
Intelligent Service Robotics (2021) 14:501–517
https://doi.org/10.1007/s11370-021-00372-9

ORIG INAL RESEARCH PAPER

Scalable hedonic coalition formation for task allocation with
heterogeneous robots

Emily Czarnecki1 · Ayan Dutta1

Received: 20 September 2020 / Accepted: 2 June 2021 / Published online: 15 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Tasks in the real world are complex and often require multiple robots to collaborate to be serviced. In many cases, a task
might require different sensory inputs and actuation outputs. However, allocating a large variety of sensors and/or actuators
on a single robot is not a cost-effective solution—robots with different attributes must be considered. In this paper, we study
coalition formation for such a set of heterogeneous robots to be allocated instantaneously to a set of tasks. Our proposed
solution employs a hedonic coalition formation strategy based on a weighted bipartite matching algorithm. In our setting, a
hedonic coalition game, a topic rooted in game theory, is used to form coalitions by minimizing the total cost of the formation
and maximizing the overlap between required and allocated types of robots for each of the tasks. This approach guarantees a
polynomial time complexity and Nash-stability. Numerical results show that our approach finds similar quality near-optimal
solutions to existing approaches while significantly reducing the time to find them. Moreover, it easily scales to large numbers
of robots and tasks in negligible time (1.57 sec. with 2000 robots and 400 tasks).

Keywords Task allocation · Coalition formation · Multi-robot systems

1 Introduction

Tocomplete a given taskwith complex requirementsweoften
see humans collaborate. Each contributor in the collaboration
offers a different capability that aids in the task’s successful
completion. The completion of tasks in an autonomous envi-
ronment implements a similar approach. In this environment,
multiple robots each having their own set of capabilities—
such as sensors or actuators—that collectively contribute to
completing a given task. The work presented in this paper
studies the coalition formation by heterogeneous robots,
defined as the Single Task,Multi-Robot Instantaneous task
allocation problem (ST-MR-IA) [15,40,47] in the literature.
Each robot has a different set of abilities in the formof sensors
and/or actuators, and each task has a set of requirements in
where a coalition of robots’ collective abilities can complete
a specific task. The objective of forming these coalitions is to
minimize the cost, while the value of the formed coalitions
is maximized. Finding the optimal solution for this problem
is shown to be NP-Hard [40,41] although many approxima-

B Ayan Dutta
a.dutta@unf.edu

1 University of North Florida, Jacksonville, USA

tion solutions with provable worst-case performance bounds
exist [10,40,41].

Multi-robot coalition formation for task allocation has
many potential real-world applications ranging from ware-
house management to environmental monitoring. The objec-
tive is to partition the set of robots into non-overlapping
subsets (coalitions), each of which will be allocated to a
unique task and the member robots will then cooperate with
each other to accomplish the allocated task. In this paper, we
deal with the partitioning problem: Given a set of n robots
and m tasks, how to form m coalitions such that some given
criterion (e.g., the utility of the coalitions) is optimized. The
required numbers and types of robots to complete a given
task is assumed to be known a priori.

To solve this stated problem, we use a well-established
game-theoretic concept, called hedonic coalition game [7].
The word ‘hedonic’ is originated from the Greek word ‘
hēdonikós’ that means ‘considered in terms of pleasure’. In
a pure hedonic setting, each robot will consider joining a
particular coalition if the experience of joining the coalition
is ‘pleasant’, e.g., the robot’s capabilities are maximally uti-
lized and the cost of moving to the coalition is also low.
To form a set of m non-overlapping hedonic coalitions, we
have used a weighted bipartite graph matching technique

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-021-00372-9&domain=pdf
http://orcid.org/0000-0003-4343-9999

502 Intelligent Service Robotics (2021) 14:501–517

along with an intelligent switch rule that makes the formed
coalitions provably Nash-stable. Unlike previous approaches
[40,47], which search through a large space to find a near-
optimal solution, we jump-start with a ‘good’ solution and
modify it as required while saving on both time and memory.
Due to a generic graph formulation, our proposed solution
can be easily extended to solve theMultiTask, SingleRobot
Instantaneous task allocation problem (MT-SR-IA). To the
best of our knowledge, this paper is the first to solve the coali-
tion formation problem for task allocation with a group of
heterogeneous robots using a hedonic coalition game formu-
lation. Simulation results validate the theoretically proved
stable nature of our solutions. The results show that our
proposed algorithm can consistently yield near-optimal solu-
tions (up to 94%).

Furthermore, we have compared our proposed approach
with four existing approaches developed to provide an
approximation solution to the heterogeneous coalition for-
mation problem. Our approach is compared to two natural
greedy heuristics: MaxUtility and AverageUtility. MaxUtil-
ity was first presented in [40] and further explored along
with AverageUtility in [47]. To improve upon these two solu-
tions, Zhang and Parker [47] proposed two new solutions
to the ST-MR-IA problem: ResourceCentric and Resource-
CentricApprox. We implemented similar solutions to the
above-mentioned approaches, altered slightly, to adapt to the
nature of the problem andmodels presented in this work. The
comparison of the results revealed similar solutions in terms
of the ratio to the optimal; however, our solution proved to
be significantly faster when compared to all four algorithms.
Out of these, MaxUtility had the fastest run times, but our
solution was up to 41 times faster for the given experiment
settings. The slowest was ResourceCentric. With a setting of
m = 4 and n = 12, our solution was approximately 44, 500
times faster. Lastly, we implemented our proposed approach
on a real TurtleBot 3 robot having aRaspberryPi 3 computing
board that is intended to reflect a more realistic environment
in which the proposed solution would run on. It could find a
solution for 100 robots and 10 tasks in 0.32 seconds.

A preliminary version of this work has recently appeared
in the IEEE SMC conference [35]. We have made a major
revision of that version and added the following: a more
comprehensive literature review and an extensive complexity
analysis. Moreover, we have compared our solution against
four existing approaches, empirically validated the scalabil-
ity of our approach, and thoroughly analyzed the effects of
different parameters on our approach.

Our primary contributions in this article are listed as fol-
lows. To the best of our knowledge, this is the first work to
use hedonic coalition formation for the multi-robot task allo-
cation problem. Although the proposed algorithm is adopted
from [6],we havemodified it to fit the task allocation problem

instead of the generic hedonic coalition formation approach
taken in [6]. More specifically, we have

– used a weighted bipartite matching formulation instead
of the unweighted matching shown in [6].

– theoretically analyzed the complexity and proved the
Nash-stability of the proposed approach.

– proposed a novel utility function that is relevant to the het-
erogeneous task allocation problem studied in our paper.

– implemented and tested the proposed methodology to
demonstrate the feasibility and scalability. Furthermore,
we have compared our approach against four state-of-
the-art techniques and shown that our proposed approach
outperforms them in scalability and time while yielding
similar quality solutions.

2 Background

A comprehensive taxonomy of multi-robot task allocation
can be found in [15,19].

2.1 Task allocation

One of the earliest studies on coalition formation among
agents for task allocation is presented by Shehory and
Kraus [41]. Their work presented a greedy algorithm with a
polynomial-complexity and it is guaranteed to find a solution
within a factor of (k+1)of the optimal solution,where k is the
maximum size of any coalition formed. Recently, a correla-
tion clustering technique is utilized to provide a near-optimal
solution [13]. The solution applies linear programming to
correlate robots to clusters of high similarity using cost and
value functions. Dutta and Asaithambi [10] propose a variant
of a classical weighted bipartite matching technique for the
allocation of homogeneous robots. The proposed approach
provides a similar near-optimality guarantee as [40,41] while
incurring a linear time-complexity. This model is the primary
motivation for using the weighted bipartite matching-based
hedonic coalition formation solution proposed in this paper
albeit for heterogeneous robots.

In real-world situations, the complexity of tasks may
require multiple robots that offer different capabilities. With
this, considerations have been given to the heterogeneous
task allocation problem. The work presented in [40] pro-
vides two solutions for the coalition formation problem.
One for a homogeneous and the other for a heterogeneous
system. For the former, a dynamic programming-based algo-
rithm is introduced, which can find an optimal solution
in polynomial time. For the latter, the authors present an
adjusted solution of the algorithm proposed in [41]. Their
solution offers a polynomial solution with a complexity of

123

Intelligent Service Robotics (2021) 14:501–517 503

(O(n
3
2m)), which improves upon Shehory and Kraus’s solu-

tion with a complexity of O(nkm); exponential on the size
of the largest coalition. However, both [40,41] report similar
sub-optimality guarantees. In [47], the authors examine two
natural greedy heuristics for the coalition formation prob-
lem within a heterogeneous environment and then present an
improved heuristic in which inter-task resource constraints
are taken into account as well as the expected loss of utility.
Liemhetcharat and Veloso [23] proposed a coalition forma-
tion algorithm with heterogeneous agents where an agent
learned about the capabilities of other agents over time and
formed better coalitions. Here, a synergy graph is used to
model how compatible any two agents are to form a coali-
tion. The proposed solution takes a learning approach where
the synergy graph developed is built using training obser-
vations. A similar synergy-graph model is used in [24] to
study role assignments of ad-hoc agents in a coalition. In
[45], the authors use such heterogeneous robots for a real-
world application-box pushing. Tang and Parker [43] have
proposed a distributed solution for such heterogeneous robots
and applied it to a site cleaning scenario. Unlike ours, both
task and coalition-related costs are considered. Rauniyar and
Muhuri [34] pose the coalition formation problem with het-
erogeneous robots as a local search problem and apply a
modified Genetic algorithm-based technique to find the best
allocation.AQuantumMulti-ObjectiveParticle SwarmOpti-
mization approach for coalition formation in heterogeneous
robot systems is studied in [28], where the authors could
provide numerical results with up to 10, 000 robots in a nat-
ural disaster handling scenario. Similarly, the authors in [42]
apply the task allocation problem to disaster rescue mission
scenarios using a linear programming technique, where each
task might have more than one objective. A related paral-
lel multi-objective coalition formation approach is proposed
in [2] and the authors test this technique within a CUDA
programming framework. Similar to our approach in this
paper, the authors in [44] propose a fully distributed tech-
nique where each robot decides to join a coalition based on
its current members’ available capabilities. Dutta et al. [11]
proposed a distributed bipartite graph partitioning approach
with region growing to provide near-optimal solutions for the
ST-MR-IA task allocation problem. The authors divided the
bipartite graph into k sub-graphs corresponding to the k agent
types. The sub-graphs are then processed to allocate agents
of the same type to tasks. Furthermore, the work provides
an expansion to solve for the ST-MR-TD task problem and
considers inter-task dependencies. In [3], the authors propose
a distributed solution for dynamically arriving tasks where
they might have various execution priorities. Nunes et al.
[30] have recently proposed a taxonomy for such inter-related
tasks, e.g., with temporal and ordering constraints. Luo et al.
[25] have considered the heterogeneous task allocation prob-

lem for grouped tasks and present an auction-based solution
to maximize payoff or minimize cost. Another auction-based
strategy with using minimum spanning trees is presented in
[21]. Recently, multiple auction-based methods for task allo-
cation in a communication-limited environment is studied in
[32]. Afghah et al. [1] have studied a similar task alloca-
tion problem using a leader-follower scheme, where a leader
robot (for each task) recruits followers for task completion.
A swarm intelligence approach for task allocation where the
robots can accomplish multiple tasks in the RoboCup Res-
cue challenge is proposed in [8]. In [18], the authors present
a communication-free task allocation scheme for a robot
swarm,where the result converges to a system-levelBayesian
Nash equilibria. Sarkar et al. [39] considers the capacity-
constrained vehicle routing problem as the base model for
task allocation and provides a scalable heuristic handling up
to 400 robots and 2000 tasks in simulations.

Additional complexities to the heterogeneous task alloca-
tion problem such as uncertain costs have also been taken into
account. Uncertainty is captured in the edge costs of trans-
port graphs by Prorok [33]. The author has used redundant
robots to combat the uncertainty of travel times to reduce
the waiting times at the desired goal location. They present a
polynomial-time algorithmusingdistributive aggregate func-
tions to assign redundant robots to paths to minimize average
waiting time. In [16], the authors propose an auction-based
solution for applications where the robots might gain or lose
some of their available capabilities, whereas in our paper,
the capabilities remain constant. The limited capabilities of
the robots are considered in [46], where the objective was
to maximize the number of serviced tasks by the robots,
whereas we consider a situationwhere all the tasks need to be
allocated. Nam and Shell [29] consider uncertain costs and
risk levels associated with unknown settings such as surface
topology—one solution allows the input of risk tolerance
preference affecting the optimal assignment and in the sec-
ond approach, the risk position does not affect the optimal
assignment.

2.2 Hedonic games

The concept of hedonic games, originally presented byDreze
and Greenberg [9], found its first applications in economics.
Specifically, the idea that individuals form teams to accom-
plish activities and the motivation for an individual to join a
team is based on preferences. Since then several studies have
been conducted to further define and understand hedonic
games and its applications. Bogomolnaia and Jackson’s work
[7] is a primary example of one of the earlier studies research-
ing the stability of coalition structures in hedonic games. In
thiswork, the authors review the settings for hedonic andnon-
hedonic situations and the existence of stability in hedonic
settings. Further studies have continued to research stability

123

504 Intelligent Service Robotics (2021) 14:501–517

and complexity that can be found in [4,14]. In the former, the
authors research computational complexity to achieve stable
results. They consider hedonic games with additively sep-
arable utilities and different stable outcomes such as Nash
and individual stability. The latter study considers a player’s
preference for one coalition over another. This work offers
solutions considering preference restrictions and guarantees
the existence of stable outcomes.

A type of hedonic games known as Fractional Hedonic
Games has also amassed a decent amount of attention. Aziz
et al. [5] focused on the applications and stability of fractional
hedonic games. In this variant, the utility is an average value
a player credits the others in the coalition. The authors have
presented an algorithm to compute a core-stable outcome
for such a game. The work presented in [6] also considers
fractional hedonic games. The authors analyze various graph
topologies in order to model these games and their complex-
ities when aiming to achieve a Nash-stable outcome.

Game theory has previously been used for robot plan-
ning problems [22]. However, specifically proposing hedonic
games for multi-robot planning appears to have received
less attention. Research works in the last decade by Saad
et al. [36–38] focused on using hedonic games for self-
forming coalitions in different multi-agent systems including
unmanned air vehicles, wireless communication agents, and
cognitive radio networks. The solutions aim to reduce the
number of preference relations built in the process [36–38].
On the other hand, we study a similar problem but for hetero-
geneous robots. Recently, Jang et al. [17] have used a hedonic
game-based formulation formulti-robot task allocation albeit
for a homogeneous system.

3 Model and notations

Let R = {r1, r2, · · · , rn} denote a set of n robots. Each
robot ri has the following attributes: position Pi and a set of
capabilities (e.g., sensors, actuators) Sri = {s1, s2, . . . sk}.
W.l.o.g. We make the following assumptions: 1) a robot’s
capabilities |Sri | ≥ 1; 2) a robot cannot have duplicate capa-
bilities (e.g., multiple GPS’s); and 3) each robot is localized
in the environment using an on-board GPS or an overhead
camera. A set of m (< n) tasks are available in the envi-
ronment denoted by T = {t1, t2, . . . tm}. A task t j has the
following attributes: position Pj and capability requirements
St j = {s1, s2, . . . sl}. Each task’s requirements will adhere to
|St j | ≥ 1 as well and a task can require multiple robots with
the same capability to be completed. Note that

⋃
m St j ⊆ S

and
⋃

n Sri = S, where S denotes the set of all possible
capabilities.

A coalition c ⊆ R is a group of robots assigned to
complete a task. A coalition structure CS is a set of dis-
joint coalitions, which cover all the robots. Let CS =

{c1, c2, . . . cm} denote a set of non-overlapping coalitions
where each coalition is matched with a single task and as
such |CS| = |T | = m and ∪m

j=1 c j = R.
Value Function. This function determines the non-negative
value a robot offers a task, i.e., how effective that robot is
when contributing to the needs of any particular task. In our
scenario, the value of a robot allocated to a task is defined by
how many capabilities the robot ri can contribute to the task
t j ’s requirements. On the other hand, an unused capability
is a wasted resource negatively affecting the overall value a
robot offers that task. The better value a robot can offer a task,
the more likely the robot will choose that task to be assigned
to. The value function is a weighted formula of capability
matching and is defined as the following:

val(ri , t j) =
{
bI − pO, if bI − pO > 0

0, otherwise
(1)

where b is the benefit ascribed to I , which is the size
of the common subset of capabilities belonging to ri and
t j ’s requirement sets, i.e., I = |Sri ∩ St j |. p is the penalty
received for each capability not utilized, and O is a subset
of capabilities belonging to ri not needed by the task, i.e.,
O = |Sri \ (Sri ∩ St j)|. If the result is negative, the value is
set to 0 indicating this robot offers no value to the task being
considered. It is important for the value to be non-negative
in order to achieve a Nash-stable outcome [6]. Both b and
p are constants, values of which can be set depending on
how much desired benefit or penalty can be ascribed to the
matching. For the purpose of this paper, b = 1 and p = 0.1.
The benefit and penalty weights work in delicate balance
with each other and can offer flexibility in the importance of
matched and unused capabilities.

The penalty p should be chosen to avoid a negative
val(·, ·). A penalty may only be added if at least one capa-
bility match is made; otherwise, the value defaults to zero as
defined in Eq. 1. Therefore, the maximum value O can have
is the max(|Sri |)−1, ∃ri ∈ R, which we denote bymax(O).
As the robots do not have duplicate capabilities (e.g., two
LIDARs),max(|Sri |) is equivalent to the number of capabil-
ity types. For example, with maximum of three capabilities,
max(O) = 3 − 1. To ensure pO ≤ bI , the penalty value
must be: p ≤ bI

max(O)
where I ≥ 1. On the other hand, with

b = 1 and max(O) = 2, the upper bound on p is 0.5. It is
important to note that While there is a maximum bound on
the penalty p, the value used for p is not required to be the
maximum in all the cases.

The used value for p depends on the specifics of the
application. The penalty is used to aid in reducing wasted
resources. Ifwasted resources cannot be tolerated, the penalty
should be set to its maximum. In our problem where we con-
sider three types of capabilities, the maximum penalty of 0.5

123

Intelligent Service Robotics (2021) 14:501–517 505

gives it a significantweight and thus brings the overall offered
value down. This greatly restricts the robots from potentially
relocating to a better coalition, which was the primary moti-
vation for setting p = 0.1.
Cost Function For a robot to service an assigned task, the
robot must travel to the task location to complete it. When a
robot considers coalitions to join, it must consider the cost
to travel to its chosen task as well. Travel not only impacts
battery life but also overall wear and tear of the robot. There-
fore, it is an important factor to consider in the formulation.
In our formulation, the cost is determined by the distance
traveled. With self-forming coalitions, the cost function will
aid the robots in deciding if they want to stay in their current
coalitions, or if other coalitions are preferred based on how
far they have to travel to reach the tasks. To make sure that
the cost function is always within [0, 1], we first normalize
the raw distance between a task and a robot. Next, to guaran-
tee that it produces a positive number when combined with
val(·, ·), we take the complement of the normalized cost, i.e.,
subtract it from 1, called cc(), which is formally defined as:

cc(ri , t j) = 1 −
(

d(ri , t j)
√
length2 + width2 + 1

)

(2)

where d denotes the Euclidean distance between a robot
and a task and length and width are the dimensions of the
environment.
Utility Function The utility function indicates overall how
well a robot fits within its coalition in terms of value and
cost. When a robot considers a coalition, it will use the (non-
negative) utility metric to determine how well it is suited to
service the task. The higher the utility, the better suited the
robot is to the task being considered. It is defined as:

u(ri , t j) = val(ri , t j) + cc(ri , t j) (3)

To follow the hedonic coalition game model, each robot’s
utility must solely depend on the members of the coalition
[7]. To adhere to this property a robot ri ’s value can only be
determined based on the other robots in the coalition under
consideration. ri must take into account the other robots’
capabilities contributed to the coalition already as it indicates
the capabilities still required by that task.
Problem Objective The objective is to have self-forming set
of coalitions, where the final coalition structure maximizes
the utility. The utility of the coalition structure is the sum of
utilities of all the robots allocated to coalitions and is defined
as follows:

u(CS) =
m∑

j=1

|c j |∑

i=1

u(ri , t j) (4)

The objective of the coalition formation problem for multi-
robot task allocation is to find a coalition structure CS∗ that
offers themaximumutility and it can be formally represented
as follows:

CS∗ = arg max
CS∈ζ

u(CS)

where ζ denotes the set of all possible coalition structures.
After an initial allocation, each robot will consider other
coalitions in the CS and relocate to a task, if necessary, in
order to increase its utility. This will result in a final Nash-
stable coalition structure.

4 Hedonic coalition formation game

In a hedonic setting, originally used tomodel social/economic
scenarios, the agents (robots in our case) have a preference as
to which coalition they wish to belong to [9]. Some examples
of such situations are social groups, (soccer) teams, organi-
zations, etc. An agent’s motivation to belong to a coalition
can be quantified by its utility, which is only dependent on
the other members within that coalition [7]. One such exam-
ple is a political party, where a member’s utility depends on
the party’s values and identities of other members [6]. We
can formalize the hedonic coalition formation by defining
the following key properties [7,37]:

1. The utility of a robot depends solely on the other robots
in the coalition that it currently belongs to.

2. The coalitions are formed based on the preferences the
robots have over the set of all possible coalitions.

The concept of Nash stability states that a coalition struc-
ture CS is stable if there exists no robot that can improve
its utility by moving to another coalition in CS. Simply put,
all robots are ‘happy’ with their current utilities and are in
the coalitions they most prefer. Our objective in this work is
to follow the properties of the hedonic model to build self-
forming coalitions, which result in a final coalition structure
that is Nash-stable. The Nash-stability is formally defined
below [37].

Definition 1 A coalition structureCS isNash-stable if ∀ri ∈
R, cri �ri c ∪ {ri } for all c ∈ CS ∪ {∅}.

where cri is the coalition ri currently belongs to and �ri
denotes ri ’s preference for cri over c. In layman’s terms, every
robot ri will prefer to belong to its current coalition than join-
ing a different coalition c. To form such coalitions, we utilize
concepts presented in [6,10] focusing on solutions based on
bipartite matching. To model the coalitions, we use an undi-
rected, weighted bipartite graph unlike the unweighted graph

123

506 Intelligent Service Robotics (2021) 14:501–517

model used in [6]. We first perform a matching on a bipartite
graph modeled with the robots and the tasks. Thereafter, we
give the robots the opportunity to improve their utilities by
relocating to different coalitions as discussed next.

4.1 Maximum bipartite graphmatching

We begin with a maximum weighted bipartite matching for-
mulation to establish initial coalitions where exactly one
robot is assigned to each task. Although we have used
the classical weighted bipartite matching algorithm (Algo-
rithm 1) presented in [26], any other weighted matching
algorithm can be used in its place. We define our undirected,
weighted bipartite graph as G = ({V ,U }, E,W). V and U
are two sets of vertices where V represents the robots andU
represents the tasks. E is the set of all possible edges between
u−v pairs where u ∈ U , v ∈ V .W is the set of edgeweights.
The weight of an edge is the utility between a robot-task pair
and it is calculated using Eq. 3.

Definition 2 (Matching) A subset of edges M ⊆ E is called
a matching if the edges do not share any end vertices.

Algorithm 1 will produce such an edge set, called matching.

Definition 3 (MaximumWeightedMatching)AmatchingM
is called a maximum weighted matching if the sum of the
edge weights of M is the highest.

Algorithm 1 aims to find such a matching. This ensures
that the robot-task pairs present in the matching yield a high
utility.

Definition 4 (Maximum Matching) A matching M is the
maximum if the maximum possible vertices from G are cov-
ered in M .

Definition 5 (Perfect Matching) A matching M is perfect if
all the vertices in G are covered by the matching.

We are interested in finding a maximum matching using
Algorithm 1, which will ensure that our initial coalition
structure will consist of all mutually best robot-task pairs.
This consequently will help us to find a high-quality allo-
cation (i.e., coalition structure) quite quickly. However, as
in our setting n > m, we will not be able to find a perfect
matching. Next, we briefly explain the working principle of
Algorithm 1; more details can be found in [26]. Although we
have used a centralized version of the approximation match-
ing algorithm presented by Manne and Bisseling in [26],
a parallel version presented in the same paper can also be
employed for speed-ups.

Algorithm 1 will take each task and match it to a robot
where the robot-taskmatching ismutually best for each other.
A mutually best robot-task pair means the edge {u, v} is the

Algorithm 1: Weighted Maximum Bipartite Matching
Input: G({V ,U }, E,W): A weighted bipartite graph
where V = set of robots and U = set of tasks
Output: M : a weighted maximum matching.

1 for each v ∈ V do
2 Sv ← U ;

3 M ← ∅;
4 TA ← ∅;
5 for each u ∈ U do
6 v ← bm(u);
7 if bm(u) = v then
8 /*u and v are mutually best for each other*/
9 M ← M ∪ {u, v};

10 TA ← TA ∪ {u, v};
11 while TA �= ∅ do
12 u ← end vertex ∈ U from an edge in TA;
13 TA = TA \ {u, v′} where {u, v′} ∈ M ;
14 for each u ∈ Sv where u is unmatched do
15 if bm(bm(u)) = u then
16 TA = TA ∪ {u, bm(u)};
17 M = M ∪ {u, bm(u)};

18 return M ;

maximum weighted edge among all edges incident to u and
v. First, for each v ∈ V we obtain the potential matches
and store in Sv (lines 1 − 2). We initialize Sv to U because
initially, every u ∈ U is a potential match. We initialize M to
an empty set. While there are tasks remaining to be matched
to a robot, for each such task, we find a mutually best robot
pairing (lines 8−9). bm(·) function finds the best match, i.e.,
the highest utility pair, of any node. Once a robot-task pair is
found to be mutually best for each other (i.e., bm(u) = v and
bm(v) = u), they are added to M . This matched pair is also
added to the set TA so that it can be used later for assigning
other tasks. After matching the initial set of mutually best
robot-task pairs, the remaining unmatched tasks are assigned
in a similar fashion (lines 11 − 17). This process terminates
when each task is assigned exactly one robot to it as m < n.
However, not all the robots might be assigned at this stage.

4.2 Hedonic coalition formation algorithm

After the initial maximum weighted matching is found, it
is utilized for the final hedonic coalition formation where a
robot may choose to leave its current coalition for another
if doing so will increase its utility. We first create the ini-
tial coalition structure, i.e., where each task has exactly one
robot assigned to it. Next, the robots with improving devi-
ations consider moving to other coalitions when there is an
opportunity to do so.
Improving Deviation A robot ri has an improving deviation
if it can improve its utility by leaving its current coalition
cri and moving to another coalition c [6]. Any robot with an

123

Intelligent Service Robotics (2021) 14:501–517 507

improving deviation will belong to a set defined as RI D =
{r1, r2, . . . rN } where RI D ⊆ R.

To develop self-forming coalitions, a robot ri with an
improving deviation will choose a coalition to relocate to
based on its preference. Therefore, for a robot considering
relocation, we define a preference relation between itself and
all other coalitions. We define the preference relation as fol-
lows:

c1 �ri c2 ↔ u(ri , c1) ≥ u(ri , c2) (5)

We slightly abuse the notation here by using c1 and c2 instead
of t1 and t2 in the utility function w.l.o.g. In layman’s terms,
a robot ri will strictly or equally prefer coalition c1 over c2
iff ri ’s utility associated to c1 is greater than or equal to ri ’s
utility in c2. The preference relation is specific to some robot
ri . In our approach, only one robot may change coalitions at
a time. This robot will have the lowest edge weight, i.e., the
lowest utility among the robots in RI D . The robot in question
will define a preference relation for itself by considering all
possible coalitions in the current CS.
Moving to a New Coalition After the robot with the lowest
edge weight in RI D generates a preference relation between
itself and the current coalitions in the CS, it will join another
coalition that increases its utility. A robot ri will leave its
coalition by using the following a switch rule, similar to that
of [37]: Given a coalition structure CS = {c1, c2, . . . cm},
the candidate robot ri ∈ RI D will leave its current coalition
cri and join another coalition c, iff c∪{ri } �ri cri . We extend
the unweighted hedonic coalition formation algorithm in [6]
to a weighted setting and form hedonic coalitions.

Algorithm 2: Hedonic Coalition Formation
Input: R: A set of Robots; T : A set of Tasks
Output: CS: A Final Coalition Structure

1 Create the bipartite graph G({V ,U }, E,W);
2 M ← Weighted maximum matching from Algorithm 1;
3 CS ← ∅;
4 Covered ← Set of all robots part of M ;
5 for each v /∈ Covered do
6 choose u ∈ U | {u, v} ∈ E and wu,v ≥ wu′,v ∀ u′ �= u;
7 cu ← cu ∪ v;
8 Covered ← Covered ∪ v;

9 Update CS;
10 Compute the set of robots with Improving Deviation, RI D ;
11 while RI D �= ∅ do
12 Select ri ∈ RI D with lowest edge weight;
13 ri considers switch operations using the preference relation

calculated in Eq. 5;
14 ri selects a coalition using the switch rule;
15 Update CS;

16 return RI D,CS;

Algorithm 2 defines the pseudo-code for coalition forma-
tion using principles in fractional hedonic games. Given an
undirected and weighted bipartite graph, the algorithm will
return a Nash-stable coalition structure CS. It will begin by
first computing a weighted maximum matching defined in
Algorithm 1. The matching returned by Algorithm 1 estab-
lishes the initial set of m coalitions (line 4). Next, for each
robot (v) not yet in a coalition, it will select a task using a
greedy methodology. A robot will allocate itself to a task by
selecting the edge between itself and some task (u) such that
the edge has the maximum weight for that robot among all
potential tasks. This will continue until all robots have a task
allocation (lines 5 − 8). This provides an initial CS where
each robot is allocated to some task. Finally, the algorithm
selects the robot in RI D , the set of robots with improving
deviations, with the minimum edge weight and allows this
robot to move to another coalition using the switch rule. The
robot will leave its current coalition and choose the coalition
that maximizes its utility, i.e., the task that has the high-
est edge weight for that specific robot. The current coalition
structure CS is thereby updated. When the set RI D is empty,
i.e., no robot can improve its utility by changing coalitions,
CS is considered stable and the final coalition structure CS
is returned.

A Nash stable coalition structure is not necessarily
the optimal coalition structure. Instead, it is a notion of
equilibrium—each robot is ‘happy’ in its current coalition
and does not feel the need to switch to a different coalition to
improve its utility. Once the agreement is reached among the
robots, they will not need to coordinate anymore, and thus
the requirements of inter-agent communication and compu-
tation are not required. This results in communication and
computation time reduction, which bears a high amount of
significance, especially in a distributed decision-making set-
ting [17]. On the other hand, Nash stability by default implies
individual stability where no robot can move to a different
coalition without making its members earn less utility [4].
After the final CS is formed, the robots will move to their
allocated tasks. Inter-robot collisions can be avoided while
minimally increasing the initially estimated path lengths by
using techniques proposed in [12].

Lemma 1 There always exists a Nash-stable solution for the
proposed model.

Proof The proof of this directly follows from Observation
3 in [6], which finds that any hedonic game played on a
graph G with non-negative edge weights will find a Nash-
stable coalition structure. As our graph structure also has
non-negative edge weights (i.e., utilities), the proof follows.

��
The existence of a Nash-stable solution can also be argued

(informally) in the following way. As we keep track of coali-
tion changes by the robots and corresponding change in any

123

508 Intelligent Service Robotics (2021) 14:501–517

Table 1 Summary of time complexity comparison

Algorithm Reference Complexity

Average Utility [40,41,47] O(min(m, n) · mC)

Max Utility [40,41,47] O(min(m, n) · mC)

ResourceCentric [47] O(min(m, n) · m2C2)
ResourceCentricApprox [47] O(min(m, n) · m2nC)

Our approach this paper O(mn2)

robot’s potential utility gain possible by such a robot, fol-
lowing [27], it can be categorized as a potential function
(lines 11− 15 in Algo. 2). Any such game is called a poten-
tial game and Monderer and Shapley [27], has proved that it
would converge to a Nash-stable solution.

Theorem 1 The final coalition structure is Nash-stable.

Proof We prove this by contradiction. Let us assume that
all the robots in R except r∞ are stable, i.e., r∞ is chang-
ing its coalition infinite times resulting in a non-Nash stable
coalition structure. r∞ prefers a coalition c j over its current
coalition ci . According to the switch rule, c j is the most pre-
ferred coalition of r∞. Following our utility function, once
a new robot joins a new coalition c j , the utility of c j for the
non-member robots either remains the same (r∞’s capabil-
ities are mutually exclusive) or goes down (the capabilities
overlap). Therefore, once r∞ moves to c j , there will not be
a better coalition ck that r∞ can possibly move to next and
thus will become stable. Combining this contradiction with
the existence of a Nash stable coalition structure (Lemma 1)
proves the theorem. ��
Discussion on Complexity Time complexity of Algorithm 1
is O(mn) [26]. If an optimal algorithm for maximum bipar-
tite matching such as Hungarian [20] is used instead, the
complexity would become O((m + n)3).

The time complexity of Algorithm 2 would primarily
depend on lines 2, 5 − 8, and 10 − 15. As discussed above,
line 2will incur a complexity ofO(mn). Lines 5−8will incur
a time complexity of O(n) as all the robots are unassigned
at this point in the worst case scenario. The complexity of
line 10 in Algorithm 2 is O(mn) as each robot will check
whether it can improve its utility by moving to any of the
existing coalitions, the maximum count of which is m. As
the RI D set can maximally have n robots in it and each robot
ri ∈ RI D will be checking for the switch, lines 11 − 15
will incur a complexity ofO(mn). Thus, the worst-case time
complexity of Algorithm 2 is O(mn2).

Now, we compare the time complexity of our approach
with that of the four existing state-of-the-art algorithms in
Table 1.C denotes the total number of coalitions possiblewith
n robots (= 2n). Therefore, it should be noted that all these
algorithms will incur a high, exponential time complexity

whereas our proposed hedonic game-based coalition forma-
tion approach incurs only a polynomial time complexity. This
helps our algorithm to be highly scalable whereas the com-
pared state-of-the-art algorithms cannot handle more than
only tens of robots. One should also note that the Resource-
Centric and ResourceCentricApprox algorithms [47] incur
high space complexities since they store all the coalitions in
the memory. As the number of coalitions (C) grows exponen-
tially with n, they will incur exponential space complexities.
On the other hand, our proposed method does not take
this approach and requires only polynomial space (O(mn)).
These practical implications are also demonstrated in the next
section.

5 Experiments

5.1 Settings

We have implemented our proposed hedonic coalition for-
mation algorithm using the Java programming language. The
tests were run on a laptop with an Intel i7 − 3615QM pro-
cessor and 16GB RAM. The number of robots (n) has been
varied between [4, 2000], and the number of tasks (m) has
been varied between [2, 400]. We have made sure that in
no test case the number of tasks exceeds 50% of the num-
ber of robots used. The distinct 2D locations of the robots
and the tasks are randomly generated from a bounded square
area with sides of length 100m. The total number of possible
capabilities (|S|) was set to 3 and the capability distribution
was randomly generated for both robots and tasks. To begin,
robots received a random combination between one and three
unique capabilities. To determine how many requirements
each task would receive, the sum of capabilities among the
robotswas randomlypartitionedbasedon the number of tasks
in the environment. The sum of each type of capability given
to the robots was used to randomly generate the capability
requirements of the tasks. Experiments were run with a base-
line benefit (b) of 1.0 and penalty (p) of 0.1 unless otherwise
mentioned. Each setting was run 20 times with an average
result calculated and illustrated in the next section. The bars
in the plots indicate the maximum and the minimum value
obtained for any particular metric.

We have compared the performance of our algorithm
against four previous approaches. The first two approaches—
MaxUtility and AverageUtility—implemented for compar-
ison are greedy algorithms developed in [41] as well as
modifications of this approach in [40] and [47]. In both
algorithms—beginning with the first task—all coalitions of a
size equal to that of the robot requirement for the given task
are generated. Then each candidate coalition is evaluated.
With MaxUtility, the total utility of the coalition is con-
sidered. The alternate approach—AverageUtility—considers

123

Intelligent Service Robotics (2021) 14:501–517 509

themean utility of the candidate coalition. Given that the goal
is tomaximize utility, the candidate coalitionwith the highest
(MaxUtility), or the highest average (AverageUtility) utility
is greedily assigned to the task being considered. These task
and robots are then removed from consideration, and the pro-
cess repeats with the remaining tasks and robots.

The other two solutions implemented for comparison
are developed in [47]. The ResourceCentric and Resource-
CentricApprox solutions are greedy heuristics that consider
inter-task resource constraints. For both, the first step is to
generate all possible coalitions constrained to the maximum
size. In ResourceCentric, an undirected graph is generated
where each node is a coalition, and edges are added where a
conflict exists between two coalitions.A conflict occurswhen
two coalitions contain the same task or robots as a task cannot
be assigned to more than one set of robots and a robot cannot
be part of multiple coalitions. After the generation, while the
graph is not empty, for each coalition (node) and for each of
its neighbors, a valueρ is calculated,which is the utility of the
coalition minus the sum of the conflicting assignments mul-
tiplied by the utility of the neighbor coalition. The coalition
that maximizes ρ is selected and this coalition, its neigh-
bors, and connecting neighbors are removed from the graph.
The key differences in ResourceCentricApprox as compared
to ResourceCentric is an approximation of the calculation
ρ and the use of hash tables to track conflicts instead of an
undirected graph.

5.2 Results

A number of experiments were run to determine the overall
quality and effectiveness of the solutions. These experiments
and their results are presented next.

5.2.1 Utility comparisons

First, we are interested in the investigation of the approxi-
mation ratio (higher is better, 1 being the optimal solution)
achieved by our proposed method to an optimal solution. To
this end, we have implemented a brute-force method [31]
to obtain the optimal solution and we compute the ratio of
our solution’s utility to that of the optimal solution. The
brute-force method employs the same value, cost, and util-
ity calculations presented Eqs. 1, 2, and 4, respectively. The
results are presented in Fig. 1. The plots demonstrate the
near-optimal nature of our solution.

For example, with m = 2, the highest and the lowest
approximation ratios obtained by our approach are 0.91 and
0.78 for n = 4 and 10, respectively. The approximation ratios
were quite similar withm = 4 as compared withm = 2, and
we obtained an approximation ratio of 0.84 with n = 8 and
0.79 with n = 12. Next we look at how well our solution

performs in terms of ratio to the optimal in comparison to
the four additional greedy solutions implemented.

The result in comparing our approach to the MaxUtility
solution is shown in Fig. 1a. Here we can observe thatMaxU-
tility provided better solutions with m = 2; however, the
solution degraded withm = 4 and our solution provided bet-
ter approximation results. The highest approximation ratio
forMaxUtilitywas 0.96withm = 2 and n = 12, and the low-
est was 0.70 with m = 4 and n = 10. In Fig. 1b, we see the
results of our solution compared with AverageUtility, which
shows AverageUtility provided a lower quality solution in all
settings than our approach. The highest approximation ratio
for AverageUtility was 0.86 with m = 2 and n = 4, and
the lowest was 0.53 with m = 4 and n = 12. In Fig. 1c,
we present the comparison results against ResourceCentric
approach. Result illustrates that ResourceCentric provides a
better solution in some cases with m = 2, but with m = 4,
our approach provides a better solution. The highest approx-
imation ratio for ResourceCentric was 0.89 with m = 2 and
n = 10, and the lowest was 0.66 with m = 4 and n = 10.
In Fig. 1d, we compare ResourceCentricApprox against our
algorithm. ResourceCentricApprox, similarly to some of the
earlier comparisons, resulted in better solutions at m = 2.
However, did not perform as well as approach for m = 4.
The highest approximation ratio for ResourceCentricApprox
was 0.94 with m = 2 and n = 6, and the lowest was 0.70
with m = 4 and n = 10.

Following [10,40], we are also interested to investigate
how many times out of the 20 simulation runs, we get a
good solution, i.e., at least 80% of the optimal. The result is
presented in Fig. 2. We observe that for bothm = 2 and 4, in
about half of the test runs, our proposed algorithm achieves
a solution that is within 80% of the optimal (Fig. 2a).

In comparing our approach with the results achieved with
MaxUtility as shown in Fig. 2b, we see that MaxUtility out-
performs our approach with m = 2 but does not perform
as well with m = 4. MaxUtility can achieve a solution that
is within 80% of the optimal 90% of the time, and at mini-
mum 50% of the time within 90% of the optimal for m = 2.
For m = 4, in most cases MaxUtility achieves solutions
within 80% or 90% of the optimal less than 30% of the time.
AverageUtility overall was completely outperformed by our
approach. The result is presented in Fig. 2c. In all scenarios
save one, AverageUtility could not achieve solutions within
80% or 90% of the optimal in half of the simulation runs.
The ResourceCentric heuristic performed well with m = 2
as can be seen in Fig. 2d. It provided a good solution–within
80% of the optimal–typically above 80% of the time. In at
least half of the runs, it was able to produce a solution within
90% of the optimal. As we have seen with the other compar-
ison algorithms though, it does not perform as well as our
approach with m = 4 and does not achieve a solution within
either 80% or 90% of the optimal more than 30% of the time.

123

510 Intelligent Service Robotics (2021) 14:501–517

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, our approach
m=2, greedy max
m=4, our approach
m=4, greedy max

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, our approach
m=2, greedy avg
m=4, our approach
m=4, greedy avg

)b()a(

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, our approach
m=2, resourceCentric
m=4, our approach
m=4, resourceCentric

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, our approach
m=2, resourceCentricApprox
m=4, our approach
m=4, resourceCentricApprox

)d()c(
Fig. 1 Approximation ratio to the optimal: a MaxUtility, b AverageUtility, c ResourceCentric, and d ResourceCentricApprox

A similar assessment can be made for the ResourceCentri-
cApprox approach presented in Fig. 2e. It provides a good
solution in most cases for m = 2 at least 80% of the time. It
performs more comparably with our approach with m = 2
when seeking a solution within 90% of the optimal. Again,
similar to the other algorithms used for comparison, it does
not perform as well when m = 4 and in all cases except
where n = 8 does not achieve a solution within either 80%
or 90% of the optimal more than 30% of the time. Overall we
can conclude that in some cases the comparison algorithms
provide better solutions when looking at ratio to the optimal
solution, but in all cases, our solution shows better results as
the number of tasks increases.

5.2.2 Impact of benefit and penalty

Next we investigate how the benefit (b) and penalty (p)
weights affect the solution in terms of utility and proxim-

ity to the optimal solution. In these experiments, we chose
baseline values of b = 1.0 and p = 0.1. To understand
the impact of these two values, we ran an experiment with
b values varying between 1.0 and 1.75 with increments of
0.25, and an additional experiment with p values between
[0.1, 0.4]with increments of 0.1. First, we review the impact
of the b values on the approximation ratios (Fig. 2f). Note
that, in this case, p was static at 0.1. Overall, we can observe
that the change in b does indeed impact the approximation
ratio. Furthermore, we can observe that the baseline bene-
fit of 1.0 produces the lowest approximation ratios. Overall,
when looking at all scenarios, a benefit of b = 1.50 offers, in
general, higher approximation ratios. At m = 4 and n = 12
the solution produces a mean approximation ratio of 0.85.
The highest mean approximation ratio of 0.94 was achieved
with b = 1.75 at m = 2 and m = 4.

We now analyze the results with varying penalty values.
Our results presented in Fig. 3a show the approximations

123

Intelligent Service Robotics (2021) 14:501–517 511

4 6 8 10 12
Number of robots

0

20

40

60

80

100
Pe

rc
en

ta
ge

m=2, 80% of the optimal
m=2, 90% of the optimal
m=4, 80% of the optimal
m=4, 90% of the optimal

4 6 8 10 12
Number of robots

0

20

40

60

80

100

Pe
rc

en
ta

ge

m=2, 80% of the optimal
m=2, 90% of the optimal
m=4, 80% of the optimal
m=4, 90% of the optimal

)b()a(

4 6 8 10 12
Number of robots

0

20

40

60

80

100

Pe
rc

en
ta

ge

m=2, 80% of the optimal
m=2, 90% of the optimal
m=4, 80% of the optimal
m=4, 90% of the optimal

4 6 8 10 12
Number of robots

0

20

40

60

80

100

Pe
rc

en
ta

ge

m=2, 80% of the optimal
m=2, 90% of the optimal
m=4, 80% of the optimal
m=4, 90% of the optimal

)d()c(

4 6 8 10 12
Number of robots

0

20

40

60

80

100

Pe
rc

en
ta

ge

m=2, 80% of the optimal
m=2, 90% of the optimal
m=4, 80% of the optimal
m=4, 90% of the optimal

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, b=1
m=2, b=1.25
m=2, b=1.50
m=2, b=1.75
m=4, b=1
m=4, b=1.25
m=4, b=1.50
m=4, b=1.75

)f()e(

Fig. 2 Percentage of tests in which the algorithm generated a coalition structure with utilities 80% and 90% of the optimal: a Our, bMaxUtility, c
AverageUtility, d ResourceCentric, and e ResourceCentricApprox. f Approximation ratio to optimal with varying benefit (b) values

123

512 Intelligent Service Robotics (2021) 14:501–517

4 5 6 7 8 9 10 11 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, p=0.1
m=2, p=0.2
m=2, p=0.3
m=2, p=0.4
m=4, p=0.1
m=4, p=0.2
m=4, p=0.3
m=4, p=0.4

4 6 8 10 12
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity
 ra

tio
 to

 o
pt

im
al

m=2, b=1 p=0.1
m=2, b=1.50 p=0.2
m=4, b=1 p=0.1
m=4, b=1.50 p=0.2

)b()a(

Fig. 3 a Approximation ratio to optimal with varying penalty (p) values; b approximation ratio to optimal with benefit = 1.5 and penalty = 0.2

ratios with varying p values and static b value of 1. As with
benefit, we observe that the penalty value does impact ratio to
the optimal. However, p = 0.1 did produce the highest sin-
gular mean approximation ratio of 0.92 at m = 2 and n = 4.
When looking at the quality of solutions in all scenarios
though, a penalty of p = 0.2 results in a higher approxima-
tion ratios producing a ratio of 0.83 with m = 4 and n = 12.
Finally, after identifying benefit and penalty values that per-
form well, we were interested in reviewing the results in
terms of approximation ratio when employing those values.
We can observe these results in Fig. 3b. In this result, we com-
pare the baseline benefit and penalty (1.0, 0.1, respectively),
to our observed better performing benefit and penalty (1.50,
0.2, respectively). As can be seen, overall higher approxima-
tion ratios were achieved with the latter. This is particularly
notable with m = 4 and n values of 8, 10, 12. The high-
est approximation ratio of 0.94 was achieved at m = 2
and n = 4. Approximation ratios of 0.86, 0.84, 0.82 were
achieved with m = 4 and n = 8, 10, 12, respectively.

5.2.3 Performance comparisons

Next, we are interested in understanding how well our algo-
rithm performs in terms of time in comparison with the four
comparison algorithms. Additionally, we are interested in
how our solution scales with a large set of robots. Run time
comparison result against the MaxUtility solution is shown
in Fig. 4a). As can be observed, only in the first scenario of
m = 2 and n = 4,MaxUtility outperforms our solution with
respect to run time. At very low numbers of tasks and robots,
MaxUtility has very few possible coalitions to consider, and
given the simplicity of the greedy choices in this algorithm,
it makes sense that this algorithm would be quick initially.
However, it quickly grows in run time as the number of robots

and tasks increases due to the exponential nature of possible
coalitions to consider. With m = 4 and n = 12, MaxUtility
takes 0.933ms, as compared to our 0.031ms, resulting in our
approach being approximately 30 times faster.

Similar results can be observed with AverageUtility as
illustrated in Fig. 4b. Again, the first scenario of m = 2
and n = 4 shows a faster run time than our solution,
but its run time increases significantly as the number of
robots and tasks increases. With m = 4 and n = 12,
AverageUtility takes 1.27ms, as compared to our 0.031ms,
resulting in our approach being approximately 41 times
faster. Comparison result against the ResourceCentric algo-
rithm is shown in Fig. 4c. Here we can see our solution
significantly outperforms ResourceCentric. As with MaxU-
tility and AverageUtility, the algorithm considers all possible
coalitions of a maximum size, but performs more complex
calculations taking resource constraints into account, result-
ing in a slower performance. At m = 4 and n = 12,
ResourceCentric takes 1336.38ms with our solution taking
0.031ms, making our solution approximately 44, 500 times
faster. The ResourceCentricApprox algorithm is modifica-
tion onResourceCentric to improve its performance with run
time. This can be observed in Fig. 4d. We can see that it does
indeed perform much better in terms of time as compared
with ResourceCentric; however, it still does not perform as
well as our solution. At m = 4 and n = 12, ResourceCentr-
icApprox takes 2.81ms. As compared with our solution with
a run time 0.031ms.—making our solution approximately
90 times faster. When tested against these algorithms with
a relatively larger robot set, similar trends are noticed. n is
varied between {15, 20} and m is fixed to 6 for this test.
The results are presented in Fig. 5. Our presented approach
earns higher utilities for both values of n while taking the
lowest time to find a solution among the tested algorithms.

123

Intelligent Service Robotics (2021) 14:501–517 513

4 6 8 10 12
Number of robots

10-3

10-2

10-1

100

101

102

R
un

 ti
m

e
(lo

g
sc

al
e)

m=2, our approach
m=2, Greedy Max
m=4, our approach
m=4, Greedy Max

4 6 8 10 12
Number of robots

10-3

10-2

10-1

100

101

102

R
un

 ti
m

e
(lo

g
sc

al
e)

m=2, our approach
m=2, Greedy Avg
m=4, our approach
m=4, Greedy Avg

)b()a(

4 6 8 10 12
Number of robots

10-2

100

102

104

106

R
un

 ti
m

e
(lo

g
sc

al
e)

m=2, our approach
m=2, RC
m=4, our approach
m=4, RC

4 6 8 10 12
Number of robots

10-2

100

102

R
un

 ti
m

e
(lo

g
sc

al
e)

m=2, our approach
m=2, RCA
m=4, our approach
m=4 RCA

)d()c(

Fig. 4 Run time comparison to: a MaxUtility, b AverageUtility, c ResourceCentric, and d ResourceCentricApprox

TheResourceCentric algorithm performed theworst in terms
of run time—the maximum being 301.53 sec. for n = 20
whereas our algorithm took 0.003 sec.

As stated earlier, our goal in this study is to develop a
scalable algorithm that produces near-optimal solutions. Fig-
ure 6 demonstrates the scalability of our proposed solution
for a moderately large multi-robot system—the maximum
run time is found to be 0.40ms. and the mean run time was
0.19 ms. with n = 100 and m = 10. A negligible number
especially considering the fact that for this particular setting,
the astronomical number of possible coalition structures is
2.75 × 1093.

Lastly, we investigate distances the robots travel to get to
their assigned tasks. The robots want to minimize the trav-
eled distance amount to move to a specific task. Therefore,
distance is an important performance metric. In Fig. 6b, we
see that the total distance traveled by the robots increases lin-

earlywithmore robots irrespective of the task counts.Aswith
less number of tasks in the environment, each robot needs to
travel more distance to reach a particular task because of the
uniform distribution of tasks and robots, it is worth noting
that with less tasks, the robots travel more. This is consis-
tent with the results found in [10]. If we observe the total
distance traveled by the robots in Fig. 6b, we can see the
maximum distance traveled was with 2 tasks and 100 robots.
Themean distance traveledwas 3839.64meters and themax-
imumwas 5673.29 meters. With 10 tasks and 100 robots, the
mean distance traveled was 2572.36 meters and a maximum
of 3573.26 meters.

5.2.4 Switch rule analysis

The number of coalition switches does not show a clear trend
(Fig. 7a). However, we notice that the average number of

123

514 Intelligent Service Robotics (2021) 14:501–517

15 16 17 18 19 20 21
Number of robots

15

20

25

30

35

40

45

50

55

U
til

ity

m=6,Our approach
m=6,Resource Centric
m=6,Resource Centric Approx
m=6,Greedy Max
m=6,Greedy Avg

14 15 16 17 18 19 20 21
Number of robots

10-4

10-3

10-2

10-1

100

101

102

103

R
un

 ti
m

e
(lo

g
sc

al
e)

m=6,Our approach
m=6,Resource Centric
m=6,Resource Centric Approx
m=6,Greedy Max
m=6,Greedy Avg

)b()a(

Fig. 5 Comparison of a utility and b run time metrics againstMaxUtility, AverageUtility, ResourceCentric, and ResourceCentricApprox

0 20 40 60 80 100
Number of robots

0

0.1

0.2

0.3

0.4

0.5

R
un

 ti
m

e
(m

s.
)

m=2
m=4
m=6
m=8
m=10

0 20 40 60 80 100
Number of robots

0

1000

2000

3000

4000

5000

6000

D
is

ta
nc

e
(m

et
er

s)
m=2
m=4
m=6
m=8
m=10

)b()a(

Fig. 6 a Run time of the proposed approach, b total distance traveled by the robots to reach the allocated tasks

switches occurred across the tested m and n values is almost
negligible and generally higher number of tasks correspond
to higher number of switches. As the robots have more coali-
tions to relocate to, the number of switches is more probable
with more tasks. The small, finite number of switches also
demonstrates the stability of the solution. For 2 tasks, 100
robots the mean number of switches was 0, for 4 tasks, 100
robots the mean switches was 0.2, for 6 tasks and 100 robots
mean switcheswas 0.55, for 8 tasks 100 robotsmean switches
was 1 and for 10 tasks 100 robots mean switches was 1 as
well. Looking at the maximum number of switches that took
place for the m = 2, 4, 6, 8, 10, the maximum switch counts
were 1, 2, 3, 5, and 6, respectively, showing again an increase
in switches as the number of tasks increases. Finally, wewant
to demonstrate the usefulness of the switch rule used in our
model. We see in Fig. 7b that generally with a higher number
of coalition switches the robots were able to increase the total

utility, the maximum being 24% with six switches. Next, we
show howwith increasing switches (only for three switches),
the solution quality improves (Fig. 7c). We observe that on
average, the initial CS utility is 89.33% of the final utility,
with a steady increase as more switches are performed—
demonstrating the anytime nature of the switch rule.

To showcase that the proposed algorithm captures the
task requirements, we present a case study with n =
6 and m = 2, where there are two types of robots: three
iRobot Roombas and two iRobot Bravas (each having a sin-
gular capability—vacuuming andmoping, respectively). The
tasks, t1 and t2, are to vacuum and mop two rooms located at
(10, 10) and (20, 20). As the first room is significantly big-
ger than the second, t1 needs three Roombas and one Brava,
whereas t2 needs one Roomba and one Brava robot for clean-
ing. The robots are located in a room at the location (15, 15).

123

Intelligent Service Robotics (2021) 14:501–517 515

0 20 40 60 80 100
Number of robots

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 s
w

itc
he

s

m=2
m=4
m=6
m=8
m=10

1 2 3 4 5 6
Switch Count

0

5

10

15

20

25

Pe
rc

en
t o

f U
til

ity
 G

ai
ne

d

)b()a(

10 20 30 40 50 60 70 80 90 100
Percent of Total Time

75

80

85

90

95

100

Pe
rc

en
t o

f T
ot

al
 U

til
ity

0 20 40 60 80 100
Number of robots

0

200

400

600

800

1000

R
un

 ti
m

e
(m

s.
) o

n
Tu

rt
le

B
ot

3

m=2
m=4
m=6
m=8
m=10

)d()c(

Fig. 7 a Average number of switches performed, b utility gained (%) for different number of switches, c change in utility over time (n = 100,m =
10), d) run time of our proposed solution on a TurtleBot 3

Using our algorithm, t2 gets assigned a single Roomba and
t1 gets assigned four Roombas and two Bravas.

5.2.5 Implementation on a TurtleBot 3

We are also interested in investigating the feasibility of
running our algorithm on a system where computational
capabilities are limited. For this, we implemented the algo-
rithm on a TurtleBot 3 robot equipped with a Raspberry Pi 3.
We used the same experiment settings when testing the scal-
ability varying tasks from [2, 10] and robots from [10, 100]
taking the average of 20 runs. With m = 10 and n = 100
we achieved a mean run time of 0.32 seconds and a maxi-
mum run time of 0.86 seconds (Fig. 7d). This demonstrates
the scalability of the proposed algorithm on a real hardware
platform with limited resources.

5.2.6 Scalability tests

Finally, we empirically analyze the scalability of our pro-
posed approach for large-scale multi-robot systems. We use
the same combined numbers of tasks and robots as used in
[39]. The results are shown in Fig. 8. Similar to our earlier
tests with up to 100 robots, we see that the distances traveled
by the robots to reach the allocated task locations increase
linearly with n. The run time with 2400 robots and tasks is
a negligible 1.57 sec. For the same number of robots and
tasks, the proposed approach in [39] took about 50 sec. Due
to the hardware differences, we do not, however, compare
these results quantitatively.

123

516 Intelligent Service Robotics (2021) 14:501–517

500 750 1000 1250 1500 1750 2000
Number of robots

0

5000

10000

15000

20000

25000

D
is

ta
nc

e
(m

et
er

s)
m=25
m=50
m=100
m=200
m=400

500 750 1000 1250 1500 1750 2000
Number of robots

0

0.5

1

1.5

2

2.5

R
un

 ti
m

e
(s

ec
on

ds
)

m=25
m=50
m=100
m=200
m=400

)b()a(

Fig. 8 Scalability testing: a cost of the solution; b run time of the algorithm

6 Conclusions and future work

The research presented in this work proposes a novel
approach to the heterogeneous multi-robot task allocation
problem. To the best of our knowledge, this approach is
the first to solve the coalition formation problem for task
allocationwith a group of heterogeneous robots using a hedo-
nic coalition game formulation. This problem has numerous
real-world applications; however, finding the optimal solu-
tion for the studied problem is shown to be NP-hard in the
literature. Our solution offers an approach utilizing hedo-
nic coalition and concepts from graph matching. Results
show that our proposed solution is fast, does produce near-
optimal solutions, and can be applied for a large multi-robot
system as well as offering the ability to calibrate the out-
come with the benefit and penalty weights. Additionally,
simulation on a TurtleBot 3 shows that our solution can
be utilized in practical application settings where comput-
ing capabilities may be limited. Comparisons against four
state-of-the-art approaches resulted in comparable outcomes
in terms of utility ratio; however, our solution provided a
significant improvement in run time. The increasing use of
robots and robot teams across industries lends itself to reveal-
ing new ways in which robots can coordinate and fulfill task
requirements. Among some of the possible expansions of this
work are developing a distributed approach in order to avoid
one point of failure, considering inter-task dependencies, and
incorporating uncertainty into the model.

References

1. Afghah F, Zaeri-Amirani M, Razi A, Chakareski J, Bentley E
(2018) A coalition formation approach to coordinated task allo-

cation in heterogeneous uav networks. In: 2018 Annual American
Control Conference (ACC), pp. 5968–5975. IEEE

2. AgarwalM, Agrawal N, Sharma S, Vig L, Kumar N (2015) Parallel
multi-objective multi-robot coalition formation. Expert Syst Appl
42(21):7797–7811

3. Ayari E, Hadouaj S, Ghedira K (2017) A dynamic decentralised
coalition formation approach for task allocation under tasks priority
constraints. In: 2017 18th International Conference on Advanced
Robotics (ICAR), pp. 250–255. IEEE

4. Aziz H, Brandl F (2012) Existence of stability in hedonic coalition
formation games. In: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume
2, pp. 763–770. International Foundation for Autonomous Agents
and Multiagent Systems

5. Aziz H, Brandt F, Harrenstein P (2014) Fractional hedonic
games. In: Proceedings of the 2014 international conference on
Autonomous agents and multi-agent systems, pp. 5–12. Interna-
tional Foundation forAutonomousAgents andMultiagent Systems

6. Bilo V, Fanelli A, Flammini M, Monaco G, Moscardelli L (2018)
Nash stable outcomes in fractional hedonic games: existence, effi-
ciency and computation. J Artif Intell Res 62:315–371

7. BogomolnaiaA, JacksonMO (2002) The stability of hedonic coali-
tion structures. Games Econ Behav 38(2):201–230

8. Dos Santos F, Bazzan AL (2011) Towards efficient multiagent task
allocation in the robocup rescue: a biologically-inspired approach.
Auton Agents Multi-Agent Syst 22(3):465–486

9. Dreze JH, Greenberg J (1980) Hedonic coalitions: optimality and
stability. Econometrica 48(4):987

10. Dutta A, Asaithambi A (2019) One-to-many bipartite matching
based coalition formation for multi-robot task allocation. In: 2019
International Conference on Robotics andAutomation (ICRA), pp.
2181–2187. IEEE

11. Dutta A, Czarnecki E, Asaithambi A, Ufimtsev V (2019) Dis-
tributed coalition formation with heterogeneous agents for task
allocation. In: The 32nd International Flairs Conference, pp. 116–
119. AAAI Press

12. Dutta A, Dasgupta P (2017) Bipartite graph matching-based
coordination mechanism for multi-robot path planning under com-
munication constraints. In:Robotics andAutomation (ICRA), 2017
IEEE International Conference on, pp. 857–862. IEEE

123

Intelligent Service Robotics (2021) 14:501–517 517

13. Dutta A, Ufimtsev V, Asaithambi A, Czarnecki E (2019) Coalition
formation for multi-robot task allocation via correlation clustering.
Cybern Syst 50(8):711–728

14. GairingM, Savani R (2010) Computing stable outcomes in hedonic
games. In: International SymposiumonAlgorithmicGameTheory,
pp. 174–185. Springer

15. Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of
task allocation in multi-robot systems. Int J Robot Res 23(9):939–
954

16. Irfan M, Farooq A (2016) Auction-based task allocation scheme
for dynamic coalition formations in limited robotic swarms with
heterogeneous capabilities. In: 2016 International Conference on
Intelligent Systems Engineering (ICISE), pp. 210–215. IEEE

17. Jang I, Shin HS, Tsourdos A (2018) Anonymous hedonic game for
task allocation in a large-scale multiple agent system. IEEE Trans
Robot 34(6):1534–1548

18. Kanakia A, Touri B, Correll N (2016) Modeling multi-robot task
allocation with limited information as global game. Swarm Intell
10(2):147–160

19. KorsahGA, StentzA,DiasMB (2013)A comprehensive taxonomy
for multi-robot task allocation. Int J Robot Res 32(12):1495–1512

20. Kuhn HW (1955) The hungarian method for the assignment prob-
lem. Naval Res Logist Q 2(1–2):83–97

21. Lagoudakis MG, Berhault M, Koenig S, Keskinocak P, Kley-
wegt AJ (2004) Simple auctions with performance guarantees for
multi-robot task allocation. In: 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 1, pp. 698–705. IEEE

22. LaValle SM,Hutchinson S (1993) Game theory as a unifying struc-
ture for a variety of robot tasks. In: Proceedings of 8th IEEE
International Symposium on Intelligent Control, pp. 429–434.
IEEE

23. Liemhetcharat S, Veloso M (2012) Modeling and learning synergy
for team formation with heterogeneous agents. In: Proceedings of
the 11th InternationalConferenceonAutonomousAgents andMul-
tiagent Systems-Volume 1, pp. 365–374. International Foundation
for Autonomous Agents and Multiagent Systems

24. Liemhetcharat S, Veloso M (2012) Weighted synergy graphs for
role assignment in ad hoc heterogeneous robot teams. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5247–5254. IEEE

25. Luo L, Chakraborty N, Sycara K (2014) Provably-good distributed
algorithm for constrained multi-robot task assignment for grouped
tasks. IEEE Trans Robot 31(1):19–30

26. Manne F, Bisseling RH (2007) A parallel approximation algorithm
for the weighted maximum matching problem. In: International
Conference on Parallel Processing and Applied Mathematics, pp.
708–717. Springer

27. Monderer D, Shapley LS (1996) Potential games. Games Econ
Behav 14(1):124–143

28. Mouradian C, Sahoo J, Glitho RH,MorrowMJ, Polakos PA (2017)
A coalition formation algorithm for multi-robot task allocation in
large-scale natural disasters. In: 2017 13th International Wireless
Communications and Mobile Computing Conference (IWCMC),
pp. 1909–1914. IEEE

29. Nam C, Shell DA (2017) Analyzing the sensitivity of the optimal
assignment in probabilisticmulti-robot task allocation. IEEERobot
Autom Lett 2(1):193–200

30. Nunes E, Manner M, Mitiche H, Gini M (2017) A taxonomy for
task allocation problems with temporal and ordering constraints.
Robot Auton Syst 90:55–70

31. Orlov M (2002) Efficient generation of set partitions. Engineering
and Computer Sciences, University of Ulm, Tech. Rep, Germany

32. OtteM,KuhlmanMJ, SofgeD (2020)Auctions formulti-robot task
allocation in communication limited environments. Auton Robots
44(3):547–584

33. Prorok A (2019) Redundant robot assignment on graphs with
uncertain edge costs In Distributed Autonomous Robotic Systems.
Springer, Berlin

34. Rauniyar A, Muhuri PK (2016) Multi-robot coalition formation
problem: Task allocation with adaptive immigrants based genetic
algorithms. In: 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 000137–000142. IEEE

35. Czatnecki E, Dutta A (2019) Hedonic coalition formation for task
allocation with heterogeneous robots. In: 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), pp. 1024–
1029. IEEE

36. Saad W, Han Z, Basar T, Debbah M, Hjorungnes A (2009) A self-
ish approach to coalition formation among unmanned air vehicles
in wireless networks. In: 2009 International Conference on Game
Theory for Networks, pp. 259–267. IEEE

37. SaadW,Han Z, Basar T, DebbahM, Hjorungnes A (2011) Hedonic
coalition formation for distributed task allocation among wireless
agents. IEEE Trans Mobile Comput 10(9):1327–1344

38. Saad W, Han Z, Basar T, Hjorungnes A, Song JB (2010) Hedonic
coalition formationgames for secondarybase station cooperation in
cognitive radio networks. In: 2010 IEEEWireless Communication
and Networking Conference, pp. 1–6. IEEE

39. Sarkar C, Paul HS, Pal A (2018) A scalable multi-robot task
allocation algorithm. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–9. IEEE

40. Adams JA, Service TC (2011) Coalition formation for task allo-
cation: theory and algorithms. Auton Agents Multi-Agent Syst
22(2):225–248

41. Shehory O, Kraus S (1998) Methods for task allocation via agent
coalition formation. Artif Intell 101(1–2):165–200

42. Su X, Wang Y, Jia X, Guo L, Ding Z (2018) Two innovative
coalition formation models for dynamic task allocation in disas-
ter rescues. J Syst Sci Syst Eng 27(2):215–230

43. Tang F, Parker LE (2007) A complete methodology for generating
multi-robot task solutions using asymtre-d and market-based task
allocation. In: ICRA, pp. 3351–3358

44. Tošić PT, Agha GA (2014) Maximal clique based distributed
coalition formation for task allocation in large-scale multi-agent
systems. In: InternationalWorkshop onMassivelyMultiagent Sys-
tems, pp. 104–120. Springer

45. Vig L, Adams JA (2006) Multi-robot coalition formation. IEEE
Trans Robot 22(4):637–649

46. Wu D, Zeng G, Meng L, Zhou W, Li L (2017) Gini coefficient-
based task allocation for multi-robot systems with limited energy
resources. IEEE/CAA J Automatica Sinica 5(1):155–168

47. Zhang Y, Parker LE (2013) Considering inter-task resource
constraints in task allocation. Auton Agents Multi-Agent Syst
26(3):389–419

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Scalable hedonic coalition formation for task allocation with heterogeneous robots
	Abstract
	1 Introduction
	2 Background
	2.1 Task allocation
	2.2 Hedonic games

	3 Model and notations
	4 Hedonic coalition formation game
	4.1 Maximum bipartite graph matching
	4.2 Hedonic coalition formation algorithm

	5 Experiments
	5.1 Settings
	5.2 Results
	5.2.1 Utility comparisons
	5.2.2 Impact of benefit and penalty
	5.2.3 Performance comparisons
	5.2.4 Switch rule analysis
	5.2.5 Implementation on a TurtleBot 3
	5.2.6 Scalability tests

	6 Conclusions and future work
	References

