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Abstract

Mission planning asks the robot to solve complex missions, requiring the robot to execute several actions such that a complex
goal condition (called mission) is satisfied. The missions can be specified by using Linear Temporal Logic or any custom
domain-specific language. Here, we consider service robots in the home or office environments with multiple users, each
specifying a task that together makes a mission. Conventional mission planning techniques assume that the complete mission
specification is known in advance, while mission planning is incremental wherein tasks keep getting added and deleted.
The exponential computational complexity of the current model verification-based approaches is not a viable solution. The
paper presents an evolutionary framework for incrementally solving the problem of mission planning for the problems for
which a polynomial-time verification system exists for the tasks. The optimal solution is represented in an encoding-specific
format that is compiled to form a linear trajectory of the robots. Optimization is done as the robot operates. Thus, the robot
at any time has a partial solution to every task that has already been executed that (along with the robot assigned to the
task) cannot be altered, while a part representing the next steps of the robot to be optimized. This acts as a constraint in
the continuous optimization. The proposed approach uses Dynamic Programming to integrate the solutions of tasks and as a
distance function in the diversity preserving evolutionary computation since the mission constantly changes. Comparisons are
made with a baseline evolutionary computation without Dynamic Programming, a non-incremental version of the proposed
algorithm, and several greedy strategies. The proposed algorithm is seen to perform better than all other methods. Further,
the algorithm is implemented and demonstrated on a Pioneer LX robot.

Keywords Mission planning - Robot motion planning - Linear temporal logic - Evolutionary computation - Diversity
preservation

1 Introduction

Robots have been used for a very long time to do a variety of
tasks like getting an object of interest from a site, inspecting
aremote site, etc. A requirement from the modern-day robots
is that the user should be able to instruct the robots, asking
the robots to execute complex tasks like getting a variety
of items spread in the home or office environment, cooking
complex recipes, etc. All these operations require the robots
to perform multiple operations in the correct sequence. Such
a problem is called the mission planning problem. The mis-
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sion is specified in a formal language by the user that can be
understood by the robots. In this paper, we envision a team of
robots operating for facilities like home or office with several
users who continuously give new instructions to the robots
to carry out several tasks. The robotic team must plan and
distribute the work among themselves, while optimally solv-
ing the entire mission including adapting the solution as new
requirements are added or changed continuously by the users.

The classic task planning approaches can be used to spec-
ify several missions using atomic propositions. The Linear
Temporal Logic (LTL) [1, 2] allows specifying missions
where the different atomic propositions have temporal con-
straints like one proposition should remain true until another
proposition gets true. The classic planning techniques includ-
ing the use of formal languages typically have an exponential
complexity and heuristics does a little to make the solutions
scalable. This is an ideal situation for the use of evolutionary
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computation as a planning system, which ensures proba-
bilistic completeness, meaning the probability of finding a
solution if one exists tends to one as time tends to infin-
ity; and probabilistic optimality, meaning that the solution
tends to the optimal solution as time tends to infinity. The
evolutionary computation is used to search for an optimal
sequence that solves the mission. For this, it is important that
a polynomial-time verification of the solution is possible and
hence the solver can only be used for some constrained lan-
guages. This is another problem associated with the model
verification-based solvers for which even verification is an
exponential complexity solution. Many real-life applications
are now being solved by using evolutionary computation.
The problem is encoded using problem-specific heuristics
such that the solution is always valid or can be checked for
validity in a polynomial time. As an example, for the Travel-
ling Salesman Problem, a permutation of all places is a valid
solution; for classic robot motion planning, a traversal of the
path is done in a linear time to check for collisions, etc.

It must be noted that the paper takes only a general inspira-
tion from LTL to specify the mission using a formal language
and using a computational method to solve the synthesis
problem. The paper itself does not use LTL or any of its
variants. The paper does not use the LTL operators for the
mission specification. LTL considers infinite traces, while the
problem under consideration is for finite strings only. The
paper allows the specification of a mission using the AND,
OR, and sequencing operations only. A mission specified
using these operations is polynomial verifiable and considers
only finite strings. The mission planning problem is then the
generation of a finite length string that is verified by the verifi-
cation system, and preferably the string has the smallest path
cost. Mission specified using only AND, OR and sequencing
operations may appear to have very little expressive power.
However, the paper only considers service robots that are use-
ful to do the everyday chores of humans, and a lot of complex
operations that humans may require to be done by the robots
for everyday life are covered by these 3 operators. The lan-
guage has not been checked for utility for other domains.

In this paper, the robot mission planning problem is being
solved. A fask is defined as an instruction given by a user
consisting of Boolean and temporal constraints which must
be solved by the robot. Numerous tasks coming from the
same or different users constitute a mission. The use case is
that there are numerous users in an office building. There is
a fleet of robots catering to the needs of all the users. A robot
solving any task sub-optimally may mean taking in hours
for a task that could be otherwise completed in a very few
minutes.

The incremental nature of the problem states that the
users keep adding task specifications, as they may have
requirements. A user may at any instance of time need
a specific task (or a collection of tasks) to be given to
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the robot, while the robot may already be doing some
other tasks of the same or other users. The robot nei-
ther knows about a prospective task coming before a user
gives the task to the robot nor does the robot have a
knowledge of the nature and timing of the future tasks
that may come. Upon addition of a new task, a complete
re-planning may not be possible due to the large computa-
tion times. Incremental synthesis approaches save time by
reusing the models; however, the approaches must ensure
computational efficiency using problem-specific heuris-
tics.

The incremental nature of the solution is that the solu-
tion iteratively improves. After a solution is computed, the
robot or robot fleet executes the solution. If the solver is iter-
ative or anytime in nature, the significant amount of time
when the robot is physically doing an operation can be used
by the solver to further optimize the rest of the solution.
The assumption is that an optimal search has an exponen-
tial complexity even after the use of heuristics while the
robot cannot be asked to wait indefinitely for a solution.
Therefore, the robot needs to make use of an approxima-
tion algorithm. There can be greedy heuristics that can be
used to compute a reasonably good solution in a small dura-
tion of time. However, the robot has an unknown time during
which it travels that can be used to compute the approxi-
mation solution. The aim is hence to use as many greedy
heuristics as possible (like the use of Dynamic Program-
ming), while to also allow the robot to benefit from the
unknown time that the robot takes to travel from one place
to the other that can be used for improving the solution qual-
ity. Many anytime algorithms exist in the literature. Like
the Anytime-A* algorithm can continuously improve the
path along with time. However, the Genetic Algorithm is
specifically chosen as a solver that allows easy integration of
the heuristics like Dynamic Programming for the proposed
work.

The paper uses Dynamic Programming to integrate the
solutions of different tasks to make the solution of a mis-
sion, which happens continuously during the optimization
process. Hence adding tasks means retaining the old com-
putations, while optimally adding the solution of the new
task. A more difficult problem, however, arises in re-wiring
the solution when the robot partially solves a task. The evo-
lutionary solver iteratively optimizes solutions of the task;
however, once a task is partially solved by the robot, nei-
ther can the robot assigned to the task change, nor the
partial part of the task solved by the robot be changed. It
may initially appear that deleting the solved components is
an easy option; however, partial solutions cannot be veri-
fied by the verification system. Further, the problem is that
the path traversed by the robot is linear, while the evolu-
tionary individual is a complex encoding that is compiled
by Dynamic Programming to get a linear sequence, and
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hence, the evolutionary individual representation domain is
not the same as the final solution domain. This requires
back tracing the solution to the evolutionary individual
domain.

Since the mission specification will be continuously
altered, both when a new task is added as well as when a
task is partially solved, the evolutionary algorithm is exe-
cuted with diversity preservation. The addition or deletion of
a task changes the mission specification, which changes the
objective measure used in the evolution. It is now possible for
a local optimum to become a global optimum and vice versa.
Diversity preservation techniques ensure that a diverse set of
individuals are always available at different places in the fit-
ness landscape to deal with the problems of changing fitness
landscape. Here as well typicality is that diversity preser-
vation requires a distance function, while the evolutionary
individual is of variable length and hence an off-the-shelf dis-
tance function cannot be used. The Dynamic Programming-
based edit distance is hence used for diversity preservation.

This is one of the first approaches to design a complete
solution to incrementally solve the mission planning prob-
lem with multiple robots to the best of the knowledge of the
author, wherein the solution and individual representation
make two different domains, and deleting the traced path is
not possible due to verifiability. At the same time, the paper
stresses that the model verification tools for mission plan-
ning problems cannot be practically used for massively large
problems possible in the domain of service robotics due to
the exponential computational complexity and lack of opti-
mality.

The main contributions of the paper are:

1. An incremental approach to mission planning using evo-
lutionary computation is proposed. The evolutionary
technique continuously optimizes the plan as the robot
acts based on the best plan available. So, there is a vari-
able time till the robot is executing the current operation,
till when the next operation should be finalized as per the
optimality criterion. This is a new approach to solve the
problem, while the literature uses exponential complex-
ity time solutions that cannot adjust to the variable time
available. Tasks can be added at any time, while the tasks
are deleted as the robot moves. The optimizer adjusts to
the changing tasks. The algorithm ensures probabilistic
optimality.

2. The solver continuously optimizes the current best plan
as the robot acts. Thus, at any time a part of the tasks has
already been executed while the remaining part is sched-
uled to be executed. The model verification engine can
check for the validity of the string representing the com-
plete task’s solution and not a part string representing
the solution of the task yet to be executed. The evolu-
tionary approach is thus made freeze-aware, wherein the

already solved parts of the tasks are frozen and need to
be fixed by the evolutionary approach. The problem is
unconventional since the solved string could be scattered
in different parts of different genetic individuals.

3. Diversity preservation is added. Since the tasks are
continuously added, deleted, or altered; the problem
specification and thus the fitness landscape continu-
ously changes. Diversity preservation helps to escape
local optima upon a change in the fitness landscape.
The genetic individual has a variable-length encoding
and thus Euclidian and other distance functions cannot
be directly used for diversity preservation. A Dynamic
Programming-based distance function is proposed.

4. The solution is extended to multiple robots where the
solver simultaneously optimizes the robot assignment to
different tasks and the trajectory for each participating
robot.

2 Background
2.1 Genetic algorithms

Genetic Algorithm is an evolutionary algorithm widely used
to solve optimization problems. The algorithm is inspired
by the natural evolutionary process, wherein a population of
individuals mate to produce new offspring for the new gener-
ation. The process follows Darwin’s principle of the survival
of the fittest wherein the fitter individuals are stronger and
mate more times while the weaker individuals normally die
without mating. The new generation is generally healthier
than the parent population, while the evolution process shows
an adaptation of the individuals in response to the changing
environment.

The Genetic Algorithm models an individual as a solu-
tion to the problem in an encoded format like a linear string
called the genotype. The population is a collection of such
individuals. The goodness of an individual is tested by using
a problem-specific objective function called the fitness func-
tion. The algorithm iteratively improves the fitness value
of the individuals, and every iteration of the algorithm is
called a generation. To create the population pool of the
next generation, the algorithm first selects a proportion of
fitter individuals using a process called selection. Selection
stochastically selects individuals such that the probability of
selection of fitter individuals is higher that may get selected
multiple times, while the probability of selection of the
weaker individuals is lower that may not get selected. The
selected individuals mate and exchange characteristics to
produce children by an operation known as crossover. In a
real-coded genetic algorithm, the individuals are encoded as
a real numbered string. The arithmetic crossover in such a
case produces children as a weighted addition of the par-
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ents. The individuals after crossover also undergo a mutation
operation signifying the errors incurred in the generation of
the children. For a real coded genetic algorithm, a Gaus-
sian mutation can be used that adds a Gaussian noise to the
real-coded genes. The parents and newly produced children
compete, and the fittest individuals are selected to make the
new population pool.

The initial population of the Genetic Algorithm may
be generated by any greedy method signifying potentially
good candidates. The initial population may as well be
random. The individuals are initially scattered in the entire fit-
ness landscape. The individuals converge towards the global
optima with time because of the genetic operators. The algo-
rithm attempts to maintain a tradeoff between exploration,

Consider the problem of finding the shortest common
super-sequence of two strings s and s;. Let s1(i) denote the
substring till the ith character and similarly let s2(j) denote
the substring till the jth character. Let the length of the short-
est common super-sequence of s1(7) and s2(j) be I(ij). If the
character s1(i) and s,(j) are the same, then we can use the
solution of /(i — 1,j — 1) or the shortest common super-
sequence of s1(i — 1) and s2(j — 1) and add the character
s1(7) making the solution of [(i,j) as /(i — 1,j — 1) + 1. If
the character s1(i) and s,(j) are different, then we can either
take the solution of /(i — 1,j) and add the character s1(i), or
take the solution of I(i,j — 1) and add the character s>(j),
whichever is smaller. The smallest case is when either of the
strings is empty (size 0) and thus the solution is the other
string. The solution is thus given by Eq. (1)

i if j = 0 (case 1 base)
j if i = 0 (case 2 base)

1@, ) )=31G—-1,j— D+ 1ifs;(i) =s2(j) Ai >0A j >0 (case 3) )
i—-1,j ifs1(0) Zs20)AIGE—1,)) <I{,j—1)Ai>0Aj>0(casel)

IG,j—=1)

ifs1() Zs2()ALGE—1,j)>10,j—1)Ai>0Aj >0 (case2)

which tries to expand the horizon of search of the individ-
uals delaying convergence; and exploitation, which aims to
quickly converge the individuals into the current optima.

1if j =0 (case 1 base)
2 if = 0 (case 2 base)

7, j) =4 3ifs1(G) = s2(j) Ai > OA j > 0 (case 3)

Instead of solving the equation recursively, Dynamic Pro-
gramming uses memorization to store all solutions of I(i,j) so
that every unique (i,j) pair is only solved once. Equation (1)
gives the length of the super-sequence. To trace the super-
sequence, additional information is stored in a similar data
structure called parent (say ) that stores which case was
used to compute the super-sequence, given by Eq. (2).

2

Lifs1G) #s2()ALG—1,7) <1, j—1DAi>0Aj >0 (case 1)
2ifs1G) #s2() AL —1, /) >1G, j— 1) Ai >0Aj >0 (case 2)

2.2 Dynamic programming

It is common to recursively divide a problem into smaller
parts and to integrate the solutions of the smaller problems
to make a solution to the larger problem. It is assumed that the
solution of all unit problems is available (or can be computed
in a constant time). Such divisions however can result in an
exponential number of problems that may take an extremely
long time to solve. Dynamic Programming uses a concept
called memorization to store the solutions of all the sub-
problems as they are solved. Thereafter, if a sub-problem
gets generated again, its memorized solution is used directly,
rather than computing the entire solution again. In this man-
ner, Dynamic Programming significantly reduces the number
of sub-problems by ensuring all problems are solved once.
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3 Related works

A lot of work has been done using model verification tools
for robot motion planning using LTL. In a pioneering work,
Kress-Gazit et al. [3] used triangulation to decompose the
map into a transition system which was fed into a Linear
Temporal Logic solver for a robot to generate a controller for
discrete and continuous domains. In the same vein, Lahija-
nian et al. [4] added the notion of probabilities to guarantee
that the solution returned satisfies the minimum specified
probabilities. The actual probabilities were learned by using
Reinforcement Learning. Another related work by Bhatia
et al. [5, 6] presented the same problem as an integration
of a low-level controller and a high-level mission plan-
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ner, wherein the low-level controller used a sampling-based
approach incorporating robot dynamics. Heuristics can be
used to get a faster solution, which was shown in the work of
McMahon and Plaku [7]. The heuristics used are aimed at get-
ting solutions early as well as at low cost. In the same vein,
Svorenova et al. [8] incorporated preferences and rewards
and intensified the search towards the goal as well as maxi-
mizing rewards. These approaches represent the LTL in the
form of an automaton, which has an exponential complex-
ity thus limiting the use to only smaller problem sizes. The
approaches further use a product of the transition system
with the automaton representation to ensure that only valid
transitions are represented which is again an exponential
complexity operation. The integration with low-level plan-
ners and incorporation of uncertainties further complicates
the search over such representations. The aim of the paper
is thus to use a restricted language that can be verified in a
polynomial time. The search for an optimal solution will still
have an exponential complexity and thus the evolutionary
algorithm is used to make an iterative algorithm that con-
tinuously optimizes the solution. It must be noted that the
proposed approach does not solve for the full LTL and only
the AND, OR and sequence operators can be used in the pro-
posed language. The proposed approach argues that given
the existing approaches on full LTL cannot deal with excep-
tionally large problem sizes, research efforts are required to
custom design languages even if with restricted represen-
tational ability that can be verified in a polynomial time.
Uncertainty cannot be currently handled in the proposed
approach since it is not possible to compute the uncertainty
metrics within a polynomial-time of the number of variables.

Some recent approaches are optimality conscious [9,
10]. The approaches present the problem as a LTL that is
converted into an automaton. To model only the feasible tran-
sitions, a product of the automaton is taken with the transition
system. Here, the conversion of the temporal logic into the
automaton is exponential in time and space with respect to the
variables used, and therefore, the product with the transition
system is also exponential. This however converts the prob-
lem into a graph search problem over the product automaton.
In the work of Svorenova et al. [11], the notion of probabili-
ties is taken in addition, over which an exhaustive search finds
the optimal solution while considering the probabilities. In
another recent work, Ulusoy et al. [12] used product automa-
ton to plan for multiple robots optimally. The authors further
synchronized the motion of the robots and corrected the plans
when the robots were out of synchronization. Fu et al. [13]
added heuristics while searching for the optimal plan. The
heuristics resulted in focussing on the paths which are more
likely to get to the terminal stage. The approaches use the
LTL language to take the input while the user can give any
formula specified using the LTL. The papers have different
system modelling and different optimization objective that

is suited to the specifics of the application. Since the input
is a generic formula, its verification and hence the search is
over a space that has exponential complexity. Further, the
approaches need the computation of the product automaton
that also has exponential complexity. The proposed work
on the contrary attacks problems where an exponential com-
plexity is not feasible due to many proposition variables. The
proposed approach restricts the language to be polynomial
verifiable and thus facilitating a solution using evolutionary
computation. Only AND, OR, and sequence operations can
be used, the use of which makes a language that is polyno-
mial verifiable. Limiting the expressive power is important
to avoid exponential complexities.

Lacerda et al. [14] considered co-safe LTL, where the lan-
guage has only those operators that generate a good prefix
that appended to an infinite length action sequence guaran-
tee the satisfiability of the formula. Practically, the language
reduces the problem of search from infinite sequences to
only finding the finite good prefix. The authors specifically
allowed tasks to be added to the mission while the tasks
were deleted on completion. The system planned dynam-
ically and adjusted to the changes. Schillinger et al. [15]
assumed that the mission consists of several tasks and jointly
performed the robot allocation and task planning like the
proposed approach. The authors used co-safe LTL while
working over the computation of the finite prefix to gener-
ate optimal trajectories as per the cost function. The authors
handled constraints like resources in the LTL formulation.
Faruq et al. [16] further incorporated uncertainties in their
modelling, while trying to compute a policy that maximizes
the probability of completion of the mission. To make the
approach computationally efficient, the problem was solved
through local Markov Decision Processes for the individual
robots with a switching mechanism for task allocations. The
approaches still suffer from the generic problems associated
with the LTL of a high computational time and exponen-
tial complexity that is worsened because of the uncertainties.
The approaches are not scalable to many mission sites and
robots. Thus, the paper approaches the problem using an opti-
mization approach while making the language specific to be
polynomial verifiable. Even though uncertainty makes the
solution realistic, it is currently not possible to compute the
same in a time linear to the number of variables and is thus
omitted. For the same reasons only AND, OR, and sequence
operators are used.

Torres and Baier [17] enabled the translation of an LTL
expression into an alternate representation in a polynomial
time that also facilitated the addition of new constraints with
time using the primitives of alternating automata. This was
done by using additional fluents. However, the translation
does not ascertain the representation of all possible tran-
sitions that can severely affect the optimality, even though
getting a feasible solution may be possible. Camacho et al.
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[18] also aimed to represent a general LTL formula as a
PDDL, while the conversion could theoretically be exponen-
tial. The conversion still requires a search for an optimal
solution without good heuristics that can be exponential.
Menghi and Garcia [19] considered sub-missions to be solved
by the different robots in a decentralized manner in a partially
known environment. The robots could plan to meet, which
was also associated with uncertainty. The authors’ performed
optimistic and pessimistic planning of every robot, handling
the meeting constraints. Decentralization and decomposition
enable reducing the computation time. However, a classic
search over the problem itself could be exponential, espe-
cially when done with an aim of computing plans with the
optimal cost.

Sampling is a natural response to deal with systems with a
massive complexity. Sampling has also been applied to mis-
sion planning. A good approach [20] is to sample out trees
in the transition system, which is used to synthesize a fea-
sible and optimal path that solves the mission. A random
configuration is used to grow the tree, similar to the Rapidly-
exploring Random Tree [21, 22] formulation. Only feasible
sequences are expanded. In another similar work Kantaros
and Zavlanos [23, 24] proposed strategies to generate the
samples and grow the trees while searching for a solution
that satisfies the temporal logic specification. Sampling can
significantly prune the search and result in a much faster
algorithm. However, the verification still requires a conver-
sion of the temporal logic into an automaton, which can be
exponential in terms of the number of variables used to rep-
resent the system. Here, the focus is on the problem when the
conversion of the mission formula into an automaton is itself
infeasible in the first place. The proposed work restricts the
language to the use of AND, OR, and sequence only that is
polynomial verifiable, while the restriction is needed as oth-
erwise the problem with an exponential complexity cannot
be solved optimally for very large problem sizes.

The problem of mission planning has particularly not been
solved by Evolutionary Computation. A particular work to
discuss includes Xidias and Azariadis [25] wherein the mis-
sion was to visit several sites by multiple robots using a
centralized Genetic Algorithm. Lu and Yue [26] solved the
multi-robot Travelling Salesman Problem by using a decen-
tralized technique of allocating sites, which was optimized
by using Ant Colony Optimization. In the same problem, the
notion of preference was added by Kala [27] while solving
by using decentralized evolutionary computation. Senol [28]
accounted for the human-robot interactions while optimiz-
ing a mission using a mixed-integer programming technique,
without Boolean and temporal constraints. The problem with
all the current approaches is that the temporal operators are
rarely modelled and accounted for, which restricts the gen-
erality of the solver and thus the solver can be used in a few
limited scenarios only. Using a single robot, a prior work of
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the author [29] incorporated the specification of Boolean and
temporal constraints in the robot. The approach inculcated
a sequencing temporal constraint into a generic Travelling
Salesman Problem. The paper used no heuristic like Dynamic
Programming that is included in the proposed work. The
paper did not have any incremental nature and could not
incorporate multiple tasks. The paper forms a very initial
work of the author in the domain.

It is also worth noting the approaches used by the classic
planning techniques, which form another school of learn-
ing to approach the same problem. The classic planning
approaches are relevant to the work because many mission
problems can also be specified as classic planning problems.
Traditionally costs were not incorporated in the classic plan-
ning techniques and optimality was not considered in these
approaches. Recently, especially with the increased use of
PDDL3 [30, 31], the costs are now being actively taken into
consideration. The problem with the approaches is again the
absence of the temporal operators. Handling temporal con-
straints in classic planning techniques is quite different from
the ones in temporal logic. A naive user can write an LTL
formula denoting the mission; however, conversion of the
same formula into a format that can be directly fed into a
classic planning library is still not possible for a naive user.
This makes classic planning not preferable for robot mission
planning, where the mission needs to come from an end-
user. The proposed approach considers the costs of travelling
from one place to the place where the action needs to be per-
formed, and additionally the cost of the action. The domain
also faces the problem that the actions are continuous and
geometric for the robot, however, are abstracted to Boolean
states in classic planning. The integration of tasks and geo-
metric planning [32-34] is another good field of study that
has recently gained momentum. The motion obtained by any
geometric planning algorithm can be used by any low-level
reactive planning or control algorithm for the motion of a
team of robots. In the proposed approach, the cost between
every pair of consecutive actions shall eventually be queried
by the planner for feasibility and cost. On the other hand,
the number of actions is small and finite. Therefore, a cost
matrix is computed at the start instead of computing it on
the fly during planning. Artificial Potential Field [35, 36] is a
popular choice for moving robotic teams. A similar approach
is also used in the proposed work.

Lagoudakis et al. [37] considered a mission where a team
of robots had to visit all the mentioned sites. The authors
implemented a multi-round auction, where the robots cast a
bid using Prim’s heuristic method. The method is dynamic,
and changes are rectified in the future rounds of the auction.
The specific problem has a good heuristic available in the
form of a Prim’s algorithm that gives an optimality guaran-
tee, while the proposed approach has no such heuristic, and
optimization is used instead. For the same reasons, instead
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of a heuristic assignment of robots to the tasks, the robot
allocation is also done as a part of the same optimization
problem.

4 Problem definition

The problem is that several users have given several instruc-
tions to a team of robots called tasks. The tasks are writtenin a
formal language and specify the operations to be done by the
robot with ordering and choices that affect the optimality. The
robots must distribute the tasks among themselves optimally
and plan the tasks optimally. The solver requires a verifica-
tion system that checks if a string satisfies the constraints
of the language. The problem is then to generate the opti-
mal sequence as per the objective criterion that adheres to all
the task constraints. The challenge in the problem is that the
tasks shall be continuously added by different users, while an
accomplished task is deleted from the mission specification.
The solutions are thus continuously adapted as per the lat-
est mission specification. The robots continuously work and
accomplish different tasks, while the time of operation of the
robotic team is used to further optimize the mission plans.
The robotic team at any stage will have partially completed
tasks, while the optimizer should not alter the part of the plan
that has already been accomplished. The different aspects of
the problem are given in the following sub-sections.

4.1 Overall problem

The problem is to solve a mission () which is a collection
of tasks (¢), thatis x = {¥r1, V2, ¥3, ... ¥, }, where n is the
number of tasks. It is assumed that the mission is dynamic
and changes with time, including the addition of a task v by
auser (x < x U{y}) or completion of a task completely (x
<« x — {¥}). The task (1) consists of atomic operations with
some Boolean and temporal constraints. An atomic operation
is the unit operation that the robot can be asked to perform
like to visit a place, pick and place an item, or operate a
machine. The unit operations are non-divisible, meaning the
robot cannot execute any other action till the current atomic
operation is complete. A string s consists of an ordered list
of atomic operations [01, 02, 03, ... Olen(s)], Where len(s)
is the size of the string. The set of all atomic operations ¥
= {01,092, 03, ... 05} is a part of the problem specifica-
tion, where m is the number of possible atomic operations.
It is assumed that a verification engine exists such that it can
be ascertained whether string s satisfies the requirements of
the task i in polynomial time, or s=v is polynomial com-
putable. The approach is generic to the use of any Boolean
and temporal operator, provided that the resultant language
is polynomial verifiable. However, for this paper, we restrict
the operators to sequencing (then or T'), AND operator (A),

and OR operator (V). The task i can be recursively enumer-
ated using these operators using the Backus Naur Form given
by Eq. (3)

<¥Y>=(<¢¥>)|<vv>T<y¥>|<y>A

<¢Y>|<¥>V<y>|ooozl...|om 3)

The semantics of the language that checks if the string s
satisfies the task v (sFv) is given by Egs. (4-7)

SEUITYiff Js(L:)Eyi AsG+1:end) Evn ()

S'ZI/flAlﬂziffsizlﬂl/\S':WQ (5)
SEYIVyniff sE Y1 Vs E Y (6)
skEo;iffo; € @)

Equations (4-7) break down a task i recursively into
smaller sub-tasks vr| and v». Equation (4) states that a string
satisfies ¥| then vy, if a prefix till the ith character s(1:7) sat-
isfies ¥ and the remaining string after the ith character s(i +
1:end) satisfies the task 1, which coincides with the literal
definition of then. Equation (5) states that a string s satisfies
the task 1 and 5, if the string simultaneously satisfies 1|
as well as 7. Equation (6) states that a string s satisfies the
task 1 or ¥, if it either satisfies 1| or instead satisfies
Y2, or both. Equation (7) states that a string satisfies the unit
operation o; if the string somewhere at any place asks the
robot to perform the operation ;.

A verification system is made that checks for the satis-
fiability of any general string for a formula specified using
these operators. The verification system is used to check for
the feasibility of the sequence, while the optimizer attempts
to find the action sequence for the tasks, whose Dynamic
Programming based fusion gives the trajectories of the robot
used for cost computation.

It is assumed that there are several robots R = {ry, r2, r3,
..., r;} available that collectively solve a mission, where z is
the number of robots. However, a task may require a robot to
physically carry objects, which cannot be transmitted across
robots on the fly. Therefore, the entire task ¢ must be solved
by any robot, but only one robot. Tasks that do not have such
constraints can be supplied as multiple tasks. Let &: x — R
be the function that maps a task (i) to a robot r = £().

Many practical scenarios were considered before putting
a restriction on not allowing multiple robots to partly solve a
task. If a task can be divided into multiple robots, the system
would accept it as multiple tasks rather than a single task.
Consider that a person wants 5 items (say A, B, C, D, and E)
from 5 different places. Now it is possible to say that this is
1 task that can be easily divided by the robots for the sake
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of efficiency. However, the system will interpret it as 5 tasks
(get A and deliver to the user; get B and deliver to the user; get
C and deliver to the user; get D and deliver to the user; and
get E and deliver to the user). The optimizer will consider
several possible task assignments among robots, including
assigning some of the items to one robot and some others to
another robot.

LetT' = {t'1,7'2, 7’3, ... T';} be the order of performance
of atomic operations by all robots where the subscript denotes

4
the robot number (say r). 7, = |oy,0{,05,...0"
len( ,)

specifies the order of atomic operations to be performed by
the robot r, where len(z’,) is the number of operations. The
" is intentionally added to representation to annotate that the
trajectory is at the symbolic level and not the real continuous
trajectory traced by the robot. Let c: £2 — R + be the cost
function such that c(loc(o;),0 ;) is the costin physically going
from the mission site of o; (called loc(o;)) to the mission site
of o; and performing the operation o;. Let S, be the current
location of robot r. ¢(S,,0;) denotes the cost of going from
the current location of robot r to the mission site of o; and
performing the operation o ;. Here, the cost function is taken
as the time for modelling. The total cost C(r) incurred by the
robot r is given by Eq. (8)

len(z/(r))—1

() =c(Sad)+ Y

i=1

c(loc(o}). o7,y) ®)

Here len() denotes the length of the solution. Since the cost
is taken as the time, the aim is to solve all tasks in as little time
as possible. The optimization objective is the makespan, or
the total duration of time till the last working robot completes
the last operation completely. The total cost of all robots
combined is hence given by Eq. (9).

cost(T') = max(C(x))) )

rer

Let Tioc(oi)loc(o)): [0,1]1— cfree pe the trajectory from the
mission site of o; (loc(o;) or source) to the mission site of
oj (loc(oj)). Here, ¢free js the free configuration space of
the robot, or the set of configurations such that the robot
neither collides with the obstacles or itself. In our case, the
robot’s configuration is defined by its position and orientation
or (x,y,0). The configuration space is all possible configura-
tions that the robot can take or the set of all (x,y,0) possible,
commonly referred to as SE(2) or the Special Euclidean
Group of order 2. However, a subset of these configura-
tions will involve a collision between the robot and some
obstacles detected by collision checking libraries, called the
obstacle-prone configuration space or ¢°°. The remaining
configurations constitute the free configuration space or ¢

where the robot does not collide with any obstacle. ¢ is the
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set complement of ¢°°° over the super-set ¢ or ¢'™*° = ¢\¢
Computing the trajectory is a classic robot motion plan-
ning problem [38, 39], wherein the problem is to compute a
trajectory from the origin Tioc(si),loc(sj)(0) = loc(o;) to the
destination Tioc(oi),loc(cj)(1) = loc(a ), such that all interme-
diate points are collision-free Tioc(oi),loc(oj)(€) € cfree 0<e
< 1. The cost function is taken as the time required to trace the
trajectory and operating, or c(loc(c;),0;) =T 10c(0i),loc(o )1V
+ op(o ), where lITioc(o4),loc(o)ll 18 the total distance of the
trajectory, v is the average speed of the robot and op(o;) is
the cost of performing operation o;. It may be noted that this
trajectory and costs are computed assuming a static map only
and the actual time may be larger if there are other humans
and dynamic obstacles. The trajectories and costs for all mis-
sion sites can be computed in advance with the static map of
the place.

The problem is hence to find the optimal sequence for
every robot and the optimal robot assignment to every task,
or Eq. (10)

T* &% = arg 1%1/121 cost(T') (10)

such that all tasks in the mission are satisfied, or Eq. (11)
T EY, VreR, 1,eT, yvex:EW)=r (11)
4.2 Incremental nature

Since the missions are continuously added by the user and
deleted, the evolutionary optimization must run in parallel.
Adding a new task by the user (x < x U{v{}) and delet-
ing the old task completed by the robot (x <—x — {¥'})
are not difficult and do not change the problem formulation.
However, suppose the robot trajectory 7/, solves the task 1,
where r = £(¥). The robot starts the execution of the trajec-
tory. Suppose at any time 7, t’,(1:¢,(r)) part of the trajectory
is already executed. Here, ¢,: R — [0,len(7’,)] is the func-
tion that maps the time to the index of the planned trajectory
at the symbol level. So, at time ¢, the robot will be executing
the operation t’,(¢,(¢)). The mapping can be understood by
the ideal case wherein the robot operates at the assumed aver-
age speed of v. Hence, at time ¢, the robot must be executing
the operation given by Eq. (12).

i+1: (C(Sr,alr) +]é:] c(loc(a}),a}ﬁrl) > t) C(S,, 01’) >t
1 C(Sr,al’) <t
(12)

o (1) =

The iterator j iterates over the complete trajectory of
robot r that is present as a sequence of operations

|:01’ o2 01’ ( ,):| with the source of the robot as S,.. The
en| 7,

”
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cost of the trajectory till the i + Ith item of the sequence is
thus c(Sr, 01’) + 23:1 c(ajf, 0;+1). If for any operation this
cost is more than the current time ¢, it means that the i + 1th
operation for the robot is being executed, which is the output
or the value of ¢, (7).

It is worth noting that the index updates when the robot
starts executing an operation and not when it completes exe-
cuting the operation. The trajectory t/,(1:¢,(¢)) has already
been executed and therefore cannot be altered. This part of
the trajectory is said to be frozen for the optimization process.
Furthermore, unless the task execution has not yet started, or
7/,(to:t) = @, the robot assignment r = £ (1) cannot change,
which is an added constraint for the solver. It must be stressed
that Eq. (12) assumes that the actual time taken by the robot to
complete every operation is known. However, the cost func-
tion only gives an estimate, and the actual robot may take a
longer or a shorter time. As an example, the estimate to take
the signature from a person maybe 1 min, while it may take
longer as the person is talking over a phone. Hence, Eq. (12)
is not used to estimate the index of the operation in the trajec-
tory that is currently being executed. The index is calculated
by making the robot signal the successful completion of a
task.

The mechanism of freezing is such that the operations are
non-preemptive. That is once a robot starts executing an oper-
ation and later a sequence is found such that itis better to leave
the current operation unfinished and start with the new oper-
ation, the robot shall not leave the operation. This is because
the user may have been notified for the start of the operation
and cancellation may not be good for acceptance. Further,
for many robots, such termination of operations may not be
feasible. A preemptive version can also be implemented by
a small change of code.

4.3 Solving by decomposition

If optimization is carried directly onto the problem, it shall
become a centralized evolutionary computation that is known
not to work unless the number of robots, operations, and tasks
constituting the mission is very small in number. The absence
of good heuristics like clustering for a Travelling Salesman
Problem, further makes it hard to decompose the mission into
simpler sub-missions to be solved by using a decentralized
technique. Using centralized evolutionary computation fur-
ther means that the addition of a mission does not mean that
the past genetic individual can be easily modified to accom-
modate the new mission, nor does deletion of a mission mean
that the relevant variables can be deleted from the correspond-
ing individuals since they may be widely distributed in the
entire individual that cannot be traced.

To best capture the heuristics of the mission, that a mission
constitutes of multiple independent tasks, and to aid in the
incremental addition and deletion of tasks in the mission, the
problem is decomposed into two components that work hand
in hand, one is to solve independently for all tasks and the
second is to integrate the solutions of the tasks to make a
solution of the mission.

In the reformulated problem, let rf;Sk be the sequence of
operations to be performed by the robot r = £(y) for the
task 1, such that r;;“k F . The path to be taken to solve the

len(

task is hence given by rf;“k = |:06/’, af/’, 02‘//, .. ow( task):|’

where len (I$Sk> is the length of the task solution. Let the
sequence of operations to be performed by the robot be given

! r r r r 3 !
by, = [‘70 201202+ Oy ] The only constrainton t’,

is that it must satisfy all tasks, that is Eq. (13)

TEYVY e x 1 EW) =r (13)

Many realistic applications including the operation of
robots in home and office environments have the property
that tasks are given to the robot, instead of asking the robot
not to do things, meaning that the language is negation-free.
The primitive negations like avoiding obstacles, not mov-
ing to a hazardous region, etc. can be handled by the path
planner. For such languages, if a string satisfies a task, any
super-sequence of that string also satisfies the task. More for-
mally, consider a general string s which is a subsequence of
a string P, If s satisfies the task i, then P also satisfies the
task ¥. Let sIP denote s as a subsequence of P, or Eq. (14)
holds
sEY=PFEy, ifs|P (14)

This is formally given in the "Appendix" section as The-
orems 1-5. If a robot r has a set of tasks assigned to it, the

robot trajectory (say, t,) that is a super-sequence of all task

task

trajectories (rw ) satisfies all tasks given to the robot as per

theorem 5. In other words, Eq. (15)
rNEY = By, i Ve xEW) =
(15)

The equation should be read as if the string r&f‘Sk

satis-
fies the task 1, then a superstring (say ‘L’r/) of ‘E$Sk (denoted
by rf;Sklt’r) also satisfies the task i, for all such tasks
assigned to the robot r. It is given that all task trajectories

satisfy the given task, or r]‘/j“k F 1. We consider only the
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sub-set of tasks assigned to the robot 7, or the tasks for which
&() = r. For all such tasks, since tf;‘Sk F v, a super-

sequence of 7./*, say T <I$Sk|rr’) also satisfies ¥ (7, F )
as per theorem 5. Further, we prove that the addition of new
terms to 1:,/ apart from those necessitated as per the definition
of super-sequence are unnecessary by theorem 6 given in the
"Appendix" section.

The implied constraint on the construction of the trajectory
of the robot is hence to construct a super trajectory of all
trajectories of the tasks, such that no extra element is added.
This trajectory and constraints are put into Egs. (10) and (11)
to get the optimal path. In other words, instead of directly
computing the robot sequences t’,, the optimizer calculates

the task sequences r]‘/j“k at one place and simultaneously fuses

task sequences 72X to produce the robot sequences 7/, at the
other place. This means the addition of atask (x <— x U{¢'})
is simple since the optimizer will add a separate sequence for
r:;“k. Similarly deleting a task (x < x — {v}) is simple, in
which case corresponding rflj‘Sk is simply deleted.

However, a larger problem is when the robot part solves
a task, by executing trajectory t’,(1:¢,(t)). Now freeing
7/,(1:¢,(1)) is not an option since the optimization happens
on tlt;‘Sk. This requires a mechanism to link o €7/, to o
ek,

The negation-free constraint (or the constraint that the
robot can only be given operations to be performed that can
be specified without using the negation) has an important
implication. This makes the tasks non-conflicting. Therefore,
achieving one task does not make the other task unsatisfiable.
If a future task is added and correspondingly some opera-
tions are added to achieve the same task, the negation-free
constraint suggests that the operations do not make any of the
previous tasks unsatisfiable. The solver incrementally adapts
to the tasks that come. If the tasks were not conflict-free,
a future task could have made a previous task infeasible,
requiring a solution to be re-computed. In such a case, the
incremental approach would not effectively work, and the
solution could have been as poor as a complete re-planning.

5 Solution design
5.1 Overall approach
The overall methodology is given in Fig. 1. The genesis of the
solution is a mission-solving system that runs in the back-
ground and constantly adapts the current mission solution

as per the altered mission specifications, addition of tasks
by the user, and completion of (part-)tasks by the robots.
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New task Tasks

addejbyy
Unaccgmplished Task completed/
Mission artly completed

Probabilistic Map with
Roadmap mission sites
»  Evolutionary Fitness
Algorithm Evaluation
Diversity N Dynamig
Preservation Programming
Plan for Robot
each robot Controller

Fig. 1 Overall working methodology. Non shaded is the simplified pro-
gramme flow

Since evolutionary computation is used, the solution keeps
improving. This does not cause a computational overhead to
the system since the optimization for the next operation hap-
pens while the robot is physically running and executing the
current operation. Consider that the robot plans according
to which it gets its next atomic operation to perform. Even
before the robot starts executing the next atomic operation,
the operation is marked as frozen, meaning the optimizer can-
not change the next atomic operation. The robot shall take
some time to physically reach the site where the operation
needs to be done and to do the operation, sometimes along-
side a human. The time required for the same is unknown. As
the robot operates, the optimizer keeps optimizing the plan,
keeping the frozen parts fixed. When the robot completes
the current operation, it fetches the next operation as per
the current best plan, freezes the operation, and executes the
operation while still optimizing the rest of the plan. Since the
mission specification will change often, the diversity preser-
vation mechanisms are added to the evolutionary algorithm.
Also, it may be possible that the mission has some heuristics
specific to the domain of application, in which case the ini-
tial population generation needs to be done in a strategized
manner to exploit any possible heuristic.

The tasks are added to the system by interrupts generated
in the software. Upon receiving such an interrupt, the mission
specification variables and all individuals in the population
are altered to account for the new task added. Similarly, an
interrupt is generated when a robot completes an operation
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in the task. In such a case, the variables of the mission spec-
ification and population pool are traced from the completed
operation to freeze them from alteration. A special case is
when the entire task completes, wherein again the mission
specification variables and population pool is altered to delete
the relevant variables.

The individual representation encodes for all tasks in the
mission. The solution is needed as the trajectory of the robot.
The fitness is itself calculated in terms of the trajectory
of the robot. These are two different domains. Therefore,
task-encoded solutions need to be compiled into the tra-
jectory of the robot. This compilation is done optimally by
using Dynamic Programming. Dynamic Programming only
ensures an optimal fusion given some task trajectories; it does
not ascertain optimal task trajectories in the first place, which
is done by the evolutionary computation. Hence, Dynamic
Programming is called within the fitness evaluation of the
Evolutionary Computation. A similar Dynamic Program-
ming is also used as the distance function of the diversity
preservation, which is otherwise difficult since the different
individuals will have different lengths representing the solu-
tions of the tasks.

The output of the Evolutionary Algorithm is the plan or the
sequence of steps to be taken by every robot. The algorithm
sequentially gives the next operation of the plan to the robot
for execution, while the rest of the plan is further optimized
as the robot works. The execution of the operation (like going
to a place and picking a book, taking a signature, etc.) is a
capability that is assumed to be present with the robots and
can be invoked as a library function, referred to as the robot
controller.

The algorithm requires a cost function between every pair
of possible operation site to compute the total cost of the plan
that is optimized. The cost between every possible operation
site pair is stored as a cost matrix. For the same, first, the map
of the arena is made using SLAM techniques. Thereafter,
in the static map, the Probabilistic Roadmap [40] technique
is used to compute the cost matrix between every pair of
mission site possible. The operational cost of physically oper-
ating is currently kept as 0.

5.2 Individual representation

The genetic individual encodes the solutions to the differ-

ent tasks (tff“k), where a solution of each task consists of a
string. The complete individual is given in Fig. 2. Some of the

operations may have already been performed by the robot,

and therefore, the associated variables need to be frozen
which is also specified in the individual representation. The
frozen components are non-optimizable. The individual also
encodes the robot assignment for the tasks (§), which are also
frozen for the tasks for which even a single step has been per-
formed. The individual in such a genotypic form needs to be
compiled into the trajectory of the individual robot in the phe-
notypic part which is done by using Dynamic Programming.
However, a direct compilation would again make the algo-
rithm have exponential complexity and hence the fusion is
done by taking two tasks at a time in an ordered sequence. Let
O: [1,n] — x be the function that maps every index (order) to
atask, O(i) =y, which means that y» will be the ith task to be
presented to Dynamic Programming. This will be explained
when dealing with Dynamic Programming. The ordering is
also optimized in the evolutionary process and represented
in the individual.

The genotype consists of a prospective solution as a
sequence of operations for every task with the completed
operations shown in grey, along with the order of fusion
and robot assignment. Each robot needs a linear sequence of
operations (phenotype), based on which the goodness of an
individual is evaluated. The conversion of genotype to phe-
notype happens by noting the tasks assigned to every robot
and sorting the tasks as per the order values. The solution
trajectory for the task (from the genotype) is then fused by
a Dynamic Programming technique in the sorted order of
tasks. After fusion for all tasks, the fused trajectory becomes
the phenotype that can be used for fitness evaluation.

5.3 Dynamic programming based fitness evaluation

Let us first discuss the fusion of the solutions of two tasks
rf/j‘fk and t$;k, to produce a superstring that satisfies both
tasks. Let the Dynamic Programming fusion be denoted by

r:;‘fk ®p t$;k. Let d(i,j) denote the cost incurred in the fusion

task 11 5 i task
of Ty, till ith position and Ty

till jth position, that is the
optimal fusion of r&f‘fk(l :i)and rlf,f‘;k(l : j). The calculation
of d(i,j) can be done by using Dynamic Programming; how-
ever, the application also needs the fused string. The string
fused by Dynamic Programming is calculated by storing the
sub-problem that leads to a solution of d(i,j) in a new data
structure called the parent or 7 (i,j). More specifically, 7 (i,j)
is 1 if the last operation in the optimal calculation of d(i.j)

came from tfﬁk and 2 if the last operation instead came

from rlf,f;k. For distance computation reasons, the specific
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Genotype
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I3 (w1, 4), (s, 2) Vi, i (83 22, o1, o] Do S3, 03, 02, 02, 05, 01, 01, 03, 04

lo, a5, 01, 03]

Fig. 2 Individual representation and conversion from genotype to phenotype. Shaded regions are frozen for optimization

operation that contributed at the end also needs to be stored
specifically and hence let §(i,j) be the specific site where the
robot is located at the end in the optimal calculation of d(i ;).
Using the principles of Dynamic Programming, the optimal
fusion is given by Algorithm 1.

Lines 1-7 are used to initialize the Dynamic Programming
memorization table for the unit case for the cost (d), parents
(7r), and last operation (§). In this algorithm, the Dynamic
Programming is 2-dimensional since it is parametrized by
two variables (say i and ). The unit case of the 2-dimensional
Dynamic Programming is hence when i = 0 (and simi-
larly another when j = 0). This is a 1-dimensional Dynamic
Programming problem. This problem is referred to as initial-
ization because the 1-dimensional Dynamic Programming
is an initialization to the main 2-dimensional Dynamic Pro-
gramming problem. If the second input string is empty, the
solution of fusion till the ith character of the first input string
is the first string till the ith character (with the corresponding
parent) whose cost is computed and stored. Similarly, for the
case when the first input string is empty.

Lines 8-15 form the main logic of Dynamic Programming.
All sub-problems are solved from smaller to larger. Line 10
decides for the solution of d(i,j) whether the sub-problem
d(i — 1,) is a better candidate or the sub-problem d(i,j —
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1), given that both decompositions are possible. Leaving the
frozen conditions, the line states that if adding the character

rf;‘fk(i ) to the sub-problem, d(i — 1) is better than adding the

character rf/f‘;k (j) to the sub-problem d(i — 1,j), the first sub-
problem will be used and vice versa. The frozen constraints

additionally ensure that if one of the two characters (tf;‘lsk

(i) or rf;;k( j)) is frozen while the other is not, the frozen
character takes priority. Lines 11-12 store the result when
the sub-problem d(i — 1,j) is better, and lines 14—15 store the
result when the sub-problem d(i,j — 1) is better.

In lines 16-21, p iterates over all the sub-problems that
lead to the solution for the overall problem d(len(r&f‘;k @2)8

len(tlt/f‘;k (7))). As it iterates over all the sub-problems, the
solution is stored in 7. If the parent points to the first sub-
problem, the corresponding character from the first input
string is added at the beginning of the soliton 7 and vice
versa.
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Algorithm 1: DP Operator Do (rfp“ls", tf,f‘;k)

//nitialization
1. d(0,0) < 0,7(0,0) < 0,5(0,0) < S,
2. forifrom 1 to len(ty*"
3. d4(,0) «d@i—1,0)+c (5(1 - 1,0), Tfask(o)
4. (i,0) « 1,5(i,0) « loc (Tfl,als""(l))
5. forj from 1 to len(rms}c)
0 d(0,)) « d(0,j = 1) +c(8G,) - 1,7 ()
T m(0,)) « 2,6(0,)) « loc (z5())
//Dynamic Programming
8. for i from 1 to len(zy**
9. for j from 1 to len(7y>")
10. if =frozen (TtaSk(l - 1)) A frozen (rt‘“k 1))
- (frozen( t“Sk(l - 1)) A —frozen (‘rfp“s" - 1))) A
di—1,))+c (5(1 -1, Tt‘”k(l)) <d(,j—-1+c (5(1 j—1, rms"(l))
1. d(i,j)) «d(i—1,j)) +c (6(1 1,/), Tms"(l))
12 n(i,j) < 1,8, /)  loc (T ()
13. else
14. d(i,j) < di,j = 1) +c (8G,) - 1,755 ())
5. n(i,) < 2,8,))  loc (T ()

//Tracing the path

16. 7 0,pe (len(rms") len(r&,‘f"))

17. whilep(1) >0Vvp(2) >0

18. ifn(p(1),p(2)) =1

19. T e [Ttask(p(l)) ] [p(D) = 1,p(2)]
20. else

21 T [t (p(2), 7] p < [p(D), p(2) — 1]

22. returnt

The unit operations (e.g. collecting an item, getting a doc-
ument signed, etc.) are exclusive and the robot cannot do
two unit operations at the same time. The solution to a task is
performing multiple unit operations sequentially. There are
synergies between the solution of two tasks, that is the robot
will perform multiple steps of different tasks interchange-
ably. This is primarily done by using Dynamic Programming.

As an example, consider that sequentially solving [0,
02, 03] is a valid solution of the first task, while sequentially
solving [0 4, 0p] is a valid solution of the second task. Here,
all o; are unit operations, while these are two of the many
tasks for a robot. Now the valid solutions for simultaneously

solving the two tasks are [0 4, 0p,01,02,03]),[04,01,0p,02,
03],[04,01,02,0p,03],[04,01,02,03,0p],[01,04, 0,
02,03),[01,04,02,05,03],[01,04,02,03,0p],[01,02,
0q,0b,03],[01,02,04,03,0p,],[01,02,04,0p,03],[01,
02,04,03,0p],and[o01,07,03,04,0p].Inall these the robot
is switching between the solution of the first task [o'1, 02, 03]
and the second task [0 4, 0p]. Dynamic Programming selects
the best combination out of all these combinations, while
Genetic Algorithm selects good solutions ([0 1, 02, 03] and
[0 4, 0p]) that after the application of Dynamic Programming
become the best solution.
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The frozen variables have already been operationalized
and therefore should be used before any non-frozen variable
in the Dynamic Programming fusion. In other words, a new
task cannot come in between the solution of a task that has
already been performed and frozen. A requirement is that
the linear plan 77 = {t/y, t/2, t'3... T/;} should facilitate
mapping to every detail available in the genotype and hence
every element in the plan and hence all variables used in the
Dynamic Programming, including those coming from the
task plan 7’ y are annotated with their frozen status, robot
assigned, a task that the variable is a part of.

Here care must be taken in the implementation of S, as
the source of the robot. It cannot be taken as the current posi-
tion, since the individual also encodes the operations already
performed. It cannot be the initial source since no tasks are
available at the time the robot starts, and those are incremen-
tally added. Till a robot has some frozen tasks it does not
matter which source is taken since the frozen parts are the
same throughout individuals which produce the same fusion
whose cost is a constant addition. The source for a task is the
robot’s position at the end of its current operation, at the time
the task is inserted, which needs to be updated if a robot has
no operations frozen.

Let Tiask = {r{aSk, tﬁaSk, r_qfaSk e t,tlaSk} be the trajectory
corresponding to the tasks as stored in the genotype. The
fusion is between multiple tasks for a robot and hence the
fused sequence is given by Egs. (16) and (17), and the cost
of fusion is given by Eq. (18)

Tr/ = tg?ll() ®p fgilg) ®p TS?IZ() @D Tglséll(en(r;)) (16)
o =@ (T60). £ =0 =r (17)
cost® (Tyek, 0, £) = C(1)) (18)

cos.ttf‘Sk (Tiask, O, &) denotes the cost of the task plans T gk
with the order of fusion O and robot assignment function &
for the robot r. C(z',) is the cost of the sequence of opera-
tions 7’,. The associativity is strictly from left to right and
the order of taking the tasks is as per the order specified in the
evolutionary individual denoted by the O() subscripts in the
notation. For each robot, a penalty is added in proportion to
the number of tasks that are assigned to a robot but not solved
by the robot as per the evolutionary individual. The magni-
tude by which the robot misses to solve the mission is also
coded if the verification engine reports the same. The robots
have problems in doing too many operations, and therefore,
a small penalty is added for smaller solutions (in terms of
length and not cost). Since optimality is of concern, the indi-
vidual is also assessed and if a task is satisfied by the initial
part of the individual only and all genes are not needed to sat-
isfy the task, the string representing the solution for the task
is trimmed. This acts as a local delete evolutionary operator.
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The fitness function is the maximum cost among all robots
given by Eq. (19).

Fitness (Tiask, O, €) = max costi™ (Task, O, &)
r
+a E,cost™™ (T, 0, 8)
+ B Ty penalty (rfpaSk) (19)

+y Zylen (7))

Here o is a small constant for the summation factor.
>>1 is the penalty constant and penalty(rmkw) function
return the magnitude by which r$5k violates 1. The penalty
function can be adapted as per the language. As an exam-
ple, if the task i asks the robot to sequentially do several
complex operations (atomic operations with Boolean con-

straints), however, the robot only a few of them, then penalty
(tf;“k) is the number of operations in the sequence that were
not performed by the robot. y is a small constant to penal-
ize too many operations and len<rf/f‘5k> is the length of the
solution of the task.

The fitness function can thus be seen to be the cost of the
robot working for the maximum time, with a small contribu-
tion coming from the other robots. There are penalties for not
completely solving a task and for having a robot do too many

operations. The fitness function is primarily optimized by

changing the sequence of operations that solve a task <'L’$Sk

and by changing the robot assigned to tasks (£). Trying all
combinations of all robot operations can be computationally
expensive. Hence, the planner considers every robot sepa-
rately. The planar first notes the list of tasks assigned to the
robot. The planer then considers all the operations associated
with every task. Every task gives one sequence of operations.
The sequences of all operations in all tasks are integrated into
one sequence by using Dynamic Programming. This gives
the sequence of operations (along with cost) of every robot,
used for the fitness calculation. The evolutionary algorithm
optimizes this fitness function.

This also points to the relation between evolution and
Dynamic Programming. Dynamic Programming is an inte-
grator that integrates the task sequence of operations to
produce a sequence of operations to be performed by the
robot. The evolution hence optimizes the sequence of opera-
tions to solve a task and not the sequence of operations to be
solved by the robot, which is an easier problem. Informally,
Dynamic Programming may be thought of as a local search
applied to every individual in every generation.
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5.4 Dynamic programming based diversity
preservation

Since the tasks are continuously inserted, frozen, and deleted
from the mission specification, diversity preservation is
important to use. More generally, the optimization problem
is against a dynamically changing fitness landscape, or the
optimization is for a problem whose fitness function keeps
changing due to the change in the mission specifications. A
conventional optimization algorithm aims to get convergence
over time, possibly converging into a global optimum. How-
ever, diversity preservation techniques add constraints that
make it less likely to delete an individual that adds to diver-
sity by being a member of an under-represented area. This
significantly delays or avoids convergence. If the fitness func-
tion is dynamic, a global optimum may later become a local
optimum, and a local optimum may later become a global
optimum. For example, it is possible that a sub-optimal plan
later becomes optimal due to the insertion of a competing
task in the system by the user. The convergence into the cur-
rent global optima is thus not preferred since a change in the
fitness function may make the problem converged into what
will later turn out to be a local optimum. The aim is now
to keep enough individuals spread across the fitness land-
scape, such that a change in the fitness function means that
the nearby individuals can quickly adapt and change the evo-
lutionary pressures to attract more individuals towards the
current global optima. Diversity preservation is hence useful
to maintain a diverse spread of individuals in anticipation of
a change in the fitness landscape.

The crowding-based diversity preservation is used
wherein the child is generated by using genetic operators,
however, the child replaces the closest of the sampled set
of parents, which restricts the population diversity to drop
significantly.

The implementation of diversity preservation is straight-
forward. The problem associated is the absence of a distance
measure since the two individuals in both populations have
different sizes. Let dPa(X,Y) be the distance function to
be made with X and Y as the 2 individuals of the population
pool. Dynamic Programming is used to compute the distance
between X and Y for the solution of the task i and the results
are added for all possible tasks. A problem is that the distance
between a solution of a task with itself should be zero, while
the Dynamic Programming will return the cost of the same
task as the cost of fusion, and hence the cost of the maximum
of the two tasks is subtracted. The Dynamic Programming-
based distance function is hence given by Eq. (20).

a"n (x.¥) = 2y (C (% @ 7Y

— max (C <I$S§> ,C (rf[,asll})) ) (20)

Here rfi%} and r:;‘sll} is the solution (sequence of opera-

tions) of task ¥ in X and ¥, respectively. t$‘§ ®p r&j“ll} is the
fusion of the two solutions by using Dynamic Programming
and C() function returns the cost of a solution (sequence of

operation).

5.5 Freeze aware genetic operators

The Genetic Operators consist of crossover and mutation,
and they need to be carried out for all the three variables
used, which are task solutions (tf;“k), order (0), and robot
assignment (§). Typicality is that the operations must only
alter the variables that are not frozen, which is a constraint
easy to code in both crossover and mutation. Further, the
crossover of the task solutions <T$Sk> is interesting since
the parents will be of a non-uniform size. However, crossover
between parents of different sizes can be done heuristically
as per literature available.

Two crossover techniques are used. The first is a scat-
tered crossover applied only to non-frozen parts. The second
exploits (non-strictly) combinatorial optimization character-
istics of the algorithm in which case out of unfrozen parts,
a random crossover point is taken like the 1-point crossover.
Till the crossover point, the strings are directly taken and
swapped, and inserted in the other part only if the count of
all operations does not exceed the original count. The funda-
mental is to keep the count of operations of the children the
same as the corresponding parent, and therefore, the leftover
operations are randomly inserted to maintain the counts.

Mutations are also of 2 types. The structural mutation
operations consist of deleting an operation or adding a new
operation out of var(y). Here, var(y) is a collection of atomic
operations that appear in the specification of the task . The
parametric mutation operations incorporate swapping two
operations and replacing an operation with a random one in
var(\r). The crossover and mutation of order variables (O) is a
simple combinatorial optimization, and the robot assignment
(&) is a simple parametric optimization.

Local optimization in a master—slave memetic architec-
ture is also applied since many times a good solution should
be readily available. Every individual after every few gener-
ations is subjected to local optimization. If an individual is
reasonably near to an optimum, the local optimization can
readily place it very close to the optimum that will take quite
some time for the evolutionary algorithm. The local opti-
mization thus helps in getting good individuals earlier in
the optimization process. The evolutionary algorithm ben-
efits from the improved fitness of the individuals by the
local optima that makes it easier to distinguish between the
global and local optima for guiding convergence. The fit-
ness function is additionally stored as a hash table so that
the re-occurrence of the same individual does not result in
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computation of a new fitness function by a costly Dynamic
Programming fusion and can be obtained immediately.

5.6 Reaching a mission site

Suppose a robot is operating on a plan 7/, and the robot
just completed an operation t’,(i) in the plan. Now the robot
needs to benefit from the optimizations carried and incor-
porate any addition of tasks that happened while it was
completing the operation t’,(i). Hence, the best-optimized
plan at the time of completion of /,(i) is loaded to the robot
for performing the next task. The optimal sequence loaded
by the optimizer will consist of the entire list of operations,
including those that are already over, and therefore in the
sequence, the first unfrozen operation is selected given by
Eq. (21).

nextOp(r) = 7,(j) : —~frozen(r,(j)) A Vi< frozen(z/(k))
(21)

Here frozen(z’,(j)) returns whether t’,.(j) is frozen or not.
It may be emphasized that it is assumed that the path t’,.(j)
consists of a trace of whether it was frozen in the task that it
came from, the task, and the robot associated with the task in
the genetic individual. This is possible since all information
is available when integrating using Dynamic Programming.

Since the next operation (nextOp) is transmitted to the
robot and it cannot be preempted, the same needs to be frozen
for optimization in all individuals. The same calculation is
also performed at the task level. The robot is asked to perform
the next operation of the task ¥ = task(nextOp(r)). The best
individual (best) has a task trajectory t&f‘fg‘est. Suppose the
task trajectory has been traced till the index nextTaskOp(vy/)
given by Eq. (22).

nextTaskOp () = —frozen (Tfﬁa ,Sll)(est G ))

A\ vk<j frozen (Tlt;’sé(est (k)) (22)

Here task(nextOp(r)) returns the task corresponding to
the action nextOp(r). nextTaskOp(yr) is the index of the
first unfrozen path in the same task. The trajectory rl/ﬁ,best
(1 : nextTaskOp(y/)) is frozen and therefore is appended to
all the individuals in the population. This ensures that every
individual in the population on a compilation by Dynamic
Programming produces the same trajectory that was traced
by the robot. Similarly, the robot assigned to the task is also
frozen with the current robot assigned (r), if not done already.
The task population for any individual X is hence given by
Egs. (23-26).

frozen(r{b‘best(nextTaskOp(w))) = true (23)
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Tk = [l (1 2 nextTaskOp()), 7% (k - end)| - 24)

= —frozen (rf/f‘“;‘( (k))

A=k (frozen (2% () v 2% () = nextOp (1) (5
E(W,x) =r, frozen(§ (¥, x)) = true (26)

Here frozen(£(y,x)) denotes whether the robot assign-
ment on task ¢ and individual x is frozen. An assumption in
(23-26) is that there indeed is a next operation for the robot
available and the equations do not hold good when the robot
just performed the last operation for the task. In such a case
since the entire task is done, the task needs to be deleted from
the mission (x <— x — {¥}), the task populations need to be
deleted for all individuals X, that is T x < Twask x —

{I$‘§ , along with the order (Ox < Ox — {O(Y¥)}) and
robot assignment (§x <—&x — {&x (¥)}). In the specific
current implementation, the ordering is defined as integers
from 1 to the number of tasks, and therefore, the ordering

variables will have to be re-worked for the same consistency.
5.7 Inserting tasks

An easier operation is when a user adds a new task to the
mission (x < x U {y}). This is easy because the population
is already in the format of solutions for the task and this inser-
tion means inserting, in all individuals of the population, a
new random string representing the solution of the new task.
The language considered in this paper allows constructing
feasible solutions by a simulation process described as fol-
lows. Hence, all the initial individuals are always feasible.
Let var(yr) be the operations that occur in the specification
of the task 1. Since there is no negation, all operations in the
initial population generation and thereafter shall be sampled
from var(y). Further, the architecture of the task specifica-
tion is exploited to generate the initial population by taking
a random option in the case of an OR operator, taking all
options in case of AND operation and generating a random
permutation of them, and taking temporal constraints in the
same order for adherence. Note that so far, no initial popula-
tion was ever generated, other than a blank population only.
This is because this is the only mechanism by which random
individuals are randomly generated and added as solutions
to the task incrementally.

5.8 Complexity
Since the overall algorithm is evolutionary, the complexity

for the algorithm with a population of N individuals is given
by a summation of each of the terms:
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e O(N log N) for the sorting of all individuals as per their
expectation values as a part of the selection operation (also
for the selection).

e O(N x (fitness function complexity)) for the calculation of
the fitness value of all individuals. Since the approach is
not for any specific language, suppose O(verifier(s,y)) is
the complexity of verification that the string s satisfies the
task ¥ in a language chosen by the user. The verification
of every task requires O(lyr|x verifier(s,yr)) complexity,
where || is the number of tasks. The fusion of the solu-
tion of two tasks requires an additional complexity of O(

2
t$5k ), where Ir&f‘SkI is the (maximum) length of the task

solution. An iterative fusion of [/ tasks see an increase in

the fused string length and hence a complexity of O(lyr] x

task

|7, 1x ‘rw ), where |z,| is the (maximum) length of a robot

plan. The maximum length of the robot plan s ly] x

>

task
Ty

which is the summation of all operations of a task, making
2
). The total

complexity of computing all fitness values is thus O(N

2
xlylx verifier(s,) + N xIyl* x ‘rf;“k) ). In our case,

the verification algorithm consists of the AND, OR, and
x len(yr)

the complexity for fusion as O(Iy/> x ‘T$Sk

sequence operators with a complexity O( r]t/,“k

2
+ ‘T&?Sk‘ ), where len(y/) is the length of the task speci-
fication string. This further gives the complexity as O(N

2

Il [T x len(y) + N xIprlx [of) + N xlyl? x
2

‘t&fwk ). Considering len(I//)%‘tf;Sk , the complexity is

2
)

2
e O(N x CF xlyrIx ‘rf;“k‘ ) for diversity preservation where

given by O(N xIyrI? x

task
Ty

CF (crowding factor) is the number of individuals con-

sidered for replacement of the child population, Iyl is the

task
Ty

number of tasks, is the (maximum) length of the task

2
solution. The additional factor of ‘r:h”k‘ is for Dynamic

Programming fusion and |/ is to fuse all the correspond-
ing task solutions.

The total complexity is OWN log N + N xlylx

2 2
verifier(s ) + N x> x ‘rf;‘s“ +N x CF xlyrlx ﬁ;ﬂk )
for the general case, and O(N log N + N xIyI> x r$5k +

2
N x CF xlyrIx ‘r&j‘Sk ) for the specific verification system

considered. Practically considering CF>log N and CF >y,
2

).
It may be inquisitive that the number of robots does not
appear in the complexity calculations, which is because the

the complexity is given by O(N x CF xIyIx ‘rflf‘Sk

higher the number of robots, the smaller is the sequence
length per robot and the smaller is the complexity. This means
that the worst-case appears when the number of robots is the
smallest that is used for the calculations. Even though the
complexity reduces by an increase in the number of robots,
adding robots creates new dimensions in the hypervolume of
the search space of the evolutionary algorithm that makes the
optimization a lot harder.

The approach is probabilistically optimal, like most tech-
niques that use evolution, meaning that the probability of
finding the optimal solution is non-zero. In other words, the
approach is guaranteed to find an optimal solution as time
tends to infinity. This happens because the mutation opera-
tor has the potential to suitably (and iteratively) modify any
individual into an optimal solution, while the probability of
survival of the individual by the selection operator is itself
non-zero. It is not possible to compute a theoretical bound on
the solution quality with respect to time as per the working
of the algorithm.

6 Results
6.1 Comparative analysis

Itis imperative to compare the algorithm with state-of-the-art
approaches. First comparisons were aimed at using optimal
planners. A naive implementation of the planner could not
solve a moderately sized problem because of the exponen-
tial time complexity. The Uniform Cost Search exhausted
memory, while the Iterative Lengthening Algorithm was
exhausted by time. Both searches are explained in [41]. An
optimal search could only solve the problem of up to 13 vari-
ables. Thereafter, for comparisons, the optimality criterion
was removed. The model verification approaches were used
using the NuSMV library. The library could give non-optimal
results till a problem size of 15 variables. The approach
could not convert the LTL into an automaton for model
verification because of exponential complexity. These are
much smaller than the 24 tasks with up to 15 variables per
task, totaling problems with 360 variables. Thereafter, heuris-
tic searches were attempted that attacked the nature of the
problem. Again, the search was primarily exponential to the
number of variables and thus the approach could be used
for problems with a small number of mission sites only. The
observations are not surprising. One of the simplest cases
of the proposed algorithm is to solve a Travelling Salesman
problem, for which meta-heuristic evolutionary algorithms
already have gained popularity, in contrast to all classic
approaches. Unfortunately, there is no work on evolution-
ary algorithms for generic mission planning that can be used
for comparisons.
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The term ‘number of variables’ used in our approach is
not the same as that used in the LTL. Assume a problem ask-
ing the robot to visit 5 places, say A, B, C, D, and E. In our
methodology, the problem has 5 variables that were used to
specify the problem. Let visit(A) be a propositional variable
of the classic planning equivalent problem that can have a
value of true or false at any point of time, and similarly for
the other variables. The state-space consists of all possible
values that all variables can take. Since visit(A) can take 2
values and similarly for all the other variables, the total state
space has a size 23 or 32 (instead of 5). So, for n variables
mentioned in our definition, the equivalent state space size for
a classic planning system could go up to 2"*. LTL in the worst
case can generate as many states as in the classic planning,
using additional states for handling the temporal constraints.
Hence directly comparing the term ‘number of variables’ for
the proposed approach and the same term in LTL or classic
planning systems is not valid. Different operators have differ-
ent ways in which they affect the working of the algorithm.
The OR operator makes the problem a lot easier as compared
to the sequence, which is reasonably easier as compared to
the AND operator. The results are with minimal use of the
OR operator and sequence operator, and with maximum use
of the AND operator.

The algorithm hence is compared with a baseline Genetic
Algorithm that is the same as the proposed approach, how-
ever, optimizes the fusion to produce a linear path for
the robots instead of using Dynamic Programming. This
algorithm is henceforth called “without Dynamic Program-
ming”, a short form of the Genetic Algorithm optimization
without using Dynamic Programming. A non-incremental
variant of the proposed algorithm is also tested, hence-
forth called “with dynamic Programming”, a short form of
the non-incremental Genetic Algorithm optimization also
using Dynamic Programming. The proposed algorithm is
an incremental Genetic Algorithm optimization also using
Dynamic Programming. The problem of comparing these
algorithms with the proposed approach is that in the pro-
posed approach, the robot keeps travelling and deletes the
completed tasks, which changes the fitness function, while
in other approaches, the robot only stays at the source till
the optimal sequence is computed. As a result, the robot
was not allowed to move in the proposed approach as well
for analysis. The results were compared with random prob-
lems of a different number of tasks. Each task specification
used 5 to 15 atomic operations in their specifications. The
tasks were specified by using three operators which are AND
(A), OR (V), and sequencing (7). Since all operators are
binary, the number of operators is 1 less than the number of
operands (atomic operations). The toughest operator is the
AND operator, which was generated with a probability of
0.7. The sequencing is simpler to optimize as the elements
of the sequence may be solved independently and the results
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appended gives a reasonably good solution of the overall
sequence. The probability of the use of sequencing was thus
0.2. OR is the simplest operator which rules out some atomic
operations to be performed and hence the probability was
kept as 0.1. To avoid the OR operation making the overall
task very simple (say making the task as a simple opera-
tion OR a high complexity task), the OR operator was used
within parenthesis and a very small number of operands, in
the absence of sequence operator representing the conjunc-
tive normal form. The problems involve 5 robots.

The comparative results for small and large problem sizes
are shown in Fig. 3. Figure 3 also shows the costs rela-
tive to the optimal value. The proposed approach performed
significantly better than GA. Under the setting, the incremen-
tal and non-incremental variants of the proposed algorithm
become the same since the robot is not allowed to move.
In the incremental version, the tasks are added one after
the other. Typicality was that the incremental version per-
formed minutely better consistently, meaning that it is better
to optimize every task one by one and then add it to the
population pool representing the entire population, which
makes another advantage of the work. For the case with 4
tasks, the non-incremental version outperforms the incre-
mental version since the problem is not complex and the
non-incremental version allows generation of a new solution
considering all the interaction between all tasks, while the
incremental version attempts to initially build over the solu-
tions with the existent tasks that can be somewhat restrictive.
The total execution time may initially seem large. How-
ever, the tasks are complex, and the optimization happens
as the robot performs. It was observed that every unit action
involved the robot to approach and interact with the human
which took an extremely long time in contrast to the times
used for the experiments.

It is imperative to see how the algorithm behaves as the
number of tasks is increased. The convergence obtained for
all the discussed algorithms is shown in Fig. 4. As the number
of tasks increases, the convergence gets slower. The larger be
the number of tasks, the higher is the overall cost. Therefore,
the cost is also plotted relative to the convergence optimal
value. The proposed algorithm adds tasks one after the other.
This gives it a very good starting point and gives it an overall
early convergence. Even though increasing the number of
tasks delays the convergence, it may also be seen that a major
proportion of the convergence happens very quickly, for a
reasonably high number of tasks. It is unlikely that the robot
will do too many tasks simultaneously at the same time.

A better manner of understanding the scalability of the
algorithm is to plot the convergence time against the increas-
ing number of tasks. The plots for obtaining 80% of the
convergence value and 85% of the convergence value are
shown in Fig. 5. Generally, increasing the number of tasks
increases the convergence time. However, sometimes adding
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Fig. 3 Comparative results

a task makes the solver biased to get a solution that also
simultaneously solves the other task. Therefore, sometimes
the time decreases. It takes sufficiently more time to get 85%
convergence in contrast to getting 80% convergence. The
plots are only shown for a smaller number of tasks for the
approach without dynamic programming since it is unable to
get the set desirable value till the set timeout.

Finally, the convergent values reached by the different
algorithms are shown in Fig. 6a. As the number of tasks
increases, the robots must invest more traversal time. Fig-
ure 6b specifically shows the convergent costs relative to the
converged optimal value. A value of 0 is therefore achieved
by the best algorithm, while the closer the value is to 0, the
better is the algorithm.

To understand the approach better, the algorithm is further
compared against 7 different algorithms representing some
greedy heuristics.

1.
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Random Genetic Algorithm: The first algorithm is a
naive implementation of a Genetic Algorithm that gen-
erates random strings, tests the validity of the strings, and
computes the fitness function. The algorithm does not use
any language-specific heuristic. After prolonged runs, it
was observed that the algorithm could not generate any
feasible solution for the mission.

Random Search: Another algorithm was used for the
comparisons. The algorithm generates feasible solu-
tions of tasks using the language-specific heuristics.
The task solutions are randomly fused into a mission
solution. There is no implementation of a Genetic Algo-
rithm like an optimization algorithm. The algorithm only
does random searches. The solutions generated using
the approach were feasible due to the language-specific
heuristics, but the solutions were extremely poor in terms
of cost.

Random Search with Dynamic Programming: An
attempt was made to improve the above algorithm by
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Table 1 Comparative analysis of different approaches for different problem sizes
No. tasks GA GA with Proposed Random Random Random Greedy Seq solve  Greedy Greedy
without DPP GAS searchd search robot tasks® solver? solver
DP? with DP®  assignf with DP!
2 7380 7371 7366 No Sol 8078 8078 7353 7273 11,328 11,328
4 12,043 10,693 10,916 No Sol 13,163 12,881 11,711 12,975 20,226 20,226
6 19,795 19,772 18,185 No Sol 25,498 24,447 22,708 21,148 32,433 29,343
8 22,341 21,190 20,650 No Sol 34,941 29,723 24,025 26,247 37,092 31,927
10 29,976 25,035 24,814 No Sol 47,684 36,538 29,890 34,380 48,609 36,892
12 34,996 27,632 27,414 No Sol 54,374 39,474 33,139 42,297 57,223 41,508
14 41,349 32,137 29,907 No Sol 69,788 45,905 36,100 49,703 67,589 46,106
16 44,665 33,616 32,104 No Sol 82,922 51,065 41,733 56,037 77,586 49,072
18 47,925 35,653 34,654 No Sol 89,154 53,317 42,978 58,757 82,062 48,873
20 58,731 44,138 41,738 No Sol 97,715 55,067 51,492 71,240 98,289 53,290
22 62,083 46,748 43,255 No Sol 112,530 61,087 57,530 76,598 104,738 56,161
24 69,892 51,487 48,130 No Sol 125,553 65,465 57,635 86,027 115,883 61,834

The best results are given in bold and the second best results are given in italics

4Genetic Algorithm approach that does not use Dynamic Programming for fusing task solutions

Genetic Algorithm approach that uses Dynamic Programming for fusing task solutions, but all tasks are given at once rather than incrementally
€Genetic Algorithm that uses no language-specific heuristics

dGenerates random individuals, feasible as per the language heuristics

€Generates random individuals to tasks, feasible as per the language heuristics, and fuses the task solutions using Dynamic Programming
fAssigns an incoming task to the robot that will finish its assigned tasks at the earliest while optimizing the overall solution

€The robots finish one task and only then attempt the next tasks. The task solutions are optimized

h Approach visits all sites in the same order as specified in AND, visits the closest site to the current site for OR, solves the tasks one after the other,
and optimizes the robot assignment

i Approach visits all sites in the same order as specified in AND, visits the closest site to the current site for OR, uses the Dynamic Programming
for fusing the task solutions, and optimizes the robot assignment

using Dynamic Programming for fusing the task solu-
tions into the mission solutions. As expected, the results
were significantly better in contrast to a random fusion.
However, the solutions were still found to be reasonably
poor in contrast to the proposed algorithm.

Greedy Robot Assignment: One of the aspects of the
algorithm is a robot assignment problem that assigns the
robot to the different tasks. An auctioning-based system
is implemented. Upon getting a new task, the system asks
for bids from all the robots and the best bid is given the
task. The robots bid with the time of completion of their
currently assigned tasks and the robot that is expected

to complete all its currently assigned tasks at the earliest
wins the bids. Genetic Algorithm is used for optimizing
the task solutions and Dynamic Programming is used for
the fusion of the task solutions. The approach performs
well, however not as good as the proposed approach that
shows the limitation of the heuristic.

Sequentially Solving Tasks: Several humans solve the
missions by completing one person’s order and only then
accepting the other person’s order. The task solutions are
optimized. This heuristic is implemented, wherein a robot
does not start a new task until and unless its current task
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Fig.7 Comparative results for different number of robots

is over. The heuristic is sub-optimal, and therefore, the
approach generates very poor solutions.

6. Greedy Solver: A greedy solution to the problem is
constructed. If the robot is asked to perform several oper-
ations using the AND operator, the robot will perform all
of them in the same order as specified. If the robot is
asked to perform one of the several operations using the
OR operator, the robot would choose the lowest cost oper-
ation from its last location in the greedy solution, without
caring about the future. For several tasks, the robot solves
one task only after finishing an earlier one. The robot
assignment is optimized. Essentially the approach does
a greedy traversal. The heuristic is sub-optimal, and this
results in paths that are as poor as a random traversal.

7. Greedy Solver with Dynamic Programming: The
above algorithm was improved by using Dynamic Pro-
gramming for fusing the task solutions. The approach
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resulted in better costs that was still reasonably poor due
to the poor choice of greedy heuristics.

The results using the above methods are given in Table
1. Except for the very small problem size, the proposed
approach performs better than all the other approaches.

6.2 Experiments with different numbers of robots

The mission planning problem is solved using several robots.
The workplaces shall normally deploy many robots to effi-
ciently solve the requirements of all the users. Therefore,
the effect of increasing the number of robots is explicitly
studied. The aim is also to see the betterment of the pro-
posed algorithm in contrast to the naive implementation of an
evolutionary algorithm that does not use dynamic program-
ming. The results for the different algorithms from small to
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Fig.9 Time to converge for different algorithms for an increasing number of robots

many robots are shown in Fig. 7. To make matters hard, the
experiments are done using the maximum number of tasks
investigated earlier, that is 24 tasks. The proposed approach
outperforms the evolutionary approach without dynamic pro-
gramming for all cases of varying the number of robots.

Again, it is further observed that giving the tasks one after
the other has a slight advantage to giving all tasks at once.
The effects of increasing the number of robots in differ-
ent algorithms are further studied by plotting the convergence
profiles. The results are shown in Fig. 8. In terms of the abso-
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Fig. 10 Complexity with the number of robots
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Fig. 11 Map of the robotics and machine intelligence laboratory along
with the mission sites

lute values, increasing the number of robots decreases the
overall cost, and therefore, the associated curves dig deeper.
The convergence profiles however show no major change
by increasing the number of robots. The relative costs more
clearly show the effects of the number of robots. Increasing
the number of robots generally makes it harder for the algo-
rithms to converge. However, unlike increasing the number of
tasks, in the case of robots, the change is not much profound.

The time to converge to 85% and 80% values are shown
in Fig. 9. Initially, increasing the number of robots shows
an appreciable change in the convergence time. However,
later the convergence time becomes invariant to the increase
in the number of robots. This happens when there is a suf-
ficiently high number of robots to do the task, and adding
more robots has a negligible improvement which has a neg-
ligible increase in the convergence time. The case of without
Dynamic Programming is not shown as the method does not
make the convergence to the specified limit value even after
a prolonged time.
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The effects of increasing the number of robots are further
shown in Fig. 10. In terms of the absolute values, increasing
the number of robots from 1 to 2 gives a significantly smaller
cost. However, a still further increase in the number of robots
has a much smaller reduction in the overall cost. The relative
costs show the goodness of the different algorithms, with the
proposed algorithm being the best and hence a relative cost
of 0.

6.3 Experimental results

The results are obtained on a Pioneer LX robot, which is a
differential wheel drive robot equipped with a lidar sensor for
2-dimensional vision and high accuracy wheel encoders for
odometry. The robot has manufacturer-supported libraries
that enable it to make a map of the workplace using the
lidar sensor, encoders, and an onboard IMU. The robot was
initially taken to the robotics facility at the Centre of Intel-
ligent Robotics at the host institute to make a detailed map,
while the robot was initially operated by using a joystick.
The different places of interest were marked while the map
was being made. The map was loaded into a manufacturer-
provided map editor to mark the other places of interest.
These places are used by the robot to convert a symbolic
place name into real-world coordinates. The map was used
to create a cost matrix between every pair of places. This
was facilitated by using a Probabilistic Roadmap technique
to fit a roadmap. The distance between every pair of places
was computed by using a graph search algorithm. This cost
matrix was loaded into the algorithm setup. The Robot Oper-
ating System (ROS) was used as a platform to allow easy
integration between different modules. The robot is already
ROS compatible with integration with the ROS navigation
stack. This helps to pass coordinates of the places to the
robot at the goal channel and the robot is autonomously
moved to the place by using the ROS navigation stack and an
acknowledgment is received on the channel. The robot uses
the lidar, map, and wheel encoders to continuously localize



Intelligent Service Robotics (2021) 14:741-771 765

Box 1 Input mission statement

(i) A user realizes that he needs a robot to continue with his experiments. He calls the robot to his place (A), gives the robot the requisition and
the robot should get the requisition signed by the secretary (S) and either of two professors (P and P»), before getting the equipment from
the warehouse (W), notify the secretary by showing the robot (S) and then give the robot to the user at A. the task is given by
(OAT(OSA(QP1 VOP ) T(OW)T(OS)T(OA)

(ii) Another user is happy to be submitting his PhD thesis. So he calls the robot to take the thesis from him at B, get it signed by the supervisor
(P1) and submit it to the office (S). the task is given by (OB)T(OP1)T(0S)

(iii) A user realizes that the robot he is working on is not working and therefore needs to be given for the repairs. Because it is a big equipment
the report must be signed by the user (at C), any 2 witness (out of 4 friends A, B, D and E) present at the time, the secretary (S) and any of the
two professors (P and P,). Thereafter the hardware is given to be secretary (S) for the official process. The task is given by
(COTUCANOB)V(QAAPDIVIOAAQE)V(OBAOD)V (OBAGE)V(ODACENT(OSA(OP1 VO P2)T(OS)

(iv) The meeting hall needs to be prepared that requires 2 new markers from any of the 2 cupboards (C; and C,), water from any of the 2
outlets (O and O2) turning on the projector (J). This should finally be reported to the secretary (S) and the requisitioner (P;), who also
collects the marker and water. The task is given by (OC;VOC2)A(OO1VOO)A(CH)T(OSAOPY)

(v) The user D wants a printout from a common printer and asks the robot to get it from any of the common printers (X; and X»), get D’s
signature on it and to submit it to any of the senior students (A, B or C) and finally to the professor (Py). The task is given by
(OX1VOX2)T(OD)T(QAVOBVOCIT(OP,)

(vi) The user P, wants to check whether all his students A, C and E are present or not and sends a robot to physically check and report to him.
The task is given by (OAAQCAQE)T(OP2)

(vii) The user P, wants a coffee from any of the two outlets (O and O;) and a photocopy from any of the two machines (X; and X5). The task
is denoted by ((0O;VOO)A(OX | VOX2)T(OP;)

(viii) The user A also wants a coffee from any of the two outlets (O; and O3). The task is given by (001 VOO2)T(OA)

Box 2 Steps that were taken to solve the mission by the robots

Visit Order

(1) added task (QA)T(OSA(OPVOP) T(OW)T(OS)T(OA),

(2) R3 heading to A for task (CA)T(OSA(OP VOP)T(OW)T(OS)T(OA),
(3) added task (OB)T(OP)T(CS),

(4) R3 heading to B for task (OB)T (OP1)T(OS),

(5) R3 heading to P for task (QA)T(QOSA(OP;VOP2)) T(OW)T(OS)T(QA),

(6) added task (OC)T(OAAOBIV(OAAOD)V (OAAQEWV(OBAOD)IV(OBAOE)V(ODAOE)T(OSA(OP VOP))T(OS), (7) R, heading to C
for task (QC)T((CAAOB)V(OAAOD)V(OAAQE)V(OBAYD)V(OBAQE)V(ODAGENT(OSA (OP1VOP2))T(OS),

(8) R, heading to B for task (OC)T((OAAOB)V(OAAODIV(OAAOEINV(OBAODIV(OBAOGE)(ODAGE)T(OSA (OP1VOP)T(OS),
(9) R, heading to D for task (OC)T((OAAOB)V(OAAODIV(OAAOE)V(OBAOD)IV(OBAGE)V(ODAOGE)NT(OSA (OP1VO Po))T(OS),
(10) R, heading to P, for task (OC)T((OAAOB)V(OAAODIV(OAAOEIV(OBAODIV(OBAOEN(ODAGENT(OSA (OP1VOP)T(OS),
(11) added task (OC1VOC)A (001 VOO)AONT(OSAOP)),

(12) R; heading to J for task (OC1vOC2)AOO1VOO2)AONT (OSAOPL),

(13) R; heading to C; for task (OC; VOC2)AO0; VOO)AONT (OSAOP)),

(14) R; heading to O for task (OC; VOC2)AQO VOO)AONT (OSAOPY),

(15) R3 heading to P; for task (OB)T(OP1)T(OS),

(16) R3 heading to S for task (OA)T (OSA(OPVOP))T(OW)T(OS)T(OA),

(17) Ry heading to S for task (OC;VOC2)AOO;VOO)AQNT(OSAOP)),

(18) Ry heading to S for task (OO)T((OAAOB)IV(OAAODIV(OAACEIV(OBAODIV(OBAGENV (ODAGENT(OSA (OP1VOP))T(OS),
(19) added task (0X;vOXa) T(OD) T(OAVOBVOC)T(OP2),

(20) R, heading to X; for task (OX;vOX2)T (OD)T(OAVOBVOC)T(OP),

(21) R heading to W for task (OA)T(OSA (OP1VOP2)T(OW)T(OS)T(OA),

(22) Ry heading to S for task (OO)T ((OAAOB)V(OAAODIV(OAAGEIV(OBAODIV(OBAGENV (ODAGENT(OSA (OP1VOPI)T(OS),
(23) completed task (OC)T((OAAOB) V(OAAODIV(OAAGEIV(OBAODIV(OBAOEIV(ODAGENT(OSAOP VOP)) T(OS),

(24) R3 heading to S for task (OB)T(OP1)T(0S),

(25) completed task (OB)T(OP1)T(OS),

(26) added task (OAAOCAOE) T(OP,),
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Box 2 continued

(27) R heading to D for task (O0X;VOX2)T(OD)T (OAVOBVOC)T(OP,),
(28) R3 heading to S for task (OA)T(OSA (OP1VOP)T(OWIT(OS)T(OA),
(29) R3 heading to A for task (OA)T (OSA(OP1VOP))T(OW)T(OS)T(OA),

(30) completed task (OA)T(OSA (OP1VOP2)T(OW)T(OS)T(OA),
(31) added task ((0O1VOO)A (OX1VOX2)T(OP2),

(32) R3 heading to C for task (DAAOCAQE) T(OP,),

(33) R3 heading to A for task (ODAAQOCAQE)T(OP,),

(34) R; heading to A for task (O0X;VOX2)T(OD)T(QOAVOBVOC)T(OP?),

(35) added task (0O VOO2)T(OA),
(36) R3 heading to E for task (DAAQCAQE)T(OP2),

(37) R; heading to P; for task (OC;VOC2)A (001 VOO)AODT(OSAOPY),

(38) completed task (OC1VOC2)A (OO VOONAODT(OSAOPY),
(39) R3 heading to Oy for task (0O VOO2)T(QA),

(40) R3 heading to Oy for task (001 VOO2)A (0XVOX2)T(OP2),
(41) R3 heading to X for task ((0O1VOO2)A (0X1VOX2)T(OP2),
(42) R3 heading to P, for task (001 VOO2)A (0XVOX)T(OP2),
(43) completed task ((0O1VOO)A(OXVOX2) T(OP2),

(44) R; heading to P, for task (0X;VvOX2)T(OD)T (OAVOBVOC)T(OP,),

(45) completed task (OXVOX2)T(OD)T (OAVOBVOC)T(OP,),
(46) R3 heading to P, for task (OAAQCAQE) T(OP2),

(47) completed task (OAAQCAQE)T(OP2),

(48) R3 heading to A for task (0O VvOO02)T(OA),

(49) completed task (0O VOO)T(OA)

while using a fusion of a deliberative and a reactive planning
technique for the motion. The physical motion happens by
using a manufacturer-specific control module. The proposed
algorithm computes an operation, consisting of the place to
be visited by the robot and the operation to perform (cur-
rently limited to saying a few statements). The goal location
is given to the goal channel and once an acknowledgment
is received, the operation is performed. Since an audio mes-
sage is the only operation now, the message is played on the
robot’s speaker, followed by a pre-specified time wait.
Consider the mission to be performed by 3 robots, ini-
tially placed at Ry, R, and R3. The initial position of the
robots along with the mission sites are shown in Fig. 11.
Box 1 shows the different tasks given by different users in
the order of input and Box 2 shows the output log of the robot
as it completes all tasks step by step. The snapshots of the
robot’s execution are given in Fig. 12. The robots chose opti-
mal sequences and completed all the tasks that were given.
The tasks are added one after the other as per a pre-specified
time in the simulator. Since there was only 1 available robot
in the laboratory, the results were first recorded in the simu-
lator under live settings, and the sequences were transferred
to the robot. Further, since the actual robot was slow, there
was enough time to highly optimize the plans, the results
of which would not have been transferable to faster robots.
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Hence, the simulations purposefully assumed faster robots.
The manipulation tasks were not done by the robot since it
did not have a manipulator and those may be assumed to have
been performed. Due to the heavy constraints of space, only
one result is discussed.

7 Conclusions

In this paper, the problem of complex mission planning with
multiple robots was attempted. Classic approaches work on
generic temporal logic and typically have an exponential
complexity and are not scalable to many variables. The pro-
posed approach uses Boolean and sequencing specifications
to specify a mission in a language that is generic enough
to represent many problems of service robotics while guar-
anteeing a polynomial-time verification. The synthesis of a
trajectory is thus done by using an evolutionary approach.
The proposed solution is hence significantly better than the
model verification approaches that have exponential com-
plexity and are solvable for only a small number of mission
sites.

The focus was to work incrementally, wherein the robot
keeps optimizing the mission solution as it operates. This
acts as a natural stopping criterion of the evolutionary mis-
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Fig. 12 Experimental results.
The first row has the execution
of robot 1, the second row of
robot 2, and the last row of robot
3

(17) R1 reporting successful
classroom preparation

i

(18) R2 heading to S for signature
and submission of repair form

sion solver. Even though a lot of work has already been done
for planning using evolutionary computation, most evolu-
tionary approaches do not consider the incremental nature of
the problem. The research has highlighted new issues with
incremental evolution which were handled in the algorithm
by freezing some genes in optimization and being conscious
of the frozen variables in all aspects of the optimization.
The problem is harder since the genotype is compiled to a
different domain to give the physically traced trajectory. In
non-incremental implementations, if a sub-optimal solution
is found early, there is nothing that the robot does to opti-
mize the plan while it is performing the mission. Further, the
robot may have to wait for a prolonged time for a mission
solution to be computed in the first place. The incremental
implementations solve both the limitations.

It is important to understand that the verification-based
approaches solve for the complete class of LTL, that is for all

(27) R1 getting D's signature
on his form

(34) R1 getting A's signature
on D's form

(18) R2 heading to S for signature
and submission of repair form

(4) R3 getting the thesis from B

(32) R3 checking aﬂégdggce of C

systems that can be specified using an LTL formulation. This
paper does not solve the same problem. It cannot take any
general LTL as an input and use approximations for solving
the same problem. The approach is only for polynomial-
verifiable languages, while the restriction that a string can be
verified in a polynomial-time already means that many con-
straints shall have to be imposed. The experiments are done
using a language that only uses AND, OR, and sequencing
operators, which is a small subset of the entire representa-
tion capability of the LTL. While this is a major disadvantage,
the paper argues that the language can cover a lot of scenar-
ios specific to service robotics, where a robotic team services
the everyday needs of humans. Attempts were made to quan-
tify and measure the approximation against optimal solvers,
by running the optimal solvers for a prolonged time. How-
ever, the optimal solvers having an exponential complexity
could only give a result for problems of small size, while the
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exponential complexity suggests that waiting for a prolonged
duration of time does not ensure a solution.

Since the approach marks a paradigm shift in the solution
class to the mission planning problem, there were no com-
petent methods for comparison available in the literature.
Comparisons were hence shown on using a Genetic Algo-
rithm as a baseline, and to make the baseline as strong as
possible, every heuristic available in the problem and used by
the solver was also added in the baseline Genetic Algorithm.
Comparisons were also made with a non-iterative version of
the proposed algorithm that took all tasks at once instead of
taking them one by one as is in the case of the proposed algo-
rithm. Comparisons were also made against several greedy
heuristics that may be thought of for solving the problem. The
proposed algorithm beats all these approaches. The system
was tested on a real robot named Pioneer LX.

Acknowledgements This work is sponsored by the Science and Engi-
neering Research Board, Department of Science and Technology
through the Project Grant ECR/2015/000406 and the Indian Institute
of Information Technology, Allahabad.

Author contributions Not applicable.
Availability of data and material (data transparency) Not applicable.

Code availability (software application or custom code) Not applica-
ble.

Declarations

Conflict of interest Not applicable.

Appendix: Theorems and Proofs

Theorem 1 The addition of a character in a string that sat-
isfies task  consisting of the sequence operation only does
not make the solution unsatisfiable.

Proof Letthetaskbe ¢ = ”a(;// Then olw ” The smallest string
that satisfies the task is s = [080 R alw ]. Let a be added to the
string at any general location, giving the modified string as
s’ = oy ,0/ ,al,orstring s’ = [oy , a, alw], or string s’ =
[a, a(;p s af/f ]. Since both operations are done by the robot in
the same sequence in all 3 options and (as per assumptions)
the insertion of a is conflict-free to the operations o;; and

alw , the new string s’ is still a valid solution to . U

Theorem 2 The addition of a character in a string that sat-
isfies task r consisting of the AND (A) operation only does
not make the solution unsatisfiable.

Proof Let the task be ¢ = ”66// A 01‘/’ ” The smallest string
that satisfies the task is any permutation of o(;p and 01‘” , say
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s = [01'/’ s a&” ] (and equivalently for s = [asp s a]‘b]). Let a
be added to the string at any general location, giving the
modified string s> = [0|", 0y , a], or string s* = [0, a, a&b],
orstring s’ = [a, Uf/’ s o(;/f ]. Since both necessitated operations
are done by the robot in all 3 options and (as per assumptions)
the insertion of a is conflict-free to the operations oy and o;// s

the new string s’ is still a valid solution to . U

Theorem 3 The addition of a character in a string that sat-
isfies task  consisting of the OR operation only does not
make the solution unsatisfiable.

Proof Let the task be ¢ = ,,G(;p \Y alw ”

that satisfies the task is either s = [o(;p Jors = [ol'p ]. Let

a be added to the string at any general location, giving the
. . . . , v

modified string s” = [0y , a], or string s’ = [a, o, | (and

The smallest string

equivalent cases for s = [alw 1. Since either of the neces-
sitated operations are done by the robot in all the options
and (as per assumptions) the insertion of a is conflict-free to
the operations o and olw , the new string s’ is still a valid
solution to . ]

Theorem 4 The addition of a character in a string that satis-
fies task \r consisting of sequence, AND, OR operations only
does not make the solution unsatisfiable.

Proof Let the task be { be recursively defined in terms of
smaller sub-tasks 11 and 5 as (i) “¢» = ;1 THEN ¢»”, (ii)
“Y =11 A7 or (iii) “¢ =1 V 2”7, Let us assume that
the theorem holds for the sub-tasks 1/ and v,. Based on this
assumption we prove that the theorem holds for all possible
cases of breaking a larger task into smaller sub-tasks. Based
on Theorems 1-3, the theorem holds for the 3 base cases of
the smallest sub-tasks possible in a recursive definition. [J

Case (i) Consider v = ¥ THEN ;. Let 51 be the string
that satisfies ¥1 and s, be the string that satisfies ¥, and
s be a string formed by the concatenation of s1 and s7, s =
[s1, s2], that satisfies ¥ = y; THEN ;. If a character a is
added in s, solution of the sub-task i1, then the theorem
holds as per the assumptions. If a character a is added in
s, solution of the sub-task 17, then the theorem holds as
per the assumptions. If a character a is added in between the
solutions, then s’ = [s1, a, s2] does everything specifiedin 1,
followed by everything specified in 15, strictly performing
yr1 before 1,. Therefore, s’ is a valid solution to the task.

Case (ii) Consider v =1/ A 5. Let s be a string that simul-
taneously satisfies both {1 and ;. Let the string s’ be created
by the addition of any character a to the string s. It is assumed
that the theorem holds for the smaller sub-tasks. Therefore,
s’ satisfies {1 and s’ satisfies 5. Since s’ satisfies both 1
and Vo, it satisfies ¥ = ¥r1 A ¥2.
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Case (iii) Consider ¥ = ¢/ V ¥». Let s be a string that sat-
isfies either i1 or ;. Let the string s” be created by the
addition of any character a to the string s. It is assumed that
the theorem holds for the smaller sub-tasks. Therefore, if s
satisfies ¢ then s’ satisfies 1|. Similarly, if s satisfies ¥o
then s’ satisfies /5. Either of the two cases shall hold since
s satisfies ¥ or ¥», hence s’ satisfies ¥ = 1 V V5.

Theorem 5 Consider a general string s which is a subse-
quence of a string P. If s satisfies the task r, then P also
satisfies the task . Let s|P denote s as a subsequence of P.
Hence Eq. (27) holds.

sEY=PEFEY, ifs|P (27)
Proof 1t is given that s |= . From Theorem 4, the addi-
tion of any character a to s, giving a string s’ also satisfies

Y. Therefore, let us add all characters that are in the super-
sequence P but not in s one by one while maintaining the

len(z"(r))—1

C(fr’/) :C(Sr’o’lr)+ Z c(loc(a}),aj’,rl)

j=1

~eN

i—1 len(z/(r))—1

j=1 j=i+l

L

c(loc(a.), ‘7;+1> + c(loc(oir), a) + c(loc(a), ol-rH) + Z

Proof Let 7/ = [Sr’ 015 0%5 07, O]y "Glgn(r,f)]’ pro-
duced by keeping all the characters in the individual tasks
assigned to the robot as per the super-sequence property. Let
us further insert a new character ‘a’ in the string at any general
position i, or 7,/ = [S,, o;,05,...00,a,0/,,... al’en(r,) .
Both the trajectories are valid for the task as per the surper
sequence property of Theorem 5. The costs of the two tra-
jectories are given by Egs. (29, 30)

len(z'(r))—1
C(t))=c(S.of)+ Z c(loc(aj’-),o;H)
j=1
i—1
=c(Sr,0f)+ Zc <loc (0}) ,a;+1>

j=1

+c (loc (a7) . o)

len(7'(r))—1
+ Z ¢ (loc (0;) , a]’»+1>

=i+l (29)

len(z'(r))—1

r r
c(loc(aj),aj+1>
j=i+l

(C(‘L'/) —c(loc(o]), a-rﬂ)) + c(loc(al-r), a) + c(loc(a), al-rH)
C(t)) = C(7)) + c(loc(a]), a) + c(loc(a), /) — c(loc(o]), of,;) (30)

general ordering that they maintain in P. After all addi-
tions the string s would have transformed to P, while after
every addition by Theorem 5, the validity of ¢ would remain
intact. O

Theorem 6 Keeping the task trajectories (t}i‘“) used for the

creation of a robot trajectory rr/ fixed, the addition of a new
character in the robot trajectory is wasteful. In other words,
Eq. (28)

oet = (mpo c ﬁ;‘sk) (28)

The operational cost of c(loc(ai’ ) a) + c(loc(a), aiﬁ_l) is
larger than c(loc(ai’ ), oi’_'_l), since the former performs an
extra operation a. The navigation cost of c(loc(oi’ ), a) +c
(loc(a), U{H) is larger than c(loc(ai’ ) al.r +1) due to the tri-
angle law of inequality. In simpler terms, the triangle law
of inequality holds for the cost function and hence we get

Eq. (31).
c(loc(a}), a) + c(loc(a), o},;) = c(loc(o]), of)

c(loc(a]), a) + c(loc(a), o],) — c(loc(a]), 0/,) = 0

Using Eqgs. (30) and (31) we get Eq. (32)
Cc(r)) = C(t) (32)

Hence, the cost of 7/ is larger than 7/. This makes it unnec-
essary to add elements to ;. O

@ Springer



770

Intelligent Service Robotics (2021) 14:741-771

References

10.

11.

12.

13.

14.

15.

Baier C, Katoen JP (2008) Principles of model checking. MIT
Press, Cambridge

Fisher M (2011) An introduction to practical formal methods using
temporal logic. Wiley, West Sussex

Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-logic-
based reactive mission and motion planning. IEEE Trans Rob
25(6):1370-1381

Lahijanian M, Andersson SB, Belta C (2012) Temporal logic
motion planning and control with probabilistic satisfaction guar-
antees. IEEE Trans Rob 28(2):396-409

Bhatia A, Kavraki LE, Vardi MY (2010a) Sampling-based motion
planning with temporal goals. In: Proceedings of the 2010
IEEE international conference on robotics and automation, pp
2689-2696

Bhatia A, Kavraki LE, Vardi MY (2010b) Motion planning with
hybrid dynamics and temporal goals. In: Proceedings of the 2010
49th IEEE conference on decision and control, pp 1108-1115
McMahon J, Plaku E (2014) Sampling-based tree search with dis-
crete abstractions for motion planning with dynamics and temporal
logic. In: Proceedings of the 2014 IEEE/RS]J international confer-
ence on intelligent robots and systems, pp 3726-3733

Svorenova M, Tumova J, Barnat J, Cerna I (2012) Attraction-based
receding horizon path planning with temporal logic constraints. In:
Proceedings of the 2012 IEEE 51st annual conference on decision
and control, pp 6749-6754

Lahijanian M, Almagor S, Fried D, Kavraki LE, Vardi MY (2015)
This time the robot settles for a cost: a quantitative approach to
temporal logic planning with partial satisfaction. In: Proceedings of
the twenty-ninth AAAl conference on artificial intelligence. AAAI
pp 3664-3671

Smith SL, Tumova J, Belta C, Rus D (2011) Optimal path planning
for surveillance with temporal-logic constraints. Int J Robot Res
30(14):1695-1708

Svorenova M, Cerna I, Belta C (2015) Optimal temporal logic con-
trol for deterministic transition systems with probabilistic penalties.
IEEE Trans Autom Control 60(6):1528—1541

Ulusoy A, Smith SL, Ding XC, Belta C, Rus D (2013) Optimality
and robustness in multi-robot path planning with temporal logic
constraints. Int J] Robot Res 32(8):889-911

Fu J, Atanasov N, Topcu U, Pappas GJ (2016) Optimal temporal
logic planning in probabilistic semantic maps. In: Proceedings of
the 2016 IEEE international conference on robotics and automa-
tion, Stockholm, pp 3690-3697

Lacerda B, Parker D, Hawes N (2014) Optimal and dynamic
planning for Markov decision processes with co-safe LTL spec-
ifications. In: Proceedings of the 2014 IEEE/RSJ international
conference on intelligent robots and systems, pp 1511-1516
Schillinger P, Biirger M, Dimarogonas DV (2018) Simultaneous
task allocation and planning for temporal logic goals in heteroge-
neous multi-robot systems. Int J Robot Res 37(7):818-838

Faruq F, Parker D, Laccrda B, Hawes N (2018) Simultaneous task
allocation and planning under uncertainty. In: Proceedings of the
2018 IEEE/RSJ international conference on intelligent robots and
systems, pp 3559-3564

Torres J, Baier JA (2015) Polynomial-time reformulations of LTL
temporally extended goals into final-state goals. In: Proceedings
of the international joint conference on artificial intelligence, pp
1696-1703

. Camacho A, Triantafillou E, Muise C, Baier J, Mcllraith S (2017)

Non-deterministic planning with temporally extended goals: LTL
over finite and infinite traces. In: Proceedings of the AAAI confer-
ence on artificial intelligence, vol 31, No. (1)

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Menghi C, Garcia S, Pelliccione P, Tumova J (2018) Multi-robot
LTL planning under uncertainty. In: Havelund K, Peleska J, Roscoe
B, de Vink E (eds) Formal methods. Lecture notes in computer
science, vol 10951. Springer, Cham, pp 399417

Karaman S, Frazzoli E (2009) Sampling-based motion planning
with deterministic p-calculus specifications. In: Proceedings of
the 48h IEEE conference on decision and control (CDC) held
jointly with 2009 28th Chinese control conference, Shanghai, pp
2222-2229

Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach
to single-query path planning. In: Proceedings IEEE international
conference on robotics and automation, pp 995-1001

LaValle SM, Kuffner JJ (1999) Randomized kinodynamic plan-
ning. In: Proceedings of the IEEE international conference on
robotics and automation, pp 473—479

Kantaros Y, Zavlanos MM (2018) Temporal logic optimal control
for large-scale multi-robot systems: 10400 states and beyond. In:
Proceedings of the 2018 IEEE conference on decision and control,
Miami Beach, FL, pp 2519-2524

Kantaros Y, Zavlanosm MM (2019) Sampling-based optimal con-
trol synthesis for multirobot systems under global temporal tasks.
IEEE Trans Autom Control 64(5):1916-1931

Xidias EK, Azariadis PN (2011) Mission design for a group of
autonomous guided vehicles. Robot Auton Syst 59(1):34—43

Lu L-C, Yue T-W (2019) Mission-oriented ant-team ACO for
min—-max MTSP. Appl Soft Comput 76:436-444

Kala R (2016) Sampling based mission planning for multiple
robots. In: Proceedings of the IEEE congress on evolutionary com-
putation, pp 662-669

Senol MB (2019) A mixed integer programming (MIP) model for
evaluating navigation and task planning of human-robot interac-
tions (HRI). Intel Serv Robot 12:231-242

Kala R, Khan A, Diksha D, Shelly S, Sinha S (2018) Evolutionary
mission planning. In: Proceedings of the 2018 IEEE congress on
evolutionary computation, pp 1-8

Edelkamp S, Jabbar S, Nazih M (2006) Large-scale optimal PDDL3
planning with MIPS-XXL. In: 5th international planning competi-
tion booklet

Gerevini A, Haslum P, Long D, Saetti A, Dimopoulos Y (2009)
Deterministic planning in the fifth international planning compe-
tition: PDDL3 and experimental evaluation of the planners. Artif
Intell 173(5-6):619-668

Cambon S, Alami R, Gravot F (2009) A hybrid approach to intri-
cate motion, manipulation and task planning. Int J Robot Res
28(1):104-126

Galindo C, Fernandez-Madrigal J, Gonzalez J (2008) Multihier-
archical interactive task planning: application to mobile robotics.
IEEE Trans Syst Man Cybern Part B Cybern 38(3):785-798
Srivastava S, Fang E, Riano L, Chitnis R, Russell S, Abbeel P
(2014) Combined task and motion planning through an extensible
planner-independent interface layer. In: Proceedings of the 2014
IEEE international conference on robotics and automation, Hong
Kong, pp 639-646

Matoui F, Boussaid B, Metoui B et al (2020) Contribution to the
path planning of a multi-robot system: centralized architecture.
Intel Serv Robot 13:147-158

Kala R (2018) On repelling robotic trajectories: coordination in
navigation of multiple mobile robots. Intel Serv Robot 11:79-95
Lagoudakis MG, Berhault M, Koenig S, Keskinocak P, Kley-
wegt AJ (2004) Simple auctions with performance guarantees for
multi-robot task allocation. In: Proceedings of the 2004 IEEE/RSJ
international conference on intelligent robots and systems, pp
698-705

Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W,
Kavraki LE, Thrun S (2005) Principles of robot motion: theory,
algorithms, and implementations. MIT Press, Cambridge



Intelligent Service Robotics (2021) 14:741-771

771

39. Tiwari R, Shukla A, Kala R (2013) Intelligent planning for mobile
robotics: algorithmic approaches. IGI Global Publishers, Hershey

40. KavrakiLE, Svestka P, Latombe JC, Overmars H (1996) Probabilis-
tic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans Robot Autom 12(4):566-580

41. Russell S, Norvig P(2010) Problem solving by searching. In: Artifi-
cial intelligence: a modern approach. Pearson, Upper Saddle River,
pp 64-119

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	Multi-robot mission planning using evolutionary computation with incremental task addition
	Abstract
	1 Introduction
	2 Background
	2.1 Genetic algorithms
	2.2 Dynamic programming

	3 Related works
	4 Problem definition
	4.1 Overall problem
	4.2 Incremental nature
	4.3 Solving by decomposition

	5 Solution design
	5.1 Overall approach
	5.2 Individual representation
	5.3 Dynamic programming based fitness evaluation
	5.4 Dynamic programming based diversity preservation
	5.5 Freeze aware genetic operators
	5.6 Reaching a mission site
	5.7 Inserting tasks
	5.8 Complexity

	6 Results
	6.1 Comparative analysis
	6.2 Experiments with different numbers of robots
	6.3 Experimental results

	7 Conclusions
	Acknowledgements
	Appendix: Theorems and Proofs
	References




