonomous
vehicle navigation. It plays a crucial role in enabling robots
to estimate their positions within complex and dynamic
environments. Researchers have applied MCL techniques to
ground robots, aerial drones, and underwater vehicles, show-
casing its adaptability across various robotic platforms [9].
Indoor localization is a particularly challenging domain due
to the absence of GPS signals and the presence of intricate,
cluttered environments. MCL has proven to be a reliable
solution for indoor localization, offering the ability to fuse
data from diverse sensors, such as range finders, cameras,
and inertial measurement units (IMUs). This adaptability has
made MCL a popular choice for robots navigating indoor
spaces [10, 11]. MCL has also found applications in aug-
mented reality, where it aids in aligning virtual objects with
the real world, enhancing user experiences. Additionally, it
is frequently employed in Simultaneous Localization and
Mapping (SLAM) algorithms, which are essential for build-
ing maps of unknown environments while simultaneously
localizing the robot within them [12–14]. MCL’s flexibility
transcends environmental boundaries. While it is extensively
used for outdoor applications like autonomous ground vehi-
cles and drones navigating in urban or rural settings, it also
excels in indoor environments where GPS signals are often
unavailable. In indoor scenarios, MCL’s ability to fuse data
from a combination of sensors, including LiDAR, IMUs, and
visual cameras, has made it indispensable for robots operat-
ing in cluttered spaces [15]. In multi-robot systems, accurate
localization information is critical for efficient coordination
and collaboration among robots. MCL has been employed to
synchronize the movements and actions of multiple robots
in applications ranging from exploration missions to surveil-
lance and industrial automation [16, 17]. It is important
to note that MCL is not confined to range sensors alone;
researchers have extended its application to include vision
sensors, utilizing techniques such as Gist descriptors and
PrincipalComponentAnalysis (PCA) to compute likelihoods
based on visual information [18].

This paper introduces newmethodologies aimed at reduc-
ing uncertainty in the global indoor localization problem.
To cope with the drawback of scattering particles across
the entire map resulting from unmapped obstacles, adaptive
noise injection and model-based prior focusing, and beam
rejection approaches have been proposed. In Sect. 2, the the-
oretical framework of the standard Monte Carlo approach is
presented. Section 3 expounds upon the proposed enhance-
ments integrated into conventional Monte Carlo localization.
In this section, basic information about an external indoor
positioning system [19] used as a reference for absolute
positioning is presented. The Image Processing-based Indoor
Positioning System (IPS) has been employed as a reference

position source for both the standard Monte Carlo Localiza-
tion (MCL) andmodifiedMCLapproaches.Theperformance
of both particle-based IPS methods is evaluated using the
Image Processing IPS in identical indoor scenarios. The
results obtained in the laboratory environment and in-depth
discussions are presented in Sect. 4.

2 Theoretical framework of MCL

This chapter examines the details ofMonteCarlo localization
(MCL). Through the use of random sampling and statisti-
cal inference, MCL offers a sophisticated resolution to the
formidable task of achieving precise localization within a
pre-established map. In order to understand the conventional
Monte Carlo localization approach in detail, it becomes nec-
essary to attempt a mathematical explanation. This effort
will elucidate the formalized complexities and computational
procedures that underlie this widespread method of robotic
localization. The core concept ofMonteCarlo Localization is
to estimate the posterior probability distribution of the robot’s
state Xt given the history of sensor measurements Z1:t and
control inputs U1:t , as well as the map M . This is expressed
using Bayesian inference:

P(Xt |Z1:t , U1:t , M) ∝ P(Zt |Xt , M) ∫ P(Xt |Xt−1, Ut , M)

P(Xt−1|Z1:t−1, M)dXt−1 (1)

The sensor model P(Zt |Xt , M) represents the likelihood
of observing sensor measurements Zt given the current state
Xt and the map M . It incorporates both the noise in the
sensor measurements and the correspondence between map
features and observed landmarks. A complex sensor model
might involve Gaussian distributions, such as:

P(Zt |Xt , M) =
∏

i

1√
2πσ 2

i

e
− (zi−hi (Xt ))

2

2σ2i (2)

where

• zi is the observed measurement,
• hi (Xt ) is the predicted measurement based on the current
state Xt and the map feature i .

• σi is the sensor noise for measurement i .

Themotionmodel P(Xt |Xt−1, Ut , M) describes how the
state Xt evolves from the previous state Xt−1 under the influ-
ence of control input Ut and the map M . This can involve
complex motion equations, such as:

Xt = g(Ut , Xt−1, M) + εt (3)
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where

• g(. . .) is a complex function representing the robot’s
motion dynamics.

• εt is the motion noise.

To approximate the posterior distribution, a set of particles
is used, X (i)

t , sampled from the motion model and weighted
according to the sensor model:

ω
(i)
t =

P
(
Zt |X (i)

t , M
)

∑
j

(
Zt |X (i)

t , M
) (4)

After weighting, particles are resampledwith replacement
according to their weights to generate a new set of parti-
cles. This step ensures that particles representing regionswith
higher likelihoods are maintained, while less likely hypothe-
ses are pruned.

The final state estimate is typically computed as a
weighted sum of the resampled particles:

X∗
t =

∑

i

ω
(i)
t X (i)

t (5)

MCL strategy, with its theoretical foundation elaborated
in (1) to (5), is depicted as pseudo-code in Algorithm 1.

Algorithm 1: Pseudo code of Monte Carlo localization

Initialize particles randomly in the map 
Set initial belief about the robot's pose 
While not converged: 
    Move the robot based on control input 
    Update particle poses based on motion model 
    Add noise to particle poses 
    Measure the environment and calculate particle weights 
    Resample particles according to their weights 
    Estimate the robot's pose from the particles 
    Check for termination condition (e.g., convergence or a maximum number of iterations) 
End 

3 Proposed improvements on resampling
strategy

This section delves into an examination of the variables
influencing the algorithm’s robustness, along with the intro-
duction of strategies for addressing these factors, including
noise injection, particle confinement, and beam rejection.
The contents of this section outline the study’s advancements
as an improved Monte Carlo localization scheme and how

Percep�on
Prior  

convergence 
check

Enhenced MCL 
resampling

Posterior
convergence

check
Control inputModel update

Fig. 1 Operating loop of the enhanced MCL resampling

it extends beyond conventional methods, both theoretically
and visually. Basic operating loop of the proposed scheme is
given in Fig. 1.

In the context of particle-based localization methodolo-
gies, a critical step involves the resampling of the prior
particle set. This resampling process is characterized by the
random selection of a subset of particles from the existing
distribution. The primary objective of this operation is to
refine the particle ensemble in accordance with the evolv-
ing belief about the estimated position or state of a target
entity. The resampling process ensures that the particle set
is updated to better represent the posterior probability dis-
tribution. It is widely recognized as an essential component
in various localization and tracking systems across different
domains, contributing significantly to the enhancement of
estimation accuracy and reliability. By allowing for the ran-

dom selection of particles from the current distribution, the
resampling procedure conforms to the principles of statistical
inference and Bayesian filtering, where the representation of
posterior beliefs is paramount in achieving accurate local-
ization results. With the enhancement of convergence, the
particle overlap narrows the diversity within the algorithm’s
solution space. This phenomenon can result in the algo-
rithm becoming ensnared by localized solutions, thereby
giving rise to persistent steady-state errors. The noise injec-
tion approach is introduced in the domain of MCL, where
the standard deviation of injected noise during resampling is
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Fig. 2 Likelihood-based
sampling of particles

Fig. 3 Diversified concentric particles with noise injection

adaptivelymodulated based on the convergence levels of par-
ticle weights, aiming to improve the precision and efficiency
of the localization process. The standard deviation added to
increase diversity is adjusted according to the convergence
level to provide a wide scan for low weights and a narrower
scan for high weights.

σt = A
({

ω
(i)
t

})
(6)

where σt is the standard deviation of the noise for time step

t , and
{
ω

(i)
t

}
is the set of particle weights.

Then adding this noise when resampling the particles:

X (i)
t ∼ P

(
Xt |X (i)

t−1, Ut , M
)

+ N
(
0, σ 2

t

)
(7)

whereN (
0, σ 2

t

)
represents Gaussian noise with mean 0 and

standard deviation σt .
The adaptive noise term ensures that particles with lower

weights receive higher noise, while particles with higher
weights receive lower noise. This leads that the noise injected
into the particles is adjusted based on the convergence level
as indicated by the weights.

The depiction of the sampling process grounded in
likelihood-based beliefs is presented in Fig. 2.

In the sequential progression following the procedure elu-
cidated in Figs. 2 and 3 provides a visual representation of
the introduction of noise via a dedicated injection process
into the concentric particles, situated within the framework

of diversification. The theoretical foundation of this process
is explicated in Eq. 7.

When the robot’s position achieves a significant level
of convergence, reductions in particle weights may tran-
spire due to environmental dynamics. For convergence levels
below a critical threshold, standardMCL resamples particles
across the entire unoccupied space. While this approach is
effective for reaching the global optimum in theory, practical
constraints arise from the robot’s kinematics. Consequently,
it is unnecessary to scan such an extensive span. Thus, an
approximate sub-space for the next-step position can be
delineated within the framework of known control inputs,
such as velocity, and the robot’s kinematic model. Within
the framework of Monte Carlo Localization, a strategy is
introduced whereby the dispersion of particles is constrained
to a circular domain, with its center situated at the last ver-
ifiable robot position. This novel approach is designed to
enhance localization precision by confining particle explo-
ration within a spatially informed region of interest.

X (i)
t = X (i)

t + Clamp
(
X (i)
t − X∗

t , rm
)

(8)

Here, “Clamp” is a function that restricts the position of
each particle to stay within the circular region with radius
rm . If a particle goes beyond this circle, its pose is clamped
to the boundary of the circle. This modification ensures that
particles with low weights are scattered within the defined
circular region around the latest trusted pose of the robot,
preventing them from drifting too far from potentially cor-
rect estimates and allowing for explorationwhilemaintaining
relatively higher degree of localization accuracy. The depic-
tion of this process is illustrated in Fig. 4.

In cases where the robot reaches a high level of con-
vergence in localization estimation, the sudden decrease in
particle weights attributed to the presence of an unmapped
obstacle in its path reduces the robustness of Monte Carlo
Localization in dynamic environments. In this context, "beam
rejection" strategy has been proposed to solve this problem.
The dispersion of particles into a pre-defined region of the
entiremap is considered undesirable. As a result, this strategy
emphasizes the consideration of initially mapped obstacles
that are integral components of the static map. The reflection

123



Intelligent Service Robotics (2024) 17:703–714 707

Fig. 4 Resampling within clamped sub-space

Fig. 5 Effect of unmapped obstacle on filter convergence

of laser beams off unmapped obstacles yields significantly
divergent weight outcomes. Consequently, an abrupt decline
in particle weights may be attributed to the presence of these
uncharted obstacles. Excluding the information derived from
laser beams intercepted by unmapped obstacles during the
likelihood calculation process serves to maintain high levels
of convergence. Assuming that the dynamic ones of these
obstacles are removed from the robot’s field of vision within
a certain period, the robot is ensured tomaintain its converged
position during this time. This results in the overlooking of
the impact of these obstacles on positioning performance,
even though they are perceived by the robot. The exploita-
tion of residual data obtained from the real sensor ray casting
model, in tandem with observations derived from the last
reliable position on the static map, serves as an effective
approach for elucidating the rays that experience reflection
from unmapped obstacles.

The impact of an unmapped obstacle encountered at time
t + 1, after the application of a control input at time t, on the
convergence behavior of the filtering process is depicted in
Fig. 5 within the context of a representative scenario.

The weight values (belief) of the particles at time t and t +
1 are given in Figs. 6 and 7, respectively. It can be observed
that the initial belief decreases because the rays poorly match
the unmapped obstacle, leading to a misaligned convergence
pattern among particles.

Simultaneous plots of real-time sensormeasurementswith
particle-based observation data extracted from the static
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Fig. 6 Particle weight distribution at time t
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Fig. 7 Particle weight distribution at time t + 1

map obtained at times t and t + 1 are shown in Figs. 8
and 9, respectively. Poor-matched observation results result-
ing from the dispersion of particles can be observed from
these figures. When total likelihood (production of weights)
decreases significantly, a thresholding approach is employed,
wherein the maximum residual value from the last reliable
state is used to threshold the difference between the best par-
ticle and the actual measurement. Observation data above
the threshold residual are not included in the likelihood cal-
culation. In Fig. 10, the residual graph is presented, and it
allows the identification of measurement indices that exceed
the threshold at moment t + 1. The regions that are evident in
the residual analysis are marked as red solid. This determina-
tion aids in selecting the lidar measurements to be included
in the likelihood calculation, thus preventing particle dis-
persion, and ensuring a reliable pose estimation. The Results
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Fig. 8 Observations (‘.’) and real measurement (‘o’) at time t
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Fig. 9 Observations (‘.’) and real measurement (‘o’) at time t + 1
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Fig. 10 Residual Analysis for Lidar Measurement Selection

Fig. 11 Enhanced filter convergence with beam rejection scheme
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Fig. 12 Particle weight distribution at time t

Section will present experimental findings demonstrating the
enhanced location accuracy achieved with this approach in
the presence of unmappedobstacles.At this stage, themethod
for obtaining the indices of rejected beams is exclusively
demonstrated.

The filter outputs obtained in a scenario where the beam
rejection approach is applied are presented in Figs. 11, 12, 13
and 14, respectively. Figure 11 illustrates that the presence of
unmapped obstacles does not disrupt the convergence status
of the filter. The implementation of the proposed rejection
scheme enables the filter to maintain its convergence status
throughout subsequent time steps. Through an analysis of
the weight distributions presented in Figs. 12, 13 and 14, it is
evident that the prevention of undesirable weight losses and
themaintenance of positioning accuracy have been achieved.

Figure 15 provides a flowchart depicting the specific
stages where detailed modifications are introduced into the
standard Monte Carlo.

4 Results

The indoor positioning system (IPS) given in [19] is
employed to compare the position and orientation outputs,
serving as a reference positioner. This system exhibits an
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Fig. 13 Particle weight distribution at time t + 1
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Fig. 14 Particle weight distribution at time t + 2

average position error of 2.3 cm and an orientation error
of 0.3 degrees. The image processing-based system was
deployed within the experimental corridor and data were
recorded for the purpose of comparative analysis with the
particle-based positioning system. The convergence ratio of
the particle filter is determined based on the reference IPS.
In the experimental configuration, a wheeled mobile robot
(WMR) operating under a differential drive kinematic model
was remotely controlled to traverse an arbitrary trajectory
within the laboratory corridor. Passive IR reflectors placed
on the ceiling of the corridor, and the robot equipped with
LIDAR and IPS receiver are shown in Fig. 16.

The static map delineating the corridor walls was gener-
ated using SolidWorks drawing, with each pixel on the map
corresponding to a 5 cm square in the physical environment.

Start
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Mo�on update
(model based)
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Stop criteria
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Y

Fig. 15 Flowchart of Modified Monte Carlo localization

The actual position of the WMR was continuously moni-
tored using the IPS throughout the experiments. Under these
specified conditions, the proposedMonte Carlo Localization
(MCL) algorithm was executed with various distinct parti-
cle sets, consisting of 750, 1500, 5000 and 10,000 particles,
respectively.

The experimental work was conducted with the under-
lying assumption that there was no prior belief regarding
the initial position of the wheeled mobile robot (WMR). In
the scenarios where unmapped obstacles were encountered,
a comparative analysis was conducted between the conven-
tional MCL and the proposed scheme in terms of weight
distribution and positioning error. Due to the absence of prior
knowledge regarding the initial pose of the robot, the algo-
rithm necessitates an initial operation over arbitrary cycles
to elevate the average weights to an acceptable level. This
threshold is subject to adjustment depending on the number
of particles. Consequently, an investigation was conducted to
determine the reliable initial average weights for particle sets
comprising both 750 and 1500 particles. The initial average
weight threshold is applied during the initialization step of
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Fig. 16 IPS pattern and the remote controlled WMR

Fig. 17 Initial distribution of the particles (#750)

experimental tests as a criterion for determining immediate
convergence of the filter.

The initial distribution of 750 particles is depicted in
Fig. 17. To maintain a consistent scale for visualizing x–y
pose errors alongside average weights, the weights were
amplified by a coefficient of 3000.When examining the pose
error in the X–Y dimensions alongside the corresponding
weights, it becomes evident that the filter converges to the
actual pose at an average weight threshold of approximately
0.58. This threshold corresponds to the 10th iteration of the
algorithm. This value can be observed from the chart given in
Fig. 18. If this threshold is not applied, MCL pose estimation
exhibits a significant initial pose error. This phenomenon is
illustrated in Fig. 19.

The visual representation in Fig. 19 includes black solid
dots depicting MCL pose estimations, cyan solid dots repre-
senting IPS pose data, and a magenta point cloud enveloping
the WMR icon, which corresponds to the particles. Hence,
the Monte Carlo Localization (MCL) estimation cannot be
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Fig. 18 Amplified average weights for visualization of x–y pose error
(#750)

Fig. 19 High initial pose error (without weight thresholding #750)

deemed trustworthy until a specific number of initial itera-
tions have been executed. Demonstrating this phenomenon,
the pose estimation of the proposed MCL algorithm con-
verges with IPS data, as illustrated in Fig. 20.

An equivalent experimental investigation was carried out
with a particle count of 1500. The initial particle distribution
is depicted in Fig. 21.

In this scenario, the threshold average weight is approxi-
mately 0.6 and this threshold corresponds to the 20th iteration
of the algorithm. The index at which the x–y pose error is ini-
tially minimized can be observed in Fig. 22.
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Fig. 20 Minimized initial pose error (with weight thresholding #750)

Fig. 21 Initial distribution of the particles (#1500)
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The impact of the initial weight thresholding for 1500
particles is illustrated in Fig. 23.

To evaluate the efficacy of the modified MCL scheme, an
unmapped obstacle configuration was established within the
indoor corridor of the Laboratory. The boxes were placed in
arbitrary positions, obstructing the robot’s direct line of sight
to the static walls. Hence, this setup allows us to examine the

Fig. 23 Before (left) and after (right) the weight thresholding (#1500)

Fig. 24 Standard MCL results

filter’s behavior when particle weights experience a reduc-
tion. In this setup, both the standard MCL and the proposed
modified MCL schemes were executed to observe particle
resampling behaviors in the context of weight reduction and
map symmetricity.

Figure 24 presents the output of the standard MCL imple-
mentation. In this execution, the actual pose received from the
external IPS is represented by cyan-colored circles. The black
solid icons depict MCL pose estimations at their respec-
tive time steps; while, the magenta point cloud illustrates
the particle distribution. The robot, represented by a sim-
ple icon, corresponds to theWMR (WheeledMobile Robot).
Unmapped boxes are indicated by red objects, and the static
walls are delineated by blue contours.

Initially, theWheeledMobile Robot (WMR) was directed
remotely to execute a zero-radius turn, a maneuver under-
taken to facilitate the initial convergence of the filter. This
controlled motion served as a deliberate action to bring
the filter into a state of alignment and readiness for sub-
sequent operations. Following that, the robot was remotely
guided to navigate through the areas containing unmapped
objects. Therefore, the robot confronted dynamic patterns
that diverged from its prior knowledge, precipitating a reduc-
tion in the cumulative particleweight as it progressed through
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Fig. 25 Pose error analysis (Standard MCL)

Fig. 26 Modified MCL results

its navigation. This phenomenon is depicted through the pose
error, observed in both the x and y axes, as illustrated in
Fig. 25. As can be seen on the chart, a substantial increase
in pose error, particularly along the x-axis, is noted. This can
be attributed to the heightened sensitivity of the filter to map
symmetry when dynamic objects are introduced, resulting in
alterations in filter convergence.

A new experiment employing the Modified Monte Carlo
Localization (MCL) scheme was conducted while maintain-
ing the same obstacle configuration. Due to the unpredictable
effects resulting from physical conditions (e.g., wheel slip-
page, minor differences at initial convergence orientation),
remote manipulation of the robot on the exact same trajec-
tory could not be achieved. The trajectory for the Modified
MCL scenario was obtained in the same form at the major
level, with control inputs being sent to the robot in same
order, as was done for the StandardMCL scenario. Figure 26
depicts the defined trajectory, received IPS measurements,
and modified MCL position estimates as the Modified MCL
scheme was applied.

0 100 200 300 400 500 600 700

# of runs

0

500

1000

1500

D
is

ta
nc

e 
(c

m
)

Av
g.

 o
f w

ei
gh

ts
 x

 1
e+

3

y-pose (Modified MCL)
y-pose (IPS)
x-pose (Modified MCL)
x-pose (IPS)
Avg. of weightsX 35

Y 953.9

X 35
Y 609.2

X 35
Y 253.9

Transient region 
(Zero-raidus turn) 

Fig. 27 Pose error analysis (Modified MCL)

Table 1 Experimental results for scenariowith unmappedobstacle pres-
ence (750 particles)

RMSE (x-axis) RMSE (y-axis) Weight
(Mean of
avg. of
weights)

Standard MCL 66.65 4.17 0.4191

Modified MCL 4.47 2.61 0.5883

An increase in the reliability of position estimates has been
noted when compared to the results obtained in the previ-
ous scenario. This enhancement can primarily be ascribed to
the filter’s more robust response to map symmetries, a result
of the clamping strategy’s implementation. Furthermore, the
mitigation of excessive particle scattering in the presence
of unmapped obstacles is effectively achieved through the
rejection of laser beams that do not align with the static
map and the utilization of ray casting data obtained from the
most trusted particle. This approach is considered a novel and
effective method within the field of resampling strategies.

The error graph, depicting the disparity between the
robot’s actual position and the position estimation provided
by the proposed scheme, is presented in Fig. 27. It is evident
from this graph that following the initial convergence period
(after the transient region), a robust positioning estimation
was achieved, aligning closely with the actual position along
both the x and y axes.

Root mean squared error (RMSE) analysis of x-axis and
y-axis of standard MCL and the proposed (modified) MCL
is given in Table 1.

Table 2 presents the convergence levels achieved with
varying particle counts (1500, 5000, and 10,000) for the same
map. The results indicate an improvement in the position
estimation performance of the filter as the number of parti-
cles increases. However, given the imperative of processing
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Table 2 Convergence levels with varying particle counts

1500 particles 5000 particles 10,000
particles

Standard MCL 0.4957 0.5221 0.6898

Modified MCL 0.6841 0.7833 0.8984

speed in real-time studies, it is more practical to operate with
a manageable number of particles.

The experiments conducted in this study encompass an
area of 15 m × 15 m, and satisfactory results were obtained
using a minimum of 750 particles within this domain. To
attain comparable performance, the standard MCL approach
necessitates a substantially higher number of particles, lead-
ing to a significant increase in computational burden.

5 Conclusions

Implementing resampling strategies within the Monte Carlo
framework introduces several potential limitations and chal-
lenges. One critical concern is the risk of sampling bias,
where the chosen resamplingmethodmay inadvertently skew
the representation of the underlying distribution, leading to
inaccuracies in the simulation results. Additionally, the com-
putational complexity associated with certain resampling
strategies can pose challenges, particularly as the scale of the
simulation increases. There’s also a trade-off involving the
loss of information, as the choice of resampling technique
may result in the omission of valuable data, affecting the
overall precision of theMonteCarlo simulation. Selecting the
optimal resampling strategy becomes a critical decision, as an
inappropriate choice may yield suboptimal results, empha-
sizing the need for careful consideration and evaluation in
the application of these strategies to ensure the reliability
and validity of simulation outcomes.

To overcome the inherent limitations of resampling strate-
gies within the Monte Carlo framework, several alternative
approaches can be implemented. First and foremost, bias cor-
rection techniques play a crucial role inmitigating the impact
of sampling bias, ensuring a more accurate representation
of the underlying distribution. To address the computational
complexity associatedwith large-scale simulations, the adop-
tion of efficient resampling algorithms, designed for parallel
processing or optimized implementations, can significantly
enhance computational efficiency. Furthermore, embracing
adaptive resampling approaches that dynamically adjust to
the evolving characteristics of the problem or system can
improve adaptability. Hybrid resampling techniques, com-
bining multiple strategies, or integrating other simulation

methodologies, offer a comprehensive and robust solution
by leveraging the strengths of different approaches.

In this context, the resampling strategy proposed in this
study is an approach to protect valuable data and increase the
overall sensitivity of the Monte Carlo method and minimize
information loss. As a future work, it is planned to make
an improvement on the "kidnapped robot problem" for very
highly dynamic environments.
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