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Abstract
This paper proposes a novel method that computes the optimal solution of the weighted hierarchical optimization problem
for both equality and inequality tasks. The method is developed to resolve the redundancy of robots with a large number
of Degrees of Freedom (DoFs), such as a mobile manipulator or a humanoid, so that they can execute multiple tasks with
differently weighted joint motion for each priority level. The proposed method incorporates the weighting matrix into the first-
order optimality condition of the optimization problem and leverages an active-set method to handle equality and inequality
constraints. In addition, it is computationally efficient because the solution is calculated in a weighted joint space with
symmetric null-space projection matrices for propagating recursively to a low priority task. Consequently, robots that utilize
the proposed method effectively show whole-body motions handling prioritized tasks with differently weighted joint spaces.
The effectiveness of the proposed method was validated through experiments with a nonholonomic mobile manipulator as
well as a humanoid.

Keywords Redundant robots · Whole-body control · Optimization · Mobile manipulators

1 Introduction

Robots with high Degrees of Freedom (DoFs) such as
mobilemanipulators and humanoids are designed for human-
centered environments. To control these robots, whole-body
control frameworks [13,15] have been used to perform var-
ious prioritized tasks to consider motion distribution with
kinematic redundancy. However, in practice, depending on
the scenarios (e.g., locomotion, manipulation, and loco-
manipulation), it is difficult to generate natural whole-body
behavior only with whole-body controllers. This is because
typical whole-body controllers produce joint motion mini-
mizing the samemetric for all prioritized tasks. For example,
when the mobile manipulator tracks the desired trajectory by
using a whole-body task, it often comes into singular con-
figuration or reaches the boundary of the workspace due
to dynamic and kinematic difference of mobile base and
manipulator [1,17]. Also, during locomotion phase of the
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humanoid, the movement of the upper body by whole-body
control may adversely affect walking performance [26].

In this paper, we propose a novel Weighted Hierarchical
Quadratic Programming (WHQP) framework to characterize
joint movement for each task. By combining two concepts
of HQP [6] and weighted least-squares norm [2], it can
handle various inequality and equality tasks with differ-
ently weighted joint motion for each priority effectively.
Consequently, the proposed controller can generate natu-
ral whole-body behavior without additional subtasks which
restrict undesirable movements, as shown in Fig. 1.

1.1 Related works

HQP has been actively studied in that it can handle both
equality and inequality tasks while ensuring strict priorities
of tasks. Kim et al. [12] proposed an HQP-based task tran-
sition method that can insert, remove, swap the priorities of
the tasks while ensuring continuous control inputs. Tassi et
al. [24] extended HQP in order to produce an impedance-like
motion under external disturbance by augmenting the vari-
able for Cartesian velocity. To enhance the computational
efficiency, Lee et al. [14] utilizes operational space formu-
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Fig. 1 An example application
of the proposed method with
individual weighting matrix for
each task priority: a box-taping
scenario of humanoid
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lation [19] so that the size of the decision variable in QP is
reduced when controlling the whole-body of the humanoid.

On the other hand, the weighted least-squares normwhich
is based on the weighted psuedo-inverse can treat the redun-
dancy of the robots without additional constraints. Dariush et
al. [4] penalized themotion of joints by designing aweighting
matrix that determines contribution to the main task accord-
ing to the extent of the proximity to collision in order to
avoid self-collision or obstacle. Similarly, Farelo et al. [8]
generated optimized joint motion for wheelchair-mounted
arm by using weighted pseudo-inverse that considers not
only joint limit of arm but also motion limit of wheelchair.
Tsuichihara et al. [25] utilized weighted pseudo-inverse that
restricts chest motion of humanoid to improve stability in
manipulation. Park et al. [21] and Choi et al. [3] combined
the task-priority method and the weighted pseudo-inverse
method in order to generate the joint motion minimizing the
residual error caused by singularity-robust framework. How-
ever, since these methods treat the same joint weights for all
tasks, they cannot assign individual joint weights for each
task priority.

To tackle this issue,Wu et al. [27] recently proposed a two-
level prioritized whole-body Cartesian impedance controller
with individual weighting matrices. In contrast to afore-
mentioned methods [3,4,8,21,25] with the same weighted
joint distribution for all tasks, the proposed controller used
individual weighting matrices to generate different motion
patterns for each task. However, it cannot calculate the solu-
tion when extending tomultiple tasks since themain task and
its null-space are only considered.Also, [27] cannot dealwith
inequality constraints.

1.2 Overview of the Paper

The proposed WHQP can efficiently compute an analytic
solution in a weighted least-squares norm manner for prior-
itized equality and inequality tasks. By reformulating HQP
with Complete Orthogonal Decomposition (COD) [6], the
WHQP assigns the weighting matrix to each task hierarchy

and derives the first-order optimality conditions. Based on
these conditions, the active-set method [6,16] is exploited to
handle inequality tasks.

Therefore, the main contributions of this paper are as fol-
lows. First, our algorithm calculates the optimal solution
given the joint weights for each priority level. Thus, the
proposed algorithm helps to generate the preferred whole-
body motion patterns according to various scenarios such as
locomotion, manipulation, and loco-manipulation. Second,
unlike previous works [3,4,8,21,25,27] with the weighted
optimization problem, the proposed method can handle
inequality constraints as well as equality constraints. Finally,
by virtue of symmetric null-space projection matrices, the
proposed solver is computationally efficient. We show that
our formulation can control various redundant robots includ-
ing a nonholonomic mobile manipulator and humanoid in
real-time.

The remainder of the paper is organized as follows. InSect.
2, mathematical problem statements are explained. Section
3 describes how to formulate the WHQP subject to equal-
ity tasks and calculate a solution in a weighted least-squares
norm sense. Based on the formulation of theWHQP, inequal-
ity tasks are handled by using active-set method in Sect. 4.
Next, Sects. 5 and 6 describe the experimental validations
and discussion of the proposed WHQP, respectively. Finally,
the paper is concluded in Sect. 7.

2 Problem statement

This section provides the modification of the weighted
pseudo-inverse to handle individualweights of joints for each
task hierarchy and its limitations.

2.1 Pseudo-inverse with weighted least-squares
norm for each task

Let us assume that there are p prioritized tasks and p weight-
ing matrices for each task of n-DoFs redundant robot:
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ẋk = Jkq̇, (k = 1, · · · , p) (1)

where ẋk ∈ R
mk , Jk ∈ R

mk×n , and q ∈ R
n are the task space

velocity, the Jacobian matrix, and the joint position of the
robot, respectively. The priorities are indicated by the number
of subscripts: the smaller the subscript number, the higher
the task priority. Also, the weighting matrix Wk ∈ R

n×n is
assumed to be symmetric and positive definite.

To execute the first task ẋ1 while assigning dominant joints
or optimizing a performance criterion through the weighting
matrix W1, an optimization problem is formulated as

min
q̇1

1

2
q̇T1 W1q̇1,

s. t. J1q̇1 = ẋ1.
(2)

The optimal solution q̇∗
1 ∈ R

n is calculated analytically as

q̇∗
1 = JW1+

1 ẋ1 = W−1
1 J T1 (J1W

−1
1 J T1 )−1 ẋ1, (3)

where JW1+
1 ∈ R

n×m1 is the weighted pseudo-inverse of J1.
By utilizing the weighted pseudo-inverse solution in

(3), a solution that executes multiple tasks with differ-
ently weighted joint solution for each task priority can be
computed. Considering the secondary task ẋ2 with the corre-
sponding weighting matrix W2, the total solution q̇∗

2 for two
prioritized tasks would be

q̇∗
2 = q̇∗

1 + ˙̃q∗
2 , (4)

where ˙̃q∗
2 denotes the contribution to the secondary taskwith-

out modifying the first task. This can be obtained by solving
the following optimization problem as

min˙̃q2
1

2
˙̃qT2 W2 ˙̃q2,

s. t. J1 ˙̃q2 = ẋ1 − J1q̇
∗
1 = 0,

J2 ˙̃q2 = ẋ2 − J2q̇
∗
1 ,

(5)

The solution for (5) is calculated as

˙̃q∗
2 = (J2N

W2
1 )W2+(ẋ2 − J2q̇

∗
1 ). (6)

where NW2
1 = I − W−1

2 J T1 (J1W
−1
2 J T1 )−1 J1 ∈ R

n×n is the
projector onto the null-space of J1 weighted byW2. Note that
the projector NW2

1 is idempotent, but not symmetric.
Thus, it is straightforward to obtain a general solution for

p prioritized tasks:

q̇∗
p =

p∑

k=1

(Jk N
Wk
k−1)

Wk+(ẋk − Jkq̇
∗
k−1), (7)

where NW1
0 = I , q̇∗

0 = 0, and NWk
k−1 is the projector

onto the null-space of the augmented Jacobian J k−1 =
[
J T1 , J T2 , . . . , J Tk−1

]T ∈ R

∑k−1
i=1 mi×n weighted by Wk . At

this point, all tasks are assumed to be full rank. The projector
NWk
k−1 can be computed in two ways as

NWk
k−1 = NWk[1] N

Wk[2] · · · NWk[k−1] =
k−1∏

j=1

NWk[ j] , (8a)

NWk
k−1 = I − JWk+

k−1 J k−1, (8b)

where NWk[ j] = I − (J j
∏ j−1

i=0 NWk[i] )Wk+(J j
∏ j−1

i=0 NWk[i] ),

NWk[0] = I , and NWk[1] = I − W−1
k J T1 (J1W

−1
k J T1 )−1 J1.

2.2 Problem statement

When computing the null-space projection matrix in (8), the
matrix is asymmetric and its size remains constant. Owing
to these properties, the computational cost increases expo-
nentially when propagating to multiple tasks. To improve
computational efficiency, [5] proposed a scheme to acceler-
ate the computation by decomposing a symmetric null-space
projection matrix. Therefore, our goal is to efficiently com-
pute weighted least-squares norm solution by transforming
the asymmetric null-space projectionmatrix in (8) into a sym-
metric matrix. Furthermore, we extend the pseudo-inverse
with weighted least-squares norm for each task priority of
Sect. 2.1 to deal with inequality as well as equality tasks.

3 WHQPwith equality tasks

This section formulates the WHQP that minimizes the vio-
lation of the equality task in a weighted least-squares norm
manner. When formulating the WHQP, Jacobian matrix and
joint velocity are transformed into a weighted Jacobian
matrix and joint velocity. This makes the null-space projec-
tion matrix symmetric, which enables the proposed solution
to be computed more efficiently than the traditional method
using weighted pseudo-inverse.

For the first task ẋ1, the weighted Jacobian matrix J1,W1

and weighted joint velocity q̇W1 are defined as

J1,W1 = J1W
− 1

2
1 ,

q̇W1 = W
1
2
1 q̇.

(9)

Then, the WHQP is formulated as

min
q̇W1 ,s1

1

2
‖s1‖22,

s. t. J1,W1 q̇W1 = ẋ1 + s1,

(10)

123



478 Intelligent Service Robotics (2022) 15:475–486

where s1 ∈ R
m1 is the slack variable that alleviates the task

ẋ1. Note that the variable to optimize is not q̇ , but q̇W1 .
To solve this problem, the Lagrangian L1 is computed as

L1 = 1

2
sT1 s1 + λT

1 (J1,W1 q̇W1 − ẋ1 − s1), (11)

where λ1 ∈ R
m1 is the Lagrange multiplier. From the first-

order optimality conditions, the Lagrangian differentiated by
λ1, s1, and q̇W1 should be zero:

∂L1

∂λ1
= J1,W1 q̇W1 − ẋ1 − s1 = 0,

∂L1

∂s1
= s1 − λ1 = 0,

∂L1

∂q̇W1

= J T1,W1
λ1 = 0.

(12)

To obtain theweighted solution q̇∗
W1

, the pseudo-inverse of
the weighted Jacobian matrix J1,W1 is computed using COD
[6,9] which is cheaper than computing the singular value
decomposition as

J1,W1 = [
V1,W1 U1,W1

] [
0 0

L1,W1 0

] [
Y1,W1 Z1,W1

]T

= U1,W1L1,W1Y
T
1,W1

,

(13)

where U1,W1 ∈ R
m1×r1 and V1,W1 ∈ R

m1×(m1−r1) are the
orthonormal bases for the column space of J1,W1 . r1 is the
rank of J1,W1 . Y1,W1 ∈ R

n×r1 and Z1,W1 ∈ R
n×(n−r1) are

the orthonormal bases for the row space of J1,W1 . L1,W1 ∈
R
r1×r1 is a lower triangular matrix. With this decomposition,

the weighted solution and slack variable satisfying (12) are
obtained as

q̇∗
W1

= J+
1,W1

ẋ1 = Y1,W1L
−1
1,W1

UT
1,W1

ẋ1, (14)

s∗
1 = U1,W1U

T
1,W1

ẋ1 − ẋ1 = −V1,W1V
T
1,W1

ẋ1, (15)

where J+
1,W1

denotes the pseudo-inverse of J1,W1 . Based on
(13) and (15), the last optimality condition of (12) is satis-
fied. In the end, the complete solution q̇∗

1 for the first task is
obtained by transforming the weighted solution to the origi-
nal joint space as

q̇∗
1 = W

− 1
2

1 q̇∗
W1

. (16)

Similarly, the WHQP for the secondary task ẋ2 is formu-
lated as

min
q̇W2 ,s2

1

2
‖s2‖22.

s. t. J1,W2 q̇W2 = 0,

J2,W2 q̇W2 = ẋ2 − J2q̇
∗
1 + s2.

(17)

Similar to (6), theweighted solution q̇∗
W2

lies in the null-space
of J1,W2 and at the same time executes the residual task after
subtracting the effect of q̇∗

1 on the secondary task space. It is
obtained as

q̇∗
W2

= (J2,W2N1,W2)
+(ẋ2 − J2q̇

∗
1 ), (18)

where N1,W2 = I − J+
1,W2

J1,W2 is the null-space projection
matrix of J1,W2 .

Unlike (6), N1,W2 is both idempotent and symmetric.
Thus, N1,W2 can be represented as

N1,W2 = Z1,W2 Z
T
1,W2

, (19)

where Z1,W2 ∈ R
n×(n−r1) is the null-space bases of J1,W2

and obtained by decomposing J1,W2 . Then, the solution in
(18) can be represented in a more efficient form [5] as

q̇∗
W2

= Z1,W2(J2,W2 Z1,W2)
+(ẋ2 − J2q̇

∗
1 )

=Y2,W2L
−1
2,W2

UT
2,W2

(ẋ2 − J2q̇
∗
1 ),

(20)

where Y2,W2 = Z1,W2 Ỹ2,W2 ∈ R
n×r2 . Ỹ2,W2 ∈ R

(n−r1)×r2 ,
L2,W2 ∈ R

r2×r2 , and U2,W2 ∈ R
m2×r2 are obtained by

decomposing J2,W2 Z1,W2 ∈ R
m2×(n−r1) as

J2,W2 Z1,W2 =[
V2,W2 U2,W2

][ 0 0
L2,W2 0

][
Ỹ2,W2 Z̃2,W2

]T
. (21)

Using (20), the optimal slack variable s∗
2 is computed as

s∗
2 = J2,W2 q̇

∗
W2

− ẋ2 + J2q̇
∗
1 ,

= U2,W2U
T
2,W2

(ẋ2 − J2q̇
∗
1 ) − ẋ2 + J2q̇

∗
1

= V2,W2V
T
2,W2

(J2q̇
∗
1 − ẋ2).

(22)

Therefore, the total solution for two prioritized tasks ẋ1, ẋ2
is

q̇∗
2 = W

− 1
2

1 q̇∗
W1

+ W
− 1

2
2 q̇∗

W2
. (23)

More generally, WHQP for the kth task ẋk is formulated
as

min
q̇Wk ,sk

1

2
‖sk‖22.

s. t. Jk,Wk q̇Wk = ẋk − Jkq̇
∗
k−1 + sk

J k−1,Wk
q̇Wk = 0

(24)

where J k−1,Wk
=

[
J T1,Wk

, J T2,Wk
, · · · , J Tk−1,Wk

]T
is the aug-

mented Jacobian matrix weighted by W
− 1

2
k .
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To solve (24), the Lagrangian Lk is constructed as

Lk = 1

2
sTk sk + λT

k (Jk,Wk q̇Wk − ẋk + Jkq̇
∗
k−1 − sk)

+ λT
k−1(J k−1,Wk

q̇Wk ).

(25)

Then, the optimality conditions for the kth task are directly
obtained as

∂Lk

∂λk
= Jk,Wk q̇Wk − ẋk + Jkq̇

∗
k−1 − sk = 0,

∂Lk

∂λk−1
= J k−1,Wk

q̇Wk = 0,

∂Lk

∂sk
= sk − λk = 0,

∂Lk

∂q̇Wk

= J Tk,Wk
λk + J Tk−1,Wk

λk−1 = 0.

(26)

To calculate the solution, the Jacobian matrices Jk,Wk ,
J k−1,Wk

are decomposed as in [6]:

Jk,Wk=
[
Vk,Wk Uk,Wk

][Nk,Wk 0
Mk,Wk Lk,Wk

][
Y k−1,Wk

Yk,Wk

]T

=Ek,Wk Hk,WkY
T
k,Wk

,

(27)

where

Nk,Wk = V T
k,Wk

Jk,WkY k−1,Wk
∈ R

(mk−rk )×∑k−1
i=1 ri ,

Mk,Wk = UT
k,Wk

Jk,WkY k−1,Wk
∈ R

rk×∑k−1
i=1 ri ,

Y k−1,Wk
= [

Y1,Wk , · · · ,Yk−1,Wk

] ∈ R
n×∑k−1

i=1 ri ,

Yk,Wk = Zk−1,Wk Ỹk,Wk ∈ R
n×rk .

(28)

Vk,Wk , Uk,Wk , Lk,Wk , and Ỹk,Wk are obtained from decom-
posing Jk,Wk Zk−1,Wk . The basis Y k−1,Wk

is obtained by
recursively decomposing k − 1 times from J1,Wk to Jk−1,Wk .
Using the representation of (27), the stacked matrix J k−1,Wk

is described as

J k−1,Wk
=

⎡

⎢⎣
E1,Wk · · · 0

...
. . .

...

0 · · · Ek−1,Wk

⎤

⎥⎦

⎡

⎢⎢⎢⎣

H1,Wk 0
...

...

Nk−1,Wk 0
Mk−1,Wk Lk−1,Wk

⎤

⎥⎥⎥⎦

⎡

⎢⎣
Y T
1,Wk
...

Y T
k−1,Wk

⎤

⎥⎦

= Ek−1,Wk
Hk−1,Wk

Y T
k−1,Wk

. (29)

Then, the weighted solution q̇∗
Wk

satisfying (26) is com-
puted as

q̇∗
Wk

= Yk,Wk L
−1
k,Wk

UT
k,Wk

(ẋk − Jkq̇
∗
k−1). (30)

Next, the optimal slack variable s∗
k is obtained as

s∗
k = Vk,Wk V

T
k,Wk

(Jkq̇
∗
k−1 − ẋk). (31)

The Lagrange multipliers, λ∗
k and λ∗

k−1, satisfying (26) are
directly computed as

λ∗
k = s∗

k , (32)

λ∗
k−1 = −J ‡Tk−1,Wk

J Tk,Wk
s∗
k , (33)

where J ‡k−1,Wk
is the pseudo-inverse matrix of J k−1,Wk

which fulfillsMoore-Penrose conditions except that J k−1,Wk

J ‡k−1,Wk
is symmetric. Each component of the Lagrangemul-

tipliers λ∗
k−1 can be obtained recursively in a descending

order as follows:

λ∗
k−1=

[
λ∗
k−2

λ∗
k−1

]
=

[
−J ‡Tk−2,Wk

(J Tk,Wk
s∗
k + J Tk−1,Wk

λ∗
k−1)

−Uk−1,Wk L
−T
k−1,Wk

Y T
k−1,Wk

J Tk,Wk
s∗
k

]
(34)

The obtained Lagrangemultipliers are used as an indicator to
determinewhich task to be deactivated depending onwhether
they are negative or not in the following section.

Finally, the total solution for k prioritized tasks is

q̇∗
k = q̇∗

k−1 + W
− 1

2
k q̇∗

Wk

= q̇∗
k−1 + W

− 1
2

k Yk,Wk L
−1
k,Wk

UT
k,Wk

(ẋk − Jkq̇
∗
k−1).

(35)

Additionally, the solution can be computed in a recursive
form as follows:

q̇∗
k = J ‡k,Wk

ẋk, (36)

where

J ‡k,Wk
=

[
(I − W

− 1
2

k Yk,Wk L
−1
k,Wk

UT
k,Wk

Jk) J
‡
k−1,Wk−1

,

W
− 1

2
k Yk,Wk L

−1
k,Wk

UT
k,Wk

]

ẋ k = [
ẋ Tk−1, ẋ

T
k

]T
.

(37)

Since the solution minimizing weighted least-squares
norm is the generalized solution to cover Euclidean least-
squares norm solution, the formulas (36) and (37) can be
utilized to compute the solution of the HQP if the weighting
matrix is set to the identity matrix.

4 WHQPwith inequality tasks

To obtain the optimal solution for p inequality tasks, the
WHQP for the kth inequality task is formulated by rewriting
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Algorithm 1 WHQP
Input: W0 : an initial working set
Output: q̇∗ : an optimal solution
1: W = W0, iter = 1, q̇ = 0
2: while iter ≤ p − 1 do

// Compute the optimal solution in (36)
3: q̇∗ = WHQP_equality(J ‡p,Wp

, ẋ p,W)

// Compute the step length in (40)
4: α, k, r = ComputeStepLength(J p, ẋ p, q̇

∗, q̇)

5: q̇ := q̇ + α(q̇∗ − q̇)

// Update the working set
6: if α < 1 then
7: W ⋃

(Jk [r ], ẋk [r ])
8: continue
9: else

// Check Lagrange multipliers
10: for i = iter to p do
11: λ∗

i−1, s
∗
i = ComputeLambda(i)

12: μ, k, r = min (λ∗
i−1, s

∗
i )

13: if μ < 0 then
14: W \ (Jk [r ], ẋk [r ])
15: break
16: end if
17: iter = i
18: end for
19: end if
20: end while

return q̇∗ := q̇

(24) as

min
q̇Wk ,sk

1

2
‖sk‖22,

s. t. Jk,Wk q̇Wk ≤ ẋk − Jkq̇
∗
k−1 + sk,

J k−1,Wk
q̇Wk ≤ ẋ k−1 − J k−1q̇

∗
k−1.

(38)

The optimality conditions for (38) are additionally consid-
ered in (26) as follows:

λT
k (Jk,Wk q̇Wk − ẋk + Jkq̇

∗
k−1 − sk) = 0,

λT
k−1(J k−1,Wk

q̇Wk − ẋ k−1 + J k−1q̇
∗
k−1) = 0,

λk ≥ 0,

λk−1 ≥ 0.

(39)

The conditions of (39) denote complementary conditions that
if an inequality task becomes active, that is, it becomes an
equality task, its corresponding Lagrange multiplier must be
greater than or equal to zero.

Based on the above conditions, the active-set method [16]
is adopted. The active-set method iterates a loop until the
optimal solution and optimal working set are determined.
The working set denotes a set of equality tasks. The opti-
mal solution indicates that it does not activate or violate any
other task except the working set. The optimal working set
indicates that the corresponding Lagrangian multipliers are
non-negative.

The detailed procedure is described in Algorithm 1. At
first, the algorithm estimates an initial working set W0 for
warm-start. Typically, W0 contains only equality tasks if
there is no initial guess for the inequality tasks. Given the
working setW ,WHQP_equality computes the optimal solu-
tion by using (36) (see Line 3).

Then, ComputeStepLength finds a step length α in order
for the current solution to step toward the optimal solution
without violating the tasks as (see Line 4)

α = min(1,min
k,r

(αk,r )), (40)

where

αk,r =
{

ẋk [r ]−Jk [r ]q̇( j)

Jk [r ](q̇∗( j)−q̇( j))
i f Jk[r ]q̇( j) ≤ ẋk[r ]

1, otherwise.
(41)

In (40) and (41), k and r denote the indices of the task priority
and row of the Jacobian matrix and task vector, respectively.
In addition, q̇∗( j) and q̇( j) represent the optimal solution and
current solution at iteration j , respectively. Calculation of
(41) is performed for each rowof J p that is not in theworking
setW .

Starting at the current solution q̇( j), the solution that is
translated toward the optimal solution q̇∗( j) with a step length
α is calculated as follows (see Line 5):

q̇( j+1) = q̇( j) + α(q̇∗( j) − q̇( j)) (42)

If the step length is less than 1, the corresponding row of
the Jacobian matrix, Jk[r ] and component of the task vector,
ẋk[r ], are added to theworking set, and a new iteration begins
with the new working set (see Line 6–8).

Once the obtained step length is equal to 1, which indi-
cates that the optimal solution does not activate the remaining
inequality tasks, ComputeLambda computes the Lagrangian
multipliers using (32) and (33) (see Line 11). Next, to ensure
that the optimality conditions of (39) are satisfied, it is
checked whether or not the minimum Lagrangian multi-
plier is negative (see Line 12–13). If there exist negative
Lagrangian multipliers, the corresponding row of the Jaco-
bian matrix and component of the task vector are removed
from the working set, and the next iteration begins (see Line
14–15).

5 Experimental results

The WHQP was validated through various experiments
using the differentially-driven mobile base with the 7-DoFs
manipulator [13] and the humanoid, DYROS-JET [23], with
28-DoFs. The source code is available at http://github.com/
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ggory15/weightedhqp.Additionally, video clips of the exper-
imental results are available in the supplementary material.

5.1 Simulation experiment with nonholonomic
mobile manipulator

To maximize the dexterity and mobility of the mobile
manipulator, the controller should provide different motion
patterns depending on the locomotion, manipulation, and
loco-manipulation phases. In particular, because the mobile
manipulator comprises two independent systems (mobile
base and manipulator), assigning dominant subsystem for
each task priority is effective.

5.1.1 Scenario description

To validate this, we designed the following scenario with an
11-DoFs nonholonomic mobile manipulator on simulator,
CoppeliaSim. The scenario has two phases and each phase is
performed for 5 sec. In the first phase, themobilemanipulator
reaches the target point above a laptop by tracking the desired
trajectory of the end-effector. Then, the robot begins to keep
the end-effector focused on the moving target point above
the laptop while avoiding an obstacle in the second phase.

5.1.2 Task and weighting matrix description

During the first phase, the robot has a single task of tracking
the end-effector position trajectory as

J1q̇ = ẋ1 (43)

where J1 ∈ R
3×11 is the whole-body translational Jacobian

of the end-effector [13] and ẋ1 ∈ R
3 is the desired linear

velocity of the end-effector.
In the second phase, the robot executes three prioritized

tasks. As the highest priority task, an 11-DoFs joint limit
avoidance task [22] is assigned as

ẋ1 ≤ J1q̇ ≤ ẋ1,

J1 = I11,

ẋ1 = ε
q − q

�t
and ẋ1 = ε

q − q

�t
.

(44)

I11 ∈ R
11×11 denotes an identitymatrix and ẋ1 and ẋ1 ∈ R

11

are the lower and upper bound velocity, respectively. q and

q ∈ R
11 are the lower and upper limit of joint position. q ∈

R
11 is the current joint position, ε is the tuning parameter and

�t is the control loop period. Then, the obstacle avoidance
is formed as an 1-DoF inequality task [7] with the second

priority as

J2q̇ ≤ ẋ2,

J2 = nT Jobs,

ẋ2 = ε
d − dthre

�t
,

(45)

where n ∈ R
3 is the direction vector from the closest point

on the robot to the obstacle and Jobs ∈ R
3×11 is the Jacobian

matrix of the closest point. d is the distance between the
robot and obstacle and dthre denotes the threshold distance.
Finally, the lowest priority task is designed as the 3-DoFs
gaze task [11] which aligns the target point with the line of
sight from the end-effector. The gaze task is defined as

J3q̇ = ẋ3,

J3 = pee,t × (pee,l × Jw) − pee,l × Jv,

ẋ3 = −λ(pee,l × pee,t ),

(46)

where pee,l = pl − pee and pee,t = pt − pee. pl ∈ R
3 is the

position of arbitrary point on the line of sight, pee ∈ R
3 is

the position of the end-effector, pt ∈ R
3 is the position of the

target point, Jw ∈ R
3×11 is the rotational Jacobian matrix,

Jv ∈ R
3×11 is the translational Jacobian matrix, and λ is gain

constant.
For analyzing the effectiveness of the WHQP, the combi-

nations of the weighting matrices of the three comparative
cases are presented in Fig. 2. For Phase 1, to check the con-
tribution of the mobile base to the tracking task depending
on the weighting matrix, the weighting matrix is set from
the identity matrix (Case 1) to the mobile-dominant matrix
(Case 3). In the case of Phase 2, to demonstrate the effec-
tiveness of the individual weighting matrix, the weighting
matrix of Case 1 is designed as the manipulator-dominant
matrix for all tasks (one weighting matrix for all prioritized
tasks). Case 2 assigns the identity matrix for all tasks (equiv-
alent to pseudo-inverse method [6]). Case 3 uses individual
weighting matrices for each task priority.

5.1.3 Results

Figure 2 illustrates the snapshots of the simulation results
and the ratio of the joint velocity norm between the mobile
base, q̇b ∈ R

4, and manipulator, q̇m ∈ R
7, over time. The

ratio is calculated as
‖q̇b‖22
‖q̇‖22

and
‖q̇m‖22
‖q̇‖22

, where q̇ = [
q̇Tb , q̇Tm

]T
.

In Phase 1ofCase 1, themobilemanipulator began to track
the trajectory only by using the manipulator and used both
the mobile robot and manipulator together after the arm was
stretched around 1.5 sec, which comes into the singular con-
figuration. In practice, this phenomenon occurs frequently
due to the difference in dynamics and performance between
the mobile base and the manipulator [10,27]. However, since
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Fig. 2 Experimental results with a nonholonomic mobile manipulator
in simulation. A scenario composed of two phases is designed: The first
phase is for the robot to approach a laptop. Then, the robot begins to
inspect the laptop while avoiding the obstacle during the second phase.
Snapshots and motion ratio of the mobile and manipulator are depicted
for different combinations of the weighting matrices. For Phase 1, the

resultant postures are different as the weighting matrix changes from
the the identity matrix (Case 1) to the mobile-dominant matrix (Case
3). For Phase 2, compared to the same weighting matrix (Case 1) and
identity matrix (Case 2), the robot succeeded to execute the task without
reaching the posture of singularity or joint limit by assigning individual
weighting matrix (Case 3)

the robot tracked the trajectory with the mobile base moving
relatively more than the manipulator in Case 2 and only the
mobile base moving in Case 3, the robot did not reach the
singular posture.

After the end of Phase 1, the robot began to align the line
from the end-effector with the blue ball over the laptop with
the desired trajectory of the target point while avoiding the
obstacle around 6 sec. InCase 1, the resultant posture reached
the joint limit and singularity because all the tasks were exe-
cuted by the manipulator. In Case 2, the configuration of
the manipulator reached the joint limit and singularity even
though the mobile robot helped to avoid the obstacle. This
implies that the weighting matrices given in Case 2 did not

properly distribute the movement between the mobile base
and manipulator. In contrast, the gaze task was executed by
the manipulator and the obstacle was avoided by the mobile
robot in Case 3. Since the whole-body motion was prop-
erly distributed by assigning individual weighting matrices
for each task priority, the robot could execute the tasks suc-
cessfully without additional consideration of the necessary
constraints.

Therefore, setting individually proper weighting matrices
for given tasks is very effective for performing various and
complex scenarios for the redundant robot.
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Phase 1 Phase 2 Phase 3

Fig. 3 Experimental results with a nonholonomic mobile manipulator
in delivery scenario. Themobilemanipulator tracks the end-effector tra-
jectory by using the whole-body, but generates various motion patterns
by changing the weighting matrix over time. During Phase 1, the robot

dominantly used the mobile robot to reach the target position. Then, the
robot only exploited the manipulator to approach and pick up the box.
For the last phase, the robot stacked the box on the other boxes by using
the whole-body coordinately

5.2 Real experiment with nonholonomic mobile
manipulator

5.2.1 Scenario description

In this section, a typical delivery scenario consisting of loco-
motion, manipulation, and loco-manipulation phases was
designed with a real robot. The scenario has three phases.
The first phase is for the robot to execute locomotion task
for 15 s. The second phase is to perform manipulation task
of picking up a box from 15 to 42s. In the last phase of loco-
manipulation, the robot delivers the box in front of the door
from 42 to 50s.

5.2.2 Task and weighting matrix description

Each phase includes the same task hierarchies: a joint limit
avoidance task (the first priority) and tracking task for the
trajectory of the end-effector (the second priority). The joint
limit avoidance task (J1 ∈ R

11×11 and [ẋ1, ẋ1] ∈ R
11) is

same as (44). The second priority task is to track the desired
trajectory of the end-effector as

J2q̇ = ẋ2,

J2 =
[
Jv
Jw

]
and ẋ3 =

[
ṗee,d
δ�

]
,

(47)

where J2 ∈ R
6×11 is the whole-body Jacobian of the end-

effector, ṗee,d ∈ R
3 is the desired linear velocity of the end-

effector, and δ� ∈ R
3 is the orientation error.

To generate various types of motion patterns, different
weights are assigned to the tracking task (J2, ẋ2) for each
phase:

W2 =
[
0.001I4 0

0 I7

]
→

[
I4 0
0 0.001I7

]
→

[
I4 0
0 I7

]
(48)

In the first phase, the weighting matrix is set such that the
trajectory is dominantly tracked by the mobile robot. Then,

the robot mainly exploits the manipulator to track the trajec-
tory in the second phase. In the last phase, the weights are
equally distributed to the manipulator and mobile base.

5.2.3 Results

As depicted in Fig. 3, from 0 to 15s, the robot tracked
the desired locomotion trajectory through mobile dominant
behavior1. Then, our WHQP-based controller generated the
motions of the manipulator to accurately pick up a box dur-
ing the manipulation phase. Finally, the robot succeeded in
placing a box on the stacked boxes using whole-body motion
from 42 to 50s.

5.3 Real experiment with humanoid

5.3.1 Scenario description

Similar to Sects. 5.1 and 5.2, we validated the performance
of the WHQP by implementing the inverse kinematics con-
troller for a humanoid. A box-taping scenario was designed
by using the 16-DoFs upper body of the humanoid for 15 s.

5.3.2 Task and weighting matrix description

The humanoid executes two prioritized tasks. The first task
is to maintain the initial position of the left hand as

J1q̇ = ẋ1,

J1 = [
Jle f t , 06×7, Jwaist

]
and ẋ1 =

[
ṗle f t,d
δ�le f t

]
,

(49)

1 Although we set a weighting matrix for the movement of the mobile
robot alone during the locomotion phase, the manipulator moved
slightly. This is due to the low tracking performance of a mobile robot
caused by the difference in control frequency between a mobile robot
(10Hz) and manipulator (1000 Hz).

123



484 Intelligent Service Robotics (2022) 15:475–486

Fig. 4 Experimental results with a humanoid in box-taping scenario.
The upper-body of the humanoid executes two prioritized tasks: Initial
position of the left hand is maintained as the top priority. The relative
motion between the right and left hand is generated as the lower priority.

Since the two tasks share the joints of the waist and left arm, the weight-
ing matrices are designed in order to execute the tasks effectively: The
first task only uses the left arm without waist and the second task only
exploits the waist and right arm without the left arm

where J1 ∈ R
6×16 is the Jacobian matrix for the left hand,

Jle f t ∈ R
6×7 is the Jacobian matrix from the left shoulder to

the left hand, and Jwaist ∈ R
6×2 is the Jacobian matrix for

the waist roll and yaw joint. ṗle f t,d ∈ R
3 and δ�le f t ∈ R

3

are the desired linear velocity and orientation error for the
left hand, respectively. Then, the relative motion task [18]
between the right and left hand is assigned as the second
priority:

J2q̇ = ẋ2,

J2 = [−Jle f t , Jright , Jwaist
]

and ẋ1 =
[
ṗrel,d
δ�rel

]
,

(50)

where J2 ∈ R
6×16 is the Jacobian matrix for the relative

motion, Jright ∈ R
6×7 is the Jacobian matrix from the right

shoulder to the right hand. ṗrel,d ∈ R
3 and δ�rel ∈ R

3 are
the desired relative linear velocity and relative orientation
error, respectively.

Since the joints for executing two prioritized tasks share
waist and left arm joints, individual weighting matrices are
assigned for each task, as follows:

W1 =
⎡

⎣
0.01I7

I7
I2

⎤

⎦ and W2 =
⎡

⎣
I7

0.01I7
0.01I2

⎤

⎦ (51)

The weighting matrix is set such that the left arm is predom-
inantly used for the first priority task (W1) and the waist and
right arm are predominantly used for the relative motion task
of the second priority (W2).

5.3.3 Results

Figure 4 depicts the snapshots of box-taping scenarios and
a motion ratio for the left-arm, right-arm, and waist. Thanks

to the WHQP formulation with weighting matrices, the
humanoid robot achieved dexterous manipulation through
whole-body behavior. Consequently, the WHQP for a non-
holonomic mobile manipulator and a humanoid presented
in Sects. 5.1 and 5.2, respectively, can deal with complex
real-world scenarios without any additional constraints or
planners.

6 Discussions and implementation details

6.1 Computation cost

To validate the computational efficiency of the WHQP, the
computation time for the equality tasks was compared with
those of the two methods in Sect. 2.1: weighted pseudo-
inverse (7) with (8a) and (7) with (8b). The total number
of DoFs was set to 30, and the number of task hierarchies
p ranged from 1 to 10. Also, the task dimension mk was
uniformly distributed depending on the number of task hier-
archies,

∑p
k=1mk ≈ 30. We randomly generated Jacobian

matrices with full rank and task vectors and performed 500
calculations for each number of task priorities. Finally, an
Intel Core i7 with a 16 GB RAM computer was used.

As shown in Fig. 5, the WHQP exhibits a low computa-
tion time evenwhen the number of task hierarchies increases.
This is because the null-space projection matrix is decom-
posed into the product of the orthogonal bases. Thus, the size
of the inverse matrix is reduced when recursively propagat-
ing to compute the solution of a low priority task. In contrast,
the other two approaches have a higher computation time
than that of the WHQP because the null-space projection
matrix of the weighted pseudo-inverse is inherently asym-
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Fig. 5 Computation time for the equality tasks with respect to the
number of task hierarchies. Total DoFs were assumed as 30 and task
dimension for each task hierarchy was uniformly distributed. The pro-
posed WHQP maintains lower computation time than other weighting
pseudo-inverse methods (7) with (8a) and (8b). Additionally, compu-
tation time by the HQP is plotted for fair comparison. By assigning
weighting matrix, the WHQP has higher computation cost than the
HQP

metric. Therefore, the size of the inverse matrix cannot be
reduced.

On the other hand, the proposed WHQP has inherently
higher computation cost than the HQP as shown in Fig. 5.
When computing the total solution for k-th task in (35),
the operation of the COD is performed k(k + 1)/2 times,
whereas the HQP performs k operations of the COD. This is
because the null-space matrix Zk−1,Wk is obtained by recur-
sively decomposing from J1,Wk to Jk−1,Wk .

6.2 Composite weightingmatrix in same hierarchy

Since our formulation handles one weighting matrix at each
level, a composite weighting matrix is required if there are
two or more tasks at the same task level. In practice, we
present a simple construction method using a linear combi-
nation [4].

W = a1W1 + a2W2 + · · · + anWn, (52)

where
∑n

i=1 ai = 1 and 0 ≤ ai ≤ 1. The magnitude of ai
indicates which weighting matrix is more dominant at the
same level.

6.3 Nullity ofWHQP

If the remaining nullity of the WHQP is 0,2 the result of the
WHQP becomes the same as that of the original HQP solver.

2 This implies
∑p

i=1 ri = n when the number of DoFs of the robot is
n.

It is evident that a weighted Euclidean norm is equivalent to
a normal Euclidean norm when the matrix is not redundant
[20]. Therefore, to enhance the effectiveness of the weight-
ing matrices of tasks in the WHQP, it is recommended to
configure a set of the tasks where the nullity of the controller
exists.

7 Conclusions

Whole-body controllers with hierarchical optimization have
great advantages in controlling redundant robots, including
mobile manipulators and humanoids. However, the motion
generated by these controllers is often undesirable, without
additional constraints. In this study, a novel weighted hierar-
chical quadratic programmingmethod to assign jointweights
for each task priority is proposed. The proposed method can
be summarized as follows. First, because our algorithm treats
a weighting matrix for each task, it can generate various
whole-body behaviors depending on the scenarios, in com-
parison with previous studies. Next, our algorithm using the
active-set method can efficiently handle inequality tasks as
well as equality tasks. Finally, we demonstrated the effective-
ness of the proposed controller through several experiments
with a real mobile manipulator and humanoid. With these
excellent results, we expect that our method can be applied to
other highly redundant systems, such as aerial manipulators.
Our future work will involve the extension of the proposed
framework for automatically generating suitable weighing
matrices for each task.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11370-022-00431-
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