
Intelligent Service Robotics (2022) 15:129–141
https://doi.org/10.1007/s11370-021-00406-2

ORIG INAL RESEARCH PAPER

A tightly coupled monocular visual lidar odometry with loop closure

Lingbo Meng1 · Chao Ye1 ·Weiyang Lin1

Received: 12 May 2021 / Accepted: 30 November 2021 / Published online: 5 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Simultaneous localization andmapping (SLAM) is a fundamental requirement for mobile robots like self-driving cars. Vision-
based methods have advantages in sensor cost and loop closure detection, but are sensitive to illumination change and texture
deficiency. Lidar-based SLAM systems perform better in accuracy, field-of-view and robustness to environmental changes,
but may easily fail in structure-less scenarios. To compensate for the deficiencies of standalone sensors and provide more
efficient SLAM functions, in this paper we propose a tightly coupled monocular visual lidar odometry, which tightly fuses
the measurements of a monocular camera and a 3D lidar in a joint optimization. The system starts with a data preprocessing
module, which outputs 3D visual and laser features through feature extraction and data association. Furthermore, the tightly
coupled visual lidar odometry tightly fuses the visual and laser features in a unified optimization framework to estimate
the transformation between consecutive scans. Finally, we combine visual and vicinity loop detection to construct loop
constraints and optimize a 6-DOF global pose graph to achieve global-consistent pose estimation and environment mapping.
The performance of our system is verified in the public KITTI dataset, and the experimental results demonstrate that the
proposed method can run in real time with the 64-line lidar data and achieve better in accuracy, runtime and mapping against
other state-of-the-art lidar-based and fusion-based methods.

Keywords Pose estimation · Simultaneous localization and mapping (SLAM) · Loop closure · Tightly coupled · Visual lidar
odometry

1 Introduction

With the popularization of intelligent mobile robots like
self-driving cars and unmanned aerial vehicles, the need of
providing a high-accuracy and lightweight SLAM system
for these platforms has been rising. Though many efforts
have been devoted to improve the performance of SLAM
over the past few decades, there are still some challenges in
integratingmulti-modality sensors for better localization and
mapping performance.

Thanks to its small size, low cost and easy-to-use
hardware, monocular cameras have long been popular
with SLAM researchers and robot manufacturers. However,
monocular cameras cannot recover the metric scale of envi-

B Weiyang Lin
wylin@hit.edu.cn

Lingbo Meng
lingbo_meng@outlook.com

Chao Ye
yechao@hit.edu.cn

1 Harbin Institute of Technology, Harbin, China

ronment, and thus the pose estimation and mapping results
of pure monocular SLAM systems have no definite scale
information, which limits the further application of this kind
of sensor in real-world applications. To remedy that, stere-
ocameras estimate the depth of each pixel in the image
by calculating the parallax between two cameras, and then
recover the environmental information with accurate scale.
However, stereocameras also have shortcomings such as
complex calibration, limited depth range depending on the
baseline length, and large amount of parallax computation.

By transmitting and receiving laser beams, lidars can
obtain accurate structure information of the environment,
and thus perform well in computational complexity, sens-
ing distance, measurement accuracy and insensitivity to light
change. Nevertheless, a point cloud collected by a lidar is
usually very sparse in the vertical direction and does not
contain any color information, which makes it difficult to
provide enough information for place recognition and loop
detection. Therefore, most of the current lidar-based SLAM
frameworks [7,23,30] only have the odometry and mapping
part, and can hardly perform loop closure or achieve global

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-021-00406-2&domain=pdf
http://orcid.org/0000-0002-0660-9023
http://orcid.org/0000-0003-2263-8286
http://orcid.org/0000-0002-0493-1289

130 Intelligent Service Robotics (2022) 15:129–141

consistent mapping. Besides, lidar-based methods will also
suffer from the constraint degradation in structure-less sce-
narios such as tunnel and open plane areas, which finally lead
to failure of the whole system.

In the research of odometry methods based on fusion of
vision and laser, traditional loose-coupling-based methods,
such as [29], usually process visual and laser data separately
to obtain one low-precision but high-frequency visual odom-
etry and the other higher-precision but low-frequency laser
odometry, and then directly append the pose estimation of
visual odometry to the result of laser odometry. This kind
of fusion method is straightforward and shows good perfor-
mance in accuracy. However, since visual constraints and
laser constraints are constructed and optimized separately
in two odometries, the complementarity of visual and laser
constraints has not been fully utilized. In contrast, recent lit-
erature [21] of visual inertial odometry (VIO) reveals that
the tight coupling scheme which combines visual and IMU
measurement in a common optimization framework shows
great advantages in positioning accuracy compared with the
loose coupling scheme [17,19], where IMU integration is
treated merely as high-frequency state propagation for the
visual odometry part. Therefore, the tight coupling scheme
has a good prospect in the research of multi-sensor fusion
odometry.

To combine the best of vision and laser data, we present
a tightly coupled, optimization-based monocular visual lidar
odometry method, as shown in Fig. 1. Compared with other
fusion algorithms [24,26,29,31] , the main difference is that
our system tightly fuses the measurements of a monocular
camera and 3D lidar in a joint-optimization. The main con-
tributions of our work are as follows:

• A tightly coupled monocular visual lidar odometry algo-
rithm. By jointly optimizing the visual and lidar mea-
surements in a common optimization framework, we can
achieve state-of-the-art 6-DOF pose estimation in real
time.

• A Reliable data preprocessing method is proposed to
associate visual and lidar data, and provide depth esti-
mation for 2D visual features.

• Visual loop detection and vicinity loop detection are
combined in a separate thread, and loop constraints are
constructed through ICP registration.

• Loop and odometry constraints are added to the 6-DOF
global pose graph to achieve globally consistent pose esti-
mation and mapping.

The rest of this paper is organized as follows. In Sect. 2,
we discuss the related literature in this field. In Sect. 3, we
describe the preliminaries we made for this paper, and give
an overview of the whole system pipeline. The data prepro-
cessing method is introduced in Sect. 4. The proposed tightly

coupled visual lidar odometry method and loop closure mod-
ule are presented in Sects. 5 and 6, respectively. Experimental
evaluations of the proposed method are presented in Sect. 7
and conclusion is finally made in Sect. 8.

2 Related work

Both visual and laser SLAMmethods have their own advan-
tages and disadvantages. Vision-based methods, such as
ORB-SLAM2 [20], LSD-SLAM [8], DS-PTAM [6] and
LDSO [10] perform well in sensor cost and loop closure
detection, but they are sensitive to illumination change and
have a limited field-of-view (FOV).

In order to improve the robustness and accuracy of the
monocular visual SLAM system, it is a good approach to
introduce a low-cost IMU [14] to construct a visual iner-
tial odometry system, such as what [15,21,27] does. This
is because the integral measurements of IMU can provide
an absolute scale information for a monocular system, and
can improve the performance of motion tracking through
tight or loose coupling with visual constraints. Nevertheless,
the overall localization accuracy of the vision-based SLAM
methods is still lower than that of the lidar-based methods.

In addition, since most visual SLAM methods assume
that the environment is static, visual features on moving
objects will lead to a decrease in accuracy and robustness of
the entire visual localization system. To solve this problem,
learning-based methods [4,18], such as Bayesian framework
or convolutional neural networks (CNNs), can be utilized
to realize the detection and removal of dynamic regions in
the image, which shows a significant improvement compared
with the original SLAMmethod. Nevertheless, suchmethods
inevitably lead to a significant increase in computing time,
which are often prohibitive for mobile robot platforms.

Lidar-based SLAM systems have gained better popularity
for their high precision in range detection, a wide horizon-
tal FOV of 360 degrees and robustness to environmental
changes. These algorithms, can provide both state-of-the-
art pose estimation and elaborate 3D point cloud map of the
traversed environment. Nevertheless, pure lidar-based meth-
ods only extract structural features of the environment and
may easily fail in structure-less scenarios like tunnels and
hallways.

One of the most popular 3D lidar odometry method is
LOAM[30].TheLOAMdivides the intricateSLAMproblem
into two concurrent algorithms, the lidar odometry which
performs feature extraction and pose estimation at a high
frequency and the lidar mapping module that further uses
more extracted features formatching andmapping at a slower
frequency for higher precision. In thisway, it can achieveboth
low drift of motion estimation and acceptable runtime.

123

Intelligent Service Robotics (2022) 15:129–141 131

Fig. 1 Block diagram of the
proposed tightly coupled
monocular visual lidar odometry
with loop closure

Based on LOAM [30], Shan et al. proposed a lightweight
method, LeGO-LOAM [23], which is specially optimized
for the ground scene and lightweight enough for running
on an embedded-system like Jetson TX2. This algorithm
adopts point cloud segmentation to filter out the noise points
in the lidar point cloud, and divides the solution of 6-DOF
pose transformation into two sequential 3-DOF optimiza-
tion,whichmakes this algorithmcan run on low-performance
computers while maintaining the accuracy similar to LOAM.

Besides, different from the common scan-to-scan match-
ing method for pointcloud registration, Deschaud et al. pro-
posed a scan-to-model matching framework, IMLS-SLAM
[7]. This method uses the implicit moving least squares
(IMLS) surface model [5] to express several previous frame
of point clouds, and registers the current scan of point cloud
to the surface model rather than another scan for pose esti-
mation.

Although lidar-based SLAM methods generally perform
better than the vision-based method in positioning accuracy,
field-of-view and reliability, they can only make use of geo-
metric information of the point cloud to select structural
features, which may lead to degeneracy of constraints in
symmetrical scenarios, such as a symmetrical tunnel or an
open highway without enough vertical landmarks. In con-
trast, vision-based methods mainly utilize the visual feature
points, which is naturally complementary to the laser fea-
tures.

In order to exploit the benefits of different sensor modal-
ities, SLAM methods based on fusion of multiform sensors
have become popular.

For data fusion of vision and lidar, Zhang et al. extended
LOAM [30] to VLOAM [29] , which loosely couples a
monocular camera and a lidar, which starts with a visual
odometry for providing motion prior and utilizes a lidar
matching to further refine the motion estimation. In addition,
Zhang et al. further presented a multilayer laser-visual-
inertial odometry and mapping method [31], which is able to

handle sensor degradation by automatically bypassing failure
modules.

Besides, through incorporating a tightly coupled stereo
visual inertial odometry and a lidar mappingmodule, Shao et
al. proposed a stereo visual inertial lidar SLAMmethod [24]
that demonstrated improved accuracy compared to pure lidar-
based methods. Likewise, Wang et al. proposed a method
[26] to combine a tightly coupled monocular visual inertial
odometry and a lidar scan-matching module.

However, for all of thesemethods, the laser and vision data
are loosely coupled with each other and sensor fusion still
shows potential for further improvement with tight coupling,
which can make better use of the complementarity between
different sensors.

3 Preliminaries and system overview

3.1 Preliminaries

In this paper, we assume that the intrinsic parameters of the
monocular camera and the extrinsic parameters between it
and the lidar are calibrated. Time synchronization is carried
out between the camera and the lidar, where the timestamp of
an image corresponds exactly to themiddlemoment of a point
cloud, as shown in Fig. 2. Compared to the relatively long
receiving time of a point cloud, an image can be considered
to be captured instantaneously at a particular moment, so we
use the image timestamp as the unified timestamp of each
pair of laser and image data. In addition, we also assume that
the linear and angular velocities of the sensor platform are
relatively smooth in a short time period.

In our system, we define three coordinate systems—the
lidar coordinate system {L}, the camera coordinate system
{C} and the world coordinate system {W }. The first lidar
coordinate system after initialization is set as the world coor-
dinate system. Since the sensor platform moves constantly,
we denote the lidar coordinate system and the camera coor-

123

132 Intelligent Service Robotics (2022) 15:129–141

Fig. 2 Schematic diagram of time synchronization and coordinate
transformation between the lidar and the camera

dinate system at time ti as Li and Ci , respectively. The
transformation from coordinate system Lk+1 to Lk is rep-
resented as TLk

Lk+1
and a feature point in Lk is denoted as

XLk
i .

3.2 System overview

The structure of the proposed tightly coupled monocular
visual lidar odometry is shown in Fig. 1. The system receives
time-synchronized input from a 3D lidar and a monocular
camera, and output 6-DOF pose estimation together with a
3D point cloud map of its traversed environment.

The whole system is divided into three modules. Firstly,
in the data preprocessing module, 2D visual features are
extracted and tracked from the input image, and the raw
point cloud is segmented to acquire a labeled point cloud
where unreliable and unnecessary points are excluded. The
2D visual features and the labeled point cloud are further
associated in the data association submodule where the depth
is restored to acquire 3Dvisual features. The3D laser features
are extracted at the laser feature extraction submodule in the
meantime. Then, the tightly coupled visual lidar odometry
module tightly fuses 3D laser features and 3D visual features
to estimate transformation between consecutive scans at high
frequency and refine it further through a scan-to-map match-
ing. These two pose estimations at different frequencies
are further fused to acquire the high-frequency and high-
precision pose estimation. Finally, the loop closure module
takes in the odometry pose estimations and the input images
to detect vicinity or visual loop, uses ICPmethod to construct
loop constraints and performs global pose graph optimization
to eliminate the drift.

4 Data preprocessing

This section presents preprocessing steps for both visual and
lidar measurements. For visual measurements, we track fea-
tures between consecutive frames and extract new features

Fig. 3 The extraction and tracking of visual features. According to the
number of continuous tracking between two adjacent frames from less
to more, the color of each tracked visual feature point is represented
from green to red. The blue line connected to each feature point uses its
direction and magnitude to represent the velocity vector of that feature
point

in the latest frame. For lidar measurements, we segment the
raw input to acquire a labeled point cloud and extract 3D
laser features. Then, the labeled point cloud and the tracked
2D visual features are associated with each other to obtain
3D visual features with depth.

4.1 Visual feature tracking

For each new frame of image, we take advantage of the LK
sparse optical flow algorithm [16] to track existing visual
features from the previous frame to the current frame. At the
same time, new corner features are extracted using the Shi-
Tomasi method [25] from the current frame to maintain a
constant feature number (300). A minimal distance between
two neighboring visual features is set to keep a uniform fea-
ture distribution. Besides, we utilize the RANSAC method
and the fundamental matrix to reject potential outliers. We
also use the CLAHE method [32] to improve the contrast of
images, which can alleviate the challenge of light variation
and make feature extraction and tracking easier.

The extraction and tracking of visual features are shown
as Fig. 3. According to the number of continuous tracking
between two adjacent frames from less to more, the color of
each tracked visual feature point is represented from green
to red. The blue line connected to each feature point uses its
direction and magnitude to represent the velocity vector of
that feature point.

123

Intelligent Service Robotics (2022) 15:129–141 133

4.2 Point cloud segmentation

When the sensor platformmoves in a noisy environment with
small objects like shrubs and tree leaves, feature extracting
methods based on local surface smoothness [30] can generate
a large quantity of unreliable laser features. This is because
a point cloud of multi-line lidar is relatively sparse in the
vertical direction, and it is difficult for the features of small
objects to be continuously observed in two consecutive scans.

In order to perform fast and reliable laser feature extraction
and also provide label information for the data association
part, we segment the raw point cloud into labeled object clus-
ters. Let Pk = {p1, . . . , pn} be a raw point cloud received at
time tk , where pi is a point from Pk . Firstly, we project Pk
onto a range image, where each valid point pi in Pk has a cor-
responding 2D pixel. We use di to represent the Euclidean
distance from pi to the sensor origin. Then, a fast ground
plane segmentation method for ground vehicles [12] is con-
ducted to extract ground points and label them in the range
image. Thirdly, we apply an image-based method [2] to the
range image to segment non-ground points into separated
object clusters. Each cluster will be assigned a unique label
in the range image and the ground points also form one clus-
ter. Finally, since small objects with fewer points are less
reliable for feature extraction, here we only keep clusters
that have more than 50 points or extend at least three laser
lines.

After this, only ground points and reliable object points
that may represent large objects like walls and tree trunks
are preserved as a labeled point cloud for further processing.
A visualization of a point cloud after segmentation is shown
in Fig. 4. The white points belong to the ground point set,
and the different object sets are distributed from green to
red according to the size of each set. The light blue point
sets are outliers that are eliminated. It can be seen that the
plant point set in the yellow box is removed as outliers after
segmentation.

4.3 Laser feature extraction

In order to reduce the amount of data and avoid unreliable
clusters, here we only extract laser features from the labeled
point cloud. The feature extraction method is similar to [30],
but we use distance values instead of original 3D coordinates
to reduce calculation. Let pi be a point in a row of the range
image,we define a term to evaluate the curvature of this point,

c = 1

di · |S|

∣
∣
∣
∣
∣
∣

∑

j∈S, j �=i

(

d j − di
)

∣
∣
∣
∣
∣
∣

(1)

Fig. 4 A labeled point cloud after segmentation. In a, the ground points
are labeled as white. The reliable object clusters are distributed from
green to red according to the size of each cluster. The blue points are
outliers. b is the visual image from the same viewpoint, and we can see
the plant in yellow box is labeled as outliers

where S is a neighbor set of consecutive points around pi
at the same row with |S| /2 points on either side, and di
represents the distance from point pi to the lidar origin

To ensure an even distribution of features in all directions,
we separate the range image horizontally into several equal
subregions. Then, in each row of a subregion, we sort the
points according to their curvature values and set a threshold
cth to distinguish edge features with c larger than cth and
planar features with c smaller than cth . The set of all edge
and planar features are set as Fls and Fl f , respectively. Then,
from each row of a subregion, we extract two edge features
with the maximum c as Fs and four planar features with the
minimum c as Ff . The extracted laser feature point sets Fs ,
Ff , Fls and Fl f are shown in Fig. 5a and b.

4.4 Data association

Since the monocular camera cannot provide scale informa-
tion, here we estimate the depth of visual features by data
association between an image and its corresponding labeled
point cloud.

A schematic diagram of data association is illustrated in
Fig. 6. Firstly, we transform the labeled point cloud from the
lidar coordinate system to the camera coordinate system, and
then project it onto the normalized plane of the camera as Nl .
The visual features are also projected to the normalized plane
as Nv . After that, for each visual feature f ∈ Nv we perform
the following steps.

123

134 Intelligent Service Robotics (2022) 15:129–141

Fig. 5 The 3D visual features Fv (yellow) from the data association and
the extracted laser features Fs (red) and Fl (pink) are shown together
in a. The laser features Fls (red) and Fl f (pink) are illustrated in b

4.4.1 Neighborhood selection

To extract the local plane parameters around visual feature
f , we firstly select its neighborhood Nn from the normalized
lidar points. For the sake of algorithm efficiency, the com-
monly used KD-tree [22] is not adopted here since it would
take too much time to construct the tree. Instead, we set a
rectangle region around each visual feature on the normal-
ized plane to select its neighborhood, as shown in Fig. 7a.
The size of the rectangle is chosen to ensure that it contains at
least two laser lines so that the singularity of plane estimation
can be avoided.

4.4.2 Foreground selection

Considering that visual features prefer to lie on edges or cor-
ners of the environment, the neighborhood of a visual feature

Fig. 6 Aschematic diagramof data association. The labeled point cloud
(yellow points) and the 2D visual features (red points) are projected to
the normalized plane for neighborhood selection. Plane 1 is acquired
by fitting with the original neighborhood set, which is deviated by the
laser points on the background surface. By using the label information,
laser points located on the foreground surface are selected and used to
estimate the local tangent plane (Plane 2) of the foreground surface. The
3D visual featurewith depth restored is acquired through calculating the
intersection between the fitted plane (Plane 2) and the ray corresponding
to f

usually contains lidar points on both foreground and back-
ground surface. Therefore, directly using the neighbor points
to fit the plane would probably lead to wrongly estimated
depth. To deal with this, we group the neighborhood Nn into
separated sets according to each point’s label assigned in the
point cloud segmentation part, and select the nearest set to
the sensor as the foreground set N f .

4.4.3 Depth estimation

From the points in N f , we choose three points that constitute
a triangle with the maximum area. If the area is smaller than
a given threshold, we would abandon this estimation to avoid
wrongly estimated depth. Then, we fit the plane with these
three points and get the plane parameters. Finally, we restore
the depth of f through calculating the intersection between
the fitted plane and the ray of sight corresponding to f ,

XC
3d =

∣
∣
∣
∣
∣

d

nTXC
2d

∣
∣
∣
∣
∣
XC
2d (2)

whereXC
2d is the normalized visual feature with z = 1, n and

d are parameters of the fitted plane nTX+ d = 0, XC
3d is the

estimated 3D visual feature with depth restored.

4.4.4 Validation

To be accepted as a valid estimation, the angle between the
tangent of the fitted local plane and the ray of the visual fea-
ture should be smaller than a threshold (10°). This is because

123

Intelligent Service Robotics (2022) 15:129–141 135

Fig. 7 Choosing a neighborhood for a visual feature and restoring
its depth by data association. In a, we set a rectangle region (blue)
for a visual feature to determine its neighborhood. In b, we acquire a
3D visual feature (inside the blue rectangle) through data association
between the original 2D visual feature and its neighbor lidar points

the noise of depth estimation is too large when calculating
the intersection point of the plane and the ray, as shown in
Fig. 6. Besides, the distance from the estimated 3D point to
the sensor origin should be less than another threshold (50m),
since the point cloud tends to be very sparse at a distance and
may lead to failure of plane estimation.

By using the proposed method of data association, we can
restore the depth information of visual features and get the
set of 3D visual features Fv in the lidar coordinate system
after back-projection, as illustrated in Fig. 7b.

Algorithm 1: Visual Lidar Odometry

Input: F̄k
ls , F̄

k
l f , F̄

k
v and T Lk−1

Lk
from the last frame; Fk+1

s , Fk+1
f ,

Fk+1
v , Fk+1

ls and Fk+1
l f from the current frame;

Output: F̄k+1
ls , F̄k+1

l f and F̄k+1
v ; T Lk

Lk+1
;

T Lk
Lk+1

← T Lk−1
Lk

;

for a given number of iterations do
Use T Lk

Lk+1
to transform Fk+1

s , Fk+1
f and Fk+1

v to the lidar
coordinate system at time tk based on (3) and (4), and get
F̃k+1
s , F̃k+1

f , and F̃k+1
v ;

for each edge feature in F̃k+1
s do

Find an edge line as its correspondence in F̄k
ls , then

calculate the point-to-line distance as its Euclidean
residual based on (5) and add it to the residual set E ;

end
for each planar feature in F̃k+1

f do
Find a planar patch as its correspondence in F̄k

l f , then
calculate the point-to-plane distance as its Euclidean
residual based on (6) and add it to the residual set E ;

end
for each visual feature in F̃k+1

v do
Find a visual feature with the same ID as its
correspondence in F̄k

v , then calculate the point-to-point
distance as its Euclidean residual based on (7) and add it
to the residual set E ;

end
Compute the Jacobian matrix of each residual in E with
respect to T Lk

Lk+1
;

Update T Lk
Lk+1

as a nonlinear optimization problem using the

L-M method;
if the optimization converges then

break;
end

end

T Lk
Lk+1

← T Lk
Lk+1

;

Use T Lk
Lk+1

to transform Fk+1
ls , Fk+1

l f and Fk+1
v to the lidar

coordinate system at time tk+1 based on (3) and (4), and get
F̄k+1
ls , F̄k+1

l f and F̄k+1
v ;

5 Tightly coupled visual lidar odometry

In this section, we proceed with a tightly coupled visual lidar
odometry for high-accuracy and reliable pose estimation.Our
approach starts with a visual lidar odometry to tightly fuse
3D visual features and 3D laser features in a uniform opti-
mization framework, and then refines the estimated pose and
registers the point cloud to a map through a scan-to-map
matching.

5.1 Visual lidar odometry

Lidar-based methods [30] can only make use of geometric
information of the environment to select laser features, which
may lead to degeneracy of constraints [28] in symmetrical
scenarios. As shown in Fig. 8a, in a symmetrical tunnel, if we
only constrain the planar features (pink squares) and the edge

123

136 Intelligent Service Robotics (2022) 15:129–141

Fig. 8 Degeneracy of constraints in a symmetrical tunnel. In a, we only
constrain the planar features and the edge features to their correspon-
dences, which lead to a degeneracy in the tunnel direction. In b, the
introduction of 3D visual features provides additional point-to-point
constraints

features (red triangles) of current frame to their correspond-
ing planes and edges in last frame, themotion along the tunnel
direction cannot be estimated since there are no effective con-
straints in this direction. Considering that visual features are
based on texture information, they are naturally complemen-
tary with laser features. Here, we introduce the 3D visual
features (yellow circles) we acquired in data association to
add additional point-to-point constraints, as illustrated in Fig.
8b.

Since sensor data is received continuously when the plat-
form is moving, as shown in Fig. 2, we define pi as a feature
point received at time ti in lidar coordinate system Li . Let tk
be the time of previous frame k, tk+1 be the time of current
frame k+1 andTLk

Lk+1
be the motion estimation of lidar from

tk to tk+1. Here we can utilize linear interpolation to acquire
the motion estimation from the time of previous frame to the
time when point pi is received,

TLk
Li

=
(

ti − tk
tk+1 − tk

)

⊗ TLk
Lk+1

(3)

where we have TLk
Li

∈
[

0.5 ⊗ TLk
Lk+1

, 1.5 ⊗ TLk
Lk+1

]

for laser

points and TLk
Li

=TLk
Lk+1

for visual features since they are
exactly captured at time tk+1. ⊗ represents a linear inter-
polation of a transformation matrix at a given proportion.

Then, we can transform each point in the set of laser fea-
tures Fk+1

s , Fk+1
f and visual features Fk+1

v from the lidar
coordinate system when it is received to the lidar coordinate
system at time tk ,

XLk
i = TLk

Li
XLi
i (4)

where XLi
i is the coordinates of point pi in Li and XLk

i is
the coordinates of pi in Lk . The transformed sets are named
F̃k+1
s , F̃k+1

f and F̃k+1
v , respectively.

Using the previous motion estimation TLk−1
Lk

, the feature

sets Fk
ls , F

k
l f of previous frame are also transformed to the

same coordinate system Lk as F̄k
ls and F̄k

l f . For each edge

point in F̃k+1
s we can find an edge line as its correspondence

in F̄k
ls , and for each planar point in F̃k

l f we can find a planar

patch as its correspondence in F̄k
l f . The detailed procedures

of finding correspondences of laser features can be found
in [4]. The Euclidean distance of an edge point to its edge
line and the Euclidean distance of a planar point to its planar
patch can be written as,

Es = f
(

XLi
i , TLk

Lk+1

)

, i ∈ Fk+1
s (5)

E f = f
(

XLi
i , TLk

Lk+1

)

, i ∈ Fk+1
f (6)

For each3Dvisual feature in F̃k+1
v ,we can alsofind its cor-

respondence in Fk
v by matching feature ID that we assigned

in feature tracking. The distance of a visual feature to its
correspondence can be written as,

Ev = f
(

XLi
i , TLk

Lk+1

)

, i ∈ Fk+1
v (7)

Combining (5), (6) and (7) for all laser and visual features,
weminimize the sum of residuals in a common cost function,

argmin
T
Lk
Lk+1

⎧

⎪⎨

⎪⎩

∑

Fk+1
s

ωs E
2
s +

∑

Fk+1
f

ω f E
2
f +

∑

Fk+1
v

ωvE
2
v

⎫

⎪⎬

⎪⎭

(8)

whereωs ,ω f andωv are the weights of each kind of features.

By computing the Jacobian matrix with respect to TLk
Lk+1

,
we can minimize (8) to zero by solving it as a nonlinear opti-
mization problem with the Levenberg–Marquardt method.
The pseudocode of this tightly coupled visual lidar odome-
try is illustrated in Algorithm 1.

5.2 Scan-to-mapmatching

Scan-to-mapmatching registers the distortion-removed point
cloud F̄k+1

ls and F̄k+1
l f to its surrounding map M̄k

ls and M̄k
l f at

a lower frequency (2Hz), where the motion estimation from
visual lidar odometry is further refined and themap is updated
with the newcome point cloud.

Thewhole environmentmap is stored distributedly in each
keyframe as,

Mk =
{{

F̄1
ls, F̄

1
l f

}

, . . . ,
{

F̄k
ls, F̄

k
l f

}}

(9)

The surrounding map of current frame k + 1 is obtained
by,

M̄k
ls = ∪

1≤m≤k

{

F̄m
ls

}

, s.t.
∣
∣tLm
Lk+1

∣
∣< t (10)

M̄k
l f = ∪

1≤m≤k

{

F̄m
l f

}

, s.t.
∣
∣tLm
Lk+1

∣
∣< t (11)

123

Intelligent Service Robotics (2022) 15:129–141 137

where tLm
Lk+1

is the relative translation from Lk+1 to Lm

Similarly to visual lidar odometry, we use the Levenberg–
Marquardt method to solve this optimization problem by
minimizing all the residuals. Then, in transform fusion, the
low-frequency but high-accuracy motion estimation from
scan-to-map matching is fused with the high-frequency out-
put of visual lidar odometry to get the 10Hz fused pose.

6 Loop closure

In this section, we detect visual loop using bag-of-words and
detect vicinity loop based on the pose estimation of the odom-
etry.When a loop is detected,we construct the loop constraint
between the current frame and its loop frame employing ICP
method. The loop constraint is added to a 6-DOF global pose
graph which is optimized for global consistency.

6.1 Keyframe selection

We maintained a keyframe database for loop detection and
global optimization. A keyframe consists of the lidar pose,
the laser features and the image features. A new keyframe is
selected and added to the keyframe database when the trans-
lation between the current frame and the previous keyframe
exceeds a threshold. The transformation between the new
keyframe and the previous keyframe is added as an odome-
try constraint to the global pose graph.

6.2 Loop detection

The visual loop detection is performed utilizing the DboW2
[9], which is based on Bag-of-Words place recognition with
BRIEF descriptors [3]. When a new keyframe is added, we
extract 500 FAST corner features from the image and use
BRIEF descriptors to describe these features. The descrip-
tors are used as a word to query the visual vocabulary. If a
loop candidate is detected, we perform the temporal consis-
tency check by limiting the time interval between the current
keyframe and its loop keyframe to be greater than a given
threshold tth . Besides, we restrain the translation between the
current keyframe and its loop keyframe to be smaller than a
radius R1, which is called geometrical consistency check.

Nevertheless, the visual loop detection is susceptible to
illumination change and limited by the camera’s field-of-
view. Considering the lidar has a horizontal FOV of 360◦
and can work in any light situation, we implement a vicinity
detection which is purely based on the pose estimation of the
odometry. We construct a 3D KD-tree using the translations
of all keyframes in the world coordinate system, and search
for the closest neighbor for the current keyframe. If the rel-
ative distance is smaller than radius R2, R2 < R1, we will
treat it as a loop. Likewise, we do not consider keyframes

Fig. 9 The global pose graph consists of odometry constraint factor
and loop constraint factor

whose time interval from the current keyframe is less than
tth .

6.3 Global pose graph optimization

For each loop candidate, the loop constraint is calculated by
registering the laser features of current frame to the surround-
ingmap of the loop history frame using ICPmethod [1]. If the
ICP registration succeed, we finally treat this loop as a true
loop and add this loop constraint to the global pose graph.
The global pose graph contains all the keyframe lidar poses as
variables, and is constrained by odometry factors and loop
factors as illustrated in Fig. 9. The residuals of these two
kinds of factors can be uniformly written as,

ei j = ln
(

�Ti j
(

Tw
i

)−1Tw
j

)∨
(12)

where Tw
i and Tw

j are two keyframe poses in the world coor-
dinate system, �Ti j is a odometry or loop constraint factor
which stands for a measurement of relative transformation
between keyframe i and j . The residual ei j is represented in
the form of Lie algebra.

The whole global pose graph is optimized by,

argmin
T

⎧

⎨

⎩

∑

(i, j)∈O

∥
∥ei j

∥
∥2 +

∑

(i, j)∈L
h

(∥
∥ei j

∥
∥2

)

⎫

⎬

⎭
(13)

where O is the set of all odometry constraints, L is the set of
all loop constraints and T is the set of keyframe poses to be
optimized. h (·) is Huber function to reduce the influence of
potential incorrect loop constraints.

To ensure real-time performance, we utilize iSAM2 [13]
to incrementally optimize the global pose graph. After each
loop optimization, the global environment point cloud map
is also updated using the updated keyframe poses.

7 Experiments

We evaluate our method utilizing the KITTI datasets [11].
As shown in Fig. 10, the KITTI datasets are recorded on a

123

138 Intelligent Service Robotics (2022) 15:129–141

Fig. 10 The sensor suite platform of KITTI. The KITTI datasets are
recorded on a passenger vehicle which is equipped which a pair of color
cameras, two greyscale cameras, a Velodyne HDL-64E laser scanner
and an OXTS GPS/IMU inertial navigation system which is used for
providing ground-truth poses. This picture is taken from http://www.
cvlibs.net/datasets/kitti/

passenger vehicle which is equipped which a pair of color
cameras, two greyscale cameras, a Velodyne HDL-64E laser
scanner and an OXTS GPS/IMU inertial navigation system.

The extrinsic parameters between all sensors and the
intrinsic parameters of the cameras and the lidar are already
calibrated and provided by KITTI. For time synchronization,
when the lidar rotates to face the front of the vehicle, the
camera shutter will be triggered mechanically using a reed
contact. Therefore, the timestamp of each frame of picture
corresponds exactly to the middle moment of a lidar rotation,
which is used as the unified timestamp of one frame of data.
In addition, due to the high frequency of the GPS/IMU sys-
tem (100Hz), KITTI selects the GPS/IMU data closest to the
timestamp of each picture as the corresponding ground-truth.

The sensor suite that we employ in this paper includes
the Velodyne HDL-64E lidar, a monocular greyscale camera
and the inertial navigation systemwhich is used for providing
ground-truth poses.

Experiments are conducted to compare our method with
the state-of-the-art laser-based methods LOAM [30] and
LeGO-LOAM [23] and the fusion-based method VLOAM
[29] on a laptop with an i5-10210U CPU. All algorithms
are implemented in the C++ language and run on the Robot
Operating System (ROS) under Ubuntu environment.

7.1 Accuracy analysis

Since LOAMandVLOAMcannot run in real timewhen pro-
cessing the KITTI dataset, we set it running at 50% of the
real-time speed. TVL-SLAM and TVL-SLAM-Loop are our

Fig. 11 Trajectories from different methods in sequence KITTI_00 and
KITTI_09

methods with the loop closure module disabled and enabled,
respectively. Both LeGO-LOAM and our methods run at the
real-time speed. The relative pose error (RPE), which is com-
puted by comparing the final pose with the initial pose of the
whole trajectory, is used to evaluate the performance of pose
estimation. The rotational and translational errors are listed in
Table 1 for different methods using sequence KITTI_00 and
KITTI_09.The horizontal trajectories of sequenceKITTI_00
and KITTI_09 are shown in Fig. 11. The absolute pose error
(APE), which gives the root-mean-square error between the
ground truth and the pose estimation, is illustrated in Fig. 12.

123

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/

Intelligent Service Robotics (2022) 15:129–141 139

Fig. 12 Absolute pose error w.r.t. the ground truth in sequence
KITTI_00 and KITTI_09

From the results in Table 1, we see that our method TVL-
SLAM outperforms LOAM , VLOAM and LeGO-LOAM in
all sequences. LOAMandVLOAMhas the largest error since
it does not have the step of cloud segmentation and thus needs
to deal with a large number of unreliable or unnecessary
feature points. Compared with LeGO-LOAM, our method
reduces the translation error by 17%–43% and the rotational
error by 19%–25%, which is mainly due to the introduction
of visual feature points.

In sequence KITTI_00, when the loop closure module is
enabled our method TVL-SLAM-Loop can further dramati-
cally reduce the translational and rotational error to around
0.3 m and 0.005 degrees, respectively.

7.2 Running time analysis

The mean runtime for each module in LOAM, VLOAM,
LeGO-LOAM and TVL-SLAM is shown in Table 2. Since
the cloud segmentation procedure of our method can elim-
inate a large number of unreliable and unnecessary laser

features, the average runtime of the odometry and mapping
are reduced to only 13.5% and 21.6% of LOAM, and 10.1%
and 48.2% of VLOAM, respectively.

Comparedwith LeGO-LOAM,which only need to extract
laser features, the introduction of visual features in our
method increases the runtime of data preprocessing and
odometry by 19.3ms and 3.8ms, respectively. Nevertheless,
the tightly coupled visual lidar odometry outputs more accu-
rate pose estimation, which makes it easier for the mapping
module to refine the pose and reduces the runtime of map-
ping to 67% of LeGO-LOAM. Despite the introduction of
visual features, the total runtime of our method still takes
the least of the three methods. The total runtime of LOAM
exceeds four times of the lidar cycle (100ms), which makes
it impossible to run in real time. But by setting the mapping
part running at 2Hz, our method can run in real time with a
64-line 3D lidar.

7.3 Mapping result analysis

Since the mapping quality of VLOAM is almost the same
as that of LOAM, here we only compare our method with
LOAM and LeGO-LOAM.

The mapping results of KITTI_00 dataset using LOAM,
LeGO-LOAMand our method TVL-SLAM-Loop are shown
in Fig. 13. We can find that our method can build a smoother
and global-consistent point cloud map than LOAM and
LeGO-LOAM, which has more points that do not coincide at
the same location. Figure 14 shows mapping results at three
loop locations before and after performing loop closure using
our method.We see that our method can accurately detect the
loops, complete the optimization of the global pose graph and
establish a globally consistent map.

8 Conclusion

A novel tightly coupled visual lidar odometry method was
presented in this paper. By combining visual feature track-
ing, data association, cloud segmentation and laser feature
extraction, the system can acquire depth-recovered 3D visual
features and fuse them with 3D laser features in a joint-
optimization framework. The loop closure module, which

Table 1 Relative translational and rotational errors w.r.t. the ground truth

Errors Sequence LOAM (0.5×) VLOAM (0.5×) LeGO-LOAM TVL-SLAM TVL-SLAM-Loop

Total KITTI_00 22.1582 16.4135 6.4323 5.3518 0.3071

Tra.(m) KITTI_09 29.1038 30.2503 13.4184 6.5164 3.7063

Total KITTI_00 7.3637 5.4982 1.4455 1.1688 0.0047

Rot.(◦) KITTI_09 25.3295 24.5960 4.2194 3.1533 2.5973

123

140 Intelligent Service Robotics (2022) 15:129–141

Table 2 Mean runtime analyses
(ms)

Procedures LOAM (0.5×) VLOAM (0.5×) LeGO-LOAM TVL-SLAM

Preprocessing N/A N/A 26.9 46.2

Odometry 95.6 127.8 8.8 12.9

Mapping 341.1 152.8 110.2 73.7

Total 437.6 280.6 145.9 132.8

Fig. 13 Mapping results of LOAM, LeGO-LOAM and TVL-SLAM-
Loop

Fig. 14 Mapping results before and after loop closure. In a and b, we
use white circles to point out the obvious inconsistent places before and
after the loop closure

utilizes visual and vicinity loop detection together, further
constructs loop constraints to remove drift accumulation.
Despite that more time is spent in data preprocessing due
to the introduction of visual features, the whole system can
still run in real-time with the 64-line lidar and provide high-
accuracy pose estimation together with a global-consistent
point cloud map of the traversed environment. Experiments
on public dataset show that ourmethod outperforms the state-
of-the-art lidar-based and fusion-based methods in accuracy,
runtime and mapping results.

Author Contributions All authors contributed to the study concep-
tion and design. All authors commented on previous versions of the
manuscript, and approved the final manuscript.

Funding This work was supported in part by the National Natural Sci-
ence Foundation of China (61973099).

123

Intelligent Service Robotics (2022) 15:129–141 141

Declarations

Conflicts of interest The authors declare that there is no conflict of
interests regarding the publication of this paper.

Ethics approval The authors declare that there are no ethics issues
regarding the publication of this paper.

References

1. Besl PJ, McKay ND (1992) Method for registration of 3-d shapes.
In: Sensor fusion IV: control paradigms and data structures, vol
1611. International Society for Optics and Photonics, pp 586–606

2. Bogoslavskyi I, Stachniss C (2016) Fast range image-based seg-
mentation of sparse 3d laser scans for online operation. In: 2016
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS). IEEE, pp 163–169

3. CalonderM, Lepetit V, StrechaC, Fua P (2010) Brief: binary robust
independent elementary features. In: European conference on com-
puter vision. Springer, pp 778–792

4. Cheng J, Wang C, Meng MQH (2019) Robust visual localization
in dynamic environments based on sparse motion removal. IEEE
Trans Autom Sci Eng 1–12

5. Curless B, LevoyM (1996) A volumetric method for building com-
plex models from range images. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pp
303–312

6. De Croce M, Pire T, Bergero F (2019) Ds-ptam: distributed stereo
parallel tracking and mapping slam system. J Intell Robotic Syst
95(2):365–377

7. Deschaud JE (2018) Imls-slam: scan-to-model matching based on
3d data. In: 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, pp 2480–2485

8. Engel J, Stückler J, Cremers D (2015) Large-scale direct slam with
stereo cameras. In: 2015 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE, pp 1935–1942

9. Gálvez-López D, Tardos JD (2012) Bags of binary words for
fast place recognition in image sequences. IEEE Trans Robotics
28(5):1188–1197

10. Gao X,Wang R, Demmel N, Cremers D (2018) Ldso: direct sparse
odometry with loop closure, pp 2198–2204

11. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous
driving? the kitti vision benchmark suite. In: 2012 IEEE conference
on computer vision and pattern recognition. IEEE, pp 3354–3361

12. Himmelsbach M, Hundelshausen FV, Wuensche HJ (2010) Fast
segmentation of 3d point clouds for ground vehicles. In: 2010 IEEE
intelligent vehicles symposium. IEEE, pp 560–565

13. Kaess M, Johannsson H, Roberts R, Ila V, Leonard J, Dellaert
F (2011) isam2: incremental smoothing and mapping with fluid
relinearization and incremental variable reordering. In: 2011 IEEE
international conference on robotics and automation. IEEE, pp
3281–3288

14. Kim D, Shin S, Kweon IS (2018) On-line initialization and extrin-
sic calibration of an inertial navigation system with a relative
preintegration method on manifold. IEEE Trans Autom Sci Eng
15(3):1272–1285

15. Li G, Yu L, Fei S (2020) A binocular msckf-based visual iner-
tial odometry system using lk optical flow. J Intell Robotic Syst
100(3):1179–1194

16. Lucas BD, Kanade T et al (1981) An iterative image registration
technique with an application to stereo vision

17. Lynen S, Achtelik MW, Weiss S, Chli M, Siegwart R (2013) A
robust and modular multi-sensor fusion approach applied to mav
navigation. In: 2013 IEEE/RSJ international conference on intelli-
gent robots and systems. IEEE, pp 3923–3929

18. Mccormac J, Handa A, Davison AJ, Leutenegger S (2017) Seman-
ticfusion: dense 3d semantic mapping with convolutional neural
networks, pp 4628–4635

19. Mourikis AI, Roumeliotis SI (2007) A multi-state constraint
kalman filter for vision-aided inertial navigation. In: Proceedings
2007 IEEE international conference on robotics and automation.
IEEE, pp 3565–3572

20. Mur-Artal R, Tardós JD (2017) Orb-slam2: an open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Trans
Robotics 33(5):1255–1262

21. Qin T, Li P, Shen S (2018) Vins-mono: a robust and versatile
monocular visual-inertial state estimator. IEEE Trans Robotics
34(4):1004–1020

22. Ramasubramanian V, Paliwal KK (1992) Fast k-dimensional tree
algorithms for nearest neighbor search with application to vector
quantization encoding. IEEE Trans Sig Process 40(3):518–531

23. Shan T, Englot B (2018) Lego-loam: lightweight and ground-
optimized lidar odometry andmapping on variable terrain. In: 2018
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS). IEEE, pp 4758–4765

24. ShaoW, Vijayarangan S, Li C, Kantor G (2019) Stereo visual iner-
tial lidar simultaneous localization and mapping. arXiv preprint
arXiv:1902.10741

25. Shi J et al (1994) Good features to track. In: 1994 Proceedings
of IEEE conference on computer vision and pattern recognition.
IEEE, pp 593–600

26. Wang Z, Zhang J, Chen S, Yuan C, Zhang J, Zhang J (2019) Robust
high accuracy visual-inertial-laser slam system. In: 2019 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, pp 6636–6641

27. Yang Z, Shen S (2017) Monocular visual-inertial state estima-
tionwith online initialization and camera-imu extrinsic calibration.
IEEE Trans Autom Sci Eng 14(1):39–51

28. Zhang J, Kaess M, Singh S (2016) On degeneracy of optimization-
based state estimation problems. In: 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 809–816

29. Zhang J, Singh S (2015) Visual-lidar odometry and mapping: low-
drift, robust, and fast. In: 2015 IEEE international conference on
robotics and automation (ICRA). IEEE, pp 2174–2181

30. Zhang J, Singh S (2017) Low-drift and real-time lidar odometry
and mapping. Autonom Robots 41(2):401–416

31. Zhang J, Singh S (2018) Laser-visual-inertial odometry and
mapping with high robustness and low drift. J Field Robotics
35(8):1242–1264

32. Zuiderveld KJ (1994) Contrast limited adaptive histogram equal-
ization. Graphics gems, pp 474–485

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1902.10741

	A tightly coupled monocular visual lidar odometry with loop closure
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries and system overview
	3.1 Preliminaries
	3.2 System overview

	4 Data preprocessing
	4.1 Visual feature tracking
	4.2 Point cloud segmentation
	4.3 Laser feature extraction
	4.4 Data association
	4.4.1 Neighborhood selection
	4.4.2 Foreground selection
	4.4.3 Depth estimation
	4.4.4 Validation

	5 Tightly coupled visual lidar odometry
	5.1 Visual lidar odometry
	5.2 Scan-to-map matching

	6 Loop closure
	6.1 Keyframe selection
	6.2 Loop detection
	6.3 Global pose graph optimization

	7 Experiments
	7.1 Accuracy analysis
	7.2 Running time analysis
	7.3 Mapping result analysis

	8 Conclusion
	References

