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Abstract
This paper proposes a hierarchical visual architecture for perceiving garments’ configuration independently from their type 
for the robotic unfolding task. Special focus is given on the decomposition of folded configurations into low- and high-
level features. The low-level features comprise junctions of edges, which act as localized indicators of the clothing article’s 
state, while the high-level components refer to its layers and the axis that unites them. The proposed methodology extracts 
and classifies the low-level components into indicators of folds, overlaps, garment’s edges and corners and through their 
combination reconstructs the axis and the layers of the garment. The methodology is independent from the garment’s shape 
while it uses depth sensors so that it can deal with garments of various colours, patterns and decorative features. Experi-
ments showed the effectiveness of the method in scenarios with onefold or twofold and in different datasets, proving the 
extensibility of the approach.
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1 Introduction

The intense contemporary lifestyle and the increasing age-
ing of population have led the scientific world to research on 
the relief of people from tedious, tiring and time-consuming 
housework. In this scope, service robots were introduced 
and their potential to handle housekeeping has been widely 
explored.

One of the most challenging tasks among the house-
hold chores is the robotic manipulation of laundry and, in 
particular, garment unfolding, due to the highly non-rigid 
nature of garments. The infinite configurations that a gar-
ment can change during manipulations, create difficulties to 
the recognition of its state and the detection of the desirable 
grasp points to handle it. In the robotic literature, two main 
approaches are explored for the robotic unfolding. In the first 

one, all the manipulations of the garment take place in the 
air while, in the second one, partial unfolding is achieved 
in the air and the rest of the procedure is completed on a 
working table.

This paper presents a hierarchical visual architecture for 
perceiving a garment’s folded configuration on a working 
table, independently of its type (towel, shirt, shorts etc.) 
for the unfolding task. Through conceptual analysis, the 
garment’s configuration is broken down to its constituent 
components that are divided into high-level and low-level 
features. From a high-level point of view, these compo-
nents comprise the garment’s layers and the folding axes 
that connect them, and from a lower point of view, they 
refer to features such as junctions of the garment’s edges 
that indicate the garment’s configuration at localized areas. 
Using a bottom-up approach, these junctions are recognized, 
classified and interconnected leading to the recognition of 
the garment’s axes and layers. The proposed method is inde-
pendent from the garment’s shape, while input from depth 
sensors, such as kinect, is utilized so that it can deal with 
clothes with various colours, patterns and decorative features 
(e.g. pockets).

The proposed method is integrated in a garment unfold-
ing procedure introduced in previous works [1, 2]. The 
task is divided in three phases that include: (1) the robotic 
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manipulation in the air to transform the garment from a ran-
dom, crumbled state to a half-folded, planar configuration 
and its placement on a working table, (2) the recognition 
of the half-folded garment’s upper layer that needs to be 
unfolded, (3) the robotic unfolding of the detected layer. 
Since the first phase has been extensively explored and 
tested in previous work [1], in this paper, the description 
of the method focuses on the second stage, while the third 
phase is an independent future work.

The main advantage of this method is its independency 
from garments types (e.g. skirt, T-shirt, shorts) since it is 
based on features that apply in all garments and do not relate 
to their shapes. Furthermore, utilizing only depth data, it can 
deal with garments with a variety of colours and patterns. 
Inspired by the use of junctions for the extraction of 3D 
information from 2D images [3], a similar approach adjusted 
to the planar data and small depth differences on the surface 
of garments is proposed. Therefore, a “junctions’ dictionary” 
is created that detects and translates primitive features, i.e. 
junctions, to localized configurations. Based on this “dic-
tionary”, a new method for folding axis extraction and the 
detection of the garment’s upper layer is presented. Finally, 
both axis and upper layer detection methods are evaluated, 
apart from the half-folded configurations, in cases with two-
fold to explore the generalization ability of the methods.

To sum up, the main contributions of this paper are enu-
merated as follows: 

1. A new method for the perception of the folded configu-
ration of a garment on a working table based on hier-
archical analysis of its components is introduced. The 
method integrates human knowledge on the semantics of 
visual features that indicate the garment’s configuration 
and uses machine learning approaches to classify them 
and combine them.

2. Low-level features of garments, i.e. junctions of edges 
occurring from depth differences, are attributed to 
semantic information on localized configuration infor-
mation, leading to a “dictionary” that indicates folds, 
overlaps, edges or corners of the cloth while it can also 
handle wrinkles.

3. The proposed methodology is independent from the gar-
ment’s type while it can deal with garments with various 
colours, patterns and decorative features.

4. The experiments tested the effectiveness of the method-
ology to scenarios with one or two folds, considering the 
number of folds either a priori known or unknown.

The remainder of the paper is organized as follows. Section 2 
presents related work, while Sect. 3 introduces the hierar-
chical analysis of the folded configuration into its high and 
low-level components. Sects. 4 and 5 analyse the extraction 
of the low- and high-level components of the folded garment 

respectively. Finally, experimental results are presented in 
Sect. 6, while the paper concludes in Sect. 7.

2  Related work

The robotic unfolding has attracted the interest of many 
scientists that wanted to explore this complicated and chal-
lenging task. The main approaches met in the literature can 
be divided in two major categories. In the first category, the 
whole unfolding procedure takes place in the air, while, in 
the second one, the task is separated in two stages: (1) the 
robot handles the garment in the air so as to transform it into 
a planar, half folded configuration, (2) the half-folded gar-
ment is lied down on a working table so as to determine its 
state and proceed to the completion of unfolding. An inter-
esting observation is that the first category requires the clas-
sification of the garment to specific types of clothing (e.g. 
skirt, shorts, T-shirt, long-sleeved shirt, towel) while in the 
second one there are certain approaches that are independent 
of the garment type. In all the cases bi-manual robots are 
used to achieve handling.

2.1  Unfolding completed entirely in the air

The methodologies that complete the unfolding task in the 
air usually involve in their approach; the classification of 
the garment to predefined types [4–8] or its type is a priori 
known [9–12]. The garment’s configuration is usually recog-
nized while hanging and, then, appropriate points according 
to its type are detected and selected as grasp points that lead 
to complete unfolding (e.g. the shoulder of a shirt).

The approaches that require previous knowledge of the 
garment’s type are either type specific, for example in [9] 
only towels are handled, or can generalize to more types 
as long as they are provided as input by the user [10–12]. 
Therefore, the authors of [9] address the robotic unfolding 
of towels by extracting geometric cues from stereo images, 
depicting the towel hanging from a random point, in order to 
detect corner points. The selected points are grasped in order 
to bring the manipulated piece of clothing into a spread-
out state. In [10], two grasp points are selected simultane-
ously aiming at the natural unfolding of garments randomly 
placed on a table. The hem lines of the garment are detected 
using a range image while the selection of the grasp points 
is based on global shape similarity with a list of training 
data. Furthermore, the authors of [11] simulate garments 
hanging from various points through mass-spring models. 
These models are compared to images from stereo cameras 
depicting real hanging garments in order to predict their con-
figuration. If the prediction is not robust, “recognition aid” 
actions, such as rotation or spreading, are programmed to 
facilitate the evaluation of the garment’s state. In a similar 
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approach [12], a database with simulated models of hang-
ing garments is created. The 3D model of the real garments 
acquired by a depth sensor is compared through a feature 
extraction and matching scheme algorithm to the simulated 
models in order to predict their pose and select appropriate 
grasping points for unfolding.

Contrary to the aforementioned methods that consid-
ered the garment type known in advance, the following 
approaches [4–8] incorporated a type classification step 
into their flow. To achieve it, training datasets are utilized 
that comprised of specific types of garments, real or simu-
lated, hanging while being grasped from different points. 
Therefore, they do not require user input, while they can 
handle only garment types that are included in their datasets. 
The authors of [4] applied the Random Forests method for 
the classification of hanging garments to their types while 
Hough Forests suggest grasp points that lead to their unfold-
ing. The grasp point detection is further improved in [5] 
using Active Random Forests to deal with ambiguous situ-
ations. Furthermore, in [6] the classification task and the 
two grasp points detection required for the unfolding are 
achieved through an hierarchy of three levels of Convolu-
tional Neural Networks (CNNs) trained in both simulated 
and real data. In a similar approach, using CNNs with differ-
ent architecture, the whole unfolding procedure is executed 
in [7] while in [8] convolutional neural networks are used 
for the classification and pose estimation of the garment, 
nevertheless, without concluding the unfolding chain by 
finding grasp points.

2.2  Two‑stage unfolding

In the two-stage unfolding, at the beginning, the garment 
is partially unfolded in the air and, then, it is placed on a 
working table for further unfolding manipulations. Although 
some researchers explored both of these stages, others 
focused only in one of the two of them. In this scope, the 
analysis of the related papers is divided in these two parts.

2.2.1  Partial unfolding in the air

In this group of methodologies, the garment is grasped by 
a random point and held up in the air. The goal is to detect 
points that are located at the outline of the garment (as it is 
defined when the garment is in an unfolded state) and, by 
consecutive regrasping, to transform it to a planar half folded 
state. To achieve this task, a heuristic approach is proposed 
in [13]. The lowest point of the hanging garment is detected 
and grasped in iterations leading in this way to the desir-
able planar folded configuration. Following a similar logic, 
the lowest hanging procedure is repeated in [14], where 
a Hidden Markov Model is utilized in order to track the 
clothing article’s configuration during handling by matching 

its outline with existing templates. Although the heuristic 
approach utilized in the aforementioned approaches provides 
an easy solution, it could create problems to the handling 
of real size garments due to the robots’ workspace limita-
tions. Therefore, the authors of [15] proposed the detection 
of outline points based on the appearance of shadows cre-
ated by folds. Nevertheless, as it is reported in that work, the 
approach suffers from changes of the environmental condi-
tions. Moreover, a method that detects through geometric 
features folds and hemlines of the hanging garment, i.e. 
parts of its outline, is presented in [1]. The method provides 
the option to eliminate the proposed grasp candidates to the 
robot’s workspace while it utilizes a depth camera remaining 
independent from environmental conditions.

2.2.2  Manipulations onto a working table

At the second phase of unfolding, the robot has grasped the 
garment from two outline points and laid it in a folded con-
figuration onto a working table. The goal is to transform 
the garment from a folded planar state to a spread-out con-
figuration. The utilized methods either try to re-configure 
the garment based on their type (type dependent) [1, 14] 
or by detecting the upper layer formulated by the unfolding 
manipulations [2, 16] (type independent).

In this scope, referring to the first category, [1, 14] match 
the garments to their types and configurations using tem-
plate matching techniques. Based on the garment type, the 
appropriate grasp points, that are defined a priori by the 
user for each template, are selected in order to lead it to an 
unfolded state.

On the other hand, towards a type-independent procedure, 
a specialized installation illuminating the folded garment 
from three different orientations is utilized in [16]. The goal 
of this installation is to accentuate the edges of the overlap-
ping parts of the garments so as to extract the upper layer of 
the fold. Furthermore, fold detection is explored as well in 
[17] and [18], although in these cases the fold formulation is 
not specifically connected to previous robotic manipulations. 
Both approaches are based on depth information to create 
clusters that indicate the upper layer of the fold while as a 
next step they proceed to the detection of the fold’s axis. In 
[17], the axis detection is achieved by selecting the axis that 
provides the shortest contour once the garment is unfolded. 
Moreover, in [18], the axis detection is defined by a “bumpi-
ness” criterion that evaluates all the edges of the outline of 
the garment and selects the one that is more smoothly con-
nected with the detected layer.

The last three methodologies [16–18] are the most highly 
related to the approach presented in this paper. Comparing 
to [16], both methodologies focus on the edges created by 
the formulation of two layers. Nevertheless, [16] requires a 
specialized illumination installation while it handles only 
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single-colour garments. Moreover, apart from the fold, their 
work does not explore other features of a folded configura-
tion such as axes. Regarding the methods described in [17, 
18], the similarity with the proposed methodology lies in 
their goal to extract the upper layer of a folded configuration 
and its axis. Nevertheless, [18] does not focus on the extrac-
tion of the whole upper layer and compromises on detecting 
a part of it so that it can be grasped. Although this strategy 
can be sufficient for thick garments, which are more stiff, 
and for small folds, it cannot generalize to thinner garments 
and various folds. On the other hand, [17] proposes a method 
that extracts the whole area of the upper layer using a variety 
of garments with different shapes, fabrics and thicknesses. 
The approach is not related to manipulations that transform 
the garment into a planar folded configuration; therefore 
the way the folds were formulated is unknown. The method 
maps the garment to two classes referring to the upper and 
lower layer; nevertheless, it is not clear if it can cope with 
cases that the visible part of the lower layer is separated in 
more segments by the upper layer or even in cases that the 
lower layer is completely covered by the upper layer. Never-
theless, these cases are common during the robotic unfolding 
task. Moreover, its experimental results refer only to config-
urations with one fold. Contrary to this work, our proposed 
method is focusing on the edges that define the area of the 
layers and their interrelations and not on the clusters formed 
by the layers. This provides us the capability to handle the 
aforementioned cases occurring during robotic unfolding. 
Furthermore, the extensibility of our method was tested with 
experiments on cases of configurations with two folds.

3  Hierarchical analysis of the planar folded 
configuration

The method presented in this paper is a part of an unfold-
ing procedure that, through robotic manipulations in the air, 
transforms the garment from a random, crumbled configura-
tion in a half-folded, planar state and lays it on a working 
table so that the two layers in which the garment is divided 
are extracted. Once the upper layer is known, the garment 
can be completely unfolded. Since the robotic manipulations 
that lead the garment to a half folded state are analysed in 
detail in [1], the present paper focuses on the analysis of the 
planar, folded configuration based on a hierarchical architec-
ture. Primitive, low-level features that derive from junctions 
of edges and are indicative of the localized configurations 
are extracted in order to lead to the perception of high-level 
features, such as the axis and the layers of the garment. The 
outline of the unfolding procedure and the schema of the 
hierarchical architecture are presented in Fig. 1 while Fig. 2 
depicts the overview of the proposed method’s steps in order 
to extract the low- and high-level features.

This paper introduces a new method that relates with 
two previous works of the authors and expands them under 
a new perspective. In the first one [2], an edge-oriented 
approach based on the depth differences on a half folded 
garment, extracts the edge sequence that connects the 
two ends of the a priori known folding axis and forms the 
upper layer. The search of the edge sequence is based on 
criteria like the proximity, continuity and collinearity of 
the edges while a neural network makes the final decision 
on the choice of the edges that participate on the sequence 
of the upper layer outline. In another work [19], applied on 
colour images, junctions of edges are detected and clas-
sified based on their schema (i.e. “arrow”, “L”, “T” and 
“I” junctions) to different indicators of localized garment 

Fig. 1  Outline of the unfolding task focusing on the analysis of the 
planar folded configuration of the garment

Fig. 2  Outline of the proposed method to extract the high and low-
level features: a the garment lied onto the working table, b preproc-
essing for edge detection, c extraction of low-level features/examples 
of junctions are marked in different colours, d axis extraction, e upper 
level extraction, f lower level extraction (colour figure online)
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configuration, such as folds and overlaps, creating in this 
way a junctions’ “dictionary”.

The work presented in this paper enhances and expands 
these methods while it proposes a new hierarchical approach 
for the comprehension of a half folded garment’s configu-
ration. In particular, it applies the “dictionary” on depth 
data, instead of colour, and expands it to more categories 
utilizing depth information while it also incorporates cases 
with edges created from noise. Furthermore, the junctions’ 
classification is achieved by means of Random Forests and 
not simple geometrical criteria, coping, in this way, with 
more complex situations (e.g. noise). This new, updated 
“dictionary” is integrated in an upper layer edge sequence 
search procedure inspired from [2] but enriched with new 
features and methods that express the hierarchy between 
the low-level and high-level components of the garment’s 
configuration. Therefore, in the current paper, the sequence 
of the upper layer edges is determined by the detection of 
junctions and the application of the introduced “dictionary”. 
Moreover, other features of the garment, such as the axis and 
the lower layer, are explored providing a better description 
of the garments’ configuration while more scenarios like 
twofold are instigated.

3.1  Features of the hierarchical analysis

Observing garments of various types being half-folded on 
a table, several features that facilitate the comprehension of 
the cloth’s configuration are detected (Fig. 3). From a high-
level point of view, the garment can be divided in two main 
layers: (1) the upper layer and, (2) the lower layer, while the 
common edge that unites the two layers is the folding axis 

(Fig. 3a). At the same time, focusing on a lower-level point 
of view, it is observed that the layers and their interrelation 
are defined by junctions of edges, i.e. edges that intersect 
(Fig. 3b). These junctions have various schemas, each one 
with different semantics, creating a junctions’ “dictionary” 
[19]. Using this “dictionary”, an overlap, a fold, a corner or 
just an edge of the garment can be identified (Fig. 3c) while 
their combination leads to the higher-level features, i.e. the 
two layers and the folding axis. In the next paragraphs these 
low- and high-level features are described in detail.

Junctions The groups of edges, i.e. junctions, studied in 
this paper can be divided according to their schemas to fea-
tures with different and specific semantics [19]. The main 
types of junction that were observed can be classified based 
on their 2D geometry to “arrow”, “T”, “L” and “I” junctions. 
Each junction type symbolizes a different indicator of the 
possible garment’s configuration. In particular, the “arrow” 
depicts a fold, “T” indicates an overlap, and “I” refers to an 
edge, while “L” may have two explanations: (1) a garment’s 
corner, or (2) a fold with the folding part not visible to the 
observer. In the case of interest, where the garment’s con-
figuration occurs from manipulations in the air, it is a safe 
approach to treat “L” junctions located on the folding axis 
as folds while “L” junctions at the rest parts of the garments 
are more likely to be real corners of the garment’s outline 
(Fig. 3b).

Apart from the 2D schemas, another important factor, 
introduced in this paper, that indicates the configuration 
of a garment around a junction is the depth differences 
of the areas formed between the junction’s edges. Based 
on them, the garment’s layers (upper and lower) can be 
mapped. Therefore, sub-categories for each type of junc-
tion are defined and depicted in Fig. 4, expanding in this 
way the dictionary proposed in [19]. Our goal is not to 
exhaustively enumerate all possible combinations of depth 
levels and angles between the junction edges but to focus 
on the main cases met on the garment once it is led in a 
half folded configuration. In Fig. 4, while in both cases of 
“arrow” junctions there is a fold, according to the depth 
levels the configuration is different. Similar examples for 

Fig. 3  High and low-level features: a The high-level features: upper 
layer, lower layer and axis, b examples of low-level features, c analy-
sis of the low-level features

Fig. 4  Junction types according to the 2D geometry and the depth 
levels between the junctions’ edges. The three types of levels show 
the relative relation between the depths of a junction and do not refer 
to specific layers
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the rest of the junction types are also depicted (neverthe-
less, “I” junction has only one option, since it is a matter 
of orientation to alter the sides of the depths).

Folding Axis In order to define the possible types of axis 
that may occur once, the garment is led in a half folded 
configuration, the junctions’ “dictionary” is utilized. In 
particular, four types of axis are observed based on the 
junction-types that lie to the axis’ two ends. To facilitate 
the definition of the axis-types, we consider that the axis 
is located horizontally and that the fold is downwards as in 
Fig. 5. The possible junction combinations, from the left 
to the right end of the axis, are: 

1. An “arrow-1” and an “arrow-2” junction (Fig. 5a).
2. An “arrow-1” and an “L-2” junction (Fig. 5b).
3. An “L-2” and an “arrow-2” junction (Fig. 5c).
4. Two “L-2” junctions (Fig. 5d).

Although we cannot exclude the existence of other com-
binations of junctions that form an axis, these four cat-
egories were the result of the manipulations stage (as it is 
described in [1]) in 100 tests.

Upper layer The upper layer is defined by a sequence 
of edges that along with the folding axis form a non-inter-
secting polygon. The edges of the layer are recognized 
based on the detection and classification of the junctions 
formed on the garment, the configuration they imply and 
their interrelations. A more detailed description of the 
proposed upper layer extraction approach is provided in 
Sect. 5.2.

Lower layer The edges located onto the area of garment 
belong either to the upper layer, the lower layer or refer to 
noise (wrinkles, edges occurring from decorative features 
of the garment such as pockets). The edges located to the 
outline of the half-folded garment that do not belong to the 
upper layer are considered edges of the lower level.

4  Low‑level features extraction

This section presents the extraction and classification of 
the low-level features. It begins with the preprocessing of 
the depth image and the extraction of the garment’s edges, 
which is a process firstly introduce in [2]. Furthermore, it 
introduces the detection of junctions based on the detected 
edges and presents an extended version of the junctions’ 
dictionary in comparison to [19]. Finally, the implementa-
tion of the junctions’ “dictionary” utilizing the method of 
Random Forests is presented.

4.1  Preprocessing and extraction of oriented edges

Once the garment is located half-folded on a working 
table, a preprocessing procedure, which was presented 
in [2], extracts oriented edges that will be used for the 
detection of its low- and high-level features (Fig. 6). The 
preprocessing starts with the acquisition of a depth image 
using a range sensor. The image is filtered using bilateral 
filtering to diminish noise and enhance edge pixels that 
are extracted by Canny detector [20]. The detected pixels 
are separated into clusters by the DBSCAN algorithm and, 
through line simplification [21], result in straight line seg-
ments. Finally, to diminish noise, all edges with length 
smaller than a predefined threshold are rejected. The edges 
extracted from the surface of a garment laid on a table can 
be seen in Fig. 6b.

The extracted edges are attributed with an orientation 
so as to facilitate further analysis of the garment’s configu-
ration and the extraction of its upper level. This orienta-
tion depends on: (1) the depth differences between the two 
sides of the edge (the depth difference calculation of an 
edge is described in detail in Sect. 4.4); (2) the direction 
used (clockwise or not) in order to reveal the sequence of 
edges that comprise the outline of the upper layer (Fig. 7). 
In particular, the orientation of an edge with two endpoints 
p and q is defined by the formula:

Fig. 5  Axis types based on the junction types that lie to its ends. The 
axes are highlighted with red colour (colour figure online)

Fig. 6  Extraction of edges on the surface of a garment: a the colour 
image of the garment, b the extracted edges using depth information 
(colour figure online)
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where û is the unit vector that is perpendicular to the edge 
and its direction occurs from the depth difference between 
the two sides of the edge (from the most distant side of the 
edge comparing to the camera to the closest one) and ẑ is 
the unit vector of the perpendicular to the table rotation 
axis, determining the upper layer exploration detection. Two 
examples on the edges’ orientation extraction for clockwise 
and anticlockwise exploration of the upper layer can be seen 
in Fig. 7.

4.2  Junctions’ extraction

The results of the preprocessing step show that the infor-
mation obtained from the depth sensor differentiates from 
the perfect scenario, presenting gaps on the edges and extra 
noise (Fig. 8). The small depth differences of the garment’s 
layers can be sometimes in the range of the sensor’s error 
tolerance [22]; hence, parts of the folded garment’s layer 
might not be detected. Moreover, wrinkles of the fabric 
or decorative features of a garment, such as pockets, large 
seams, collars etc., could create extra edges that complicate 
the task of layer detection (from now on, these edges will be 
referred as noise edges).

Taking into account the aforementioned difficulties, a 
method is developed aiming to group edges of close distance 
into junctions, classify them and, based on the configura-
tion they imply, connect them to reveal the garment’s layers. 
Therefore, the first important step is to detect and classify 
the edge junctions correctly and unaffected from the noise 
edges. Since the junctions of interest include two (“I” and 
“L”) or three (“arrow” and “T”) edges, only combinations 
of edge pairs or triads are taken into account.

To avoid investigating all possible edge combinations, a dis-
tance metric between the oriented edges is taken into account. 
In particular, in a pair of edges, an edge is considered to 

(1)
���⃗pq

|���⃗pq|
= û × ẑ

participate into a junction with another edge when the Euclid-
ean distance between the end of the first one and the beginning 
of the second one is below a threshold that depends on the 
garment’s dimensions. Therefore, as it is depicted in Fig. 9, 
an edge ���⃗ab is connected with another edge ���⃗cd to form a junc-
tion when:

where dist(b, c) is the Euclidean distance between the points 
b and c, � is a constant value that represents a percentage of 

(2)dist(b, c) < 𝜆 ⋅max
dx

Fig. 7  The edges’ orientation based on the direction of the upper 
layer’s sequence exploration and the depth differences: a not-clock-
wise direction of the layer’s exploration, b clockwise direction of the 
layer’s exploration. The blue edges correspond to examples of edges 
extracted through preprocessing while on three of them the oriented 
edge is depicted with red arrows (colour figure online)

Fig. 8  The differences between the ideal edge extraction and the true 
edges that are extracted: a a colour image of the folded garment, b an 
example of an ideal situation where all the edges of the layers are vis-
ible and all the noise edges of the wrinkles or the V-neck are not vis-
ible, c the true edges as they are extracted through the preprocessing 
procedure (colour figure online)

Fig. 9  A true “T”-junction and a combination of an “I”-junction and 
an edge occurring from a decorative seam: a the colour image of the 
folded garment, b the edges extracted through the preprocessing pro-
cedure-edges ���⃗ab , ���⃗be and ���⃗cd form a junction, c the “T”-junction and 
the combination of “I”-junction and an edge occurring from a seam 
are highlighted in red and yellow respectively (colour figure online)
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maxdx and maxdx is the maximum distance of the points of 
the garment’s outline on the horizontal axis of the sensor’s 
image. The maxdx acts as a rough estimator of the garment’s 
dimensions. Finally, if an edge satisfies Eq. (2) for more than 
one edge, triads of junction candidates are formed.

We should point out, that since this criterion is applied 
on oriented edges, it ensures that the edges are connected in 
such way that they both have their highest parts on the same 
side. The use of relative values (higher/lower) is preferred 
in relation to the actual depth values since different parts of 
the same layer might have different values due to wrinkles, 
decorative features of the garment that have extra volume, 
e.g. pockets, or even due to the error tolerance of the depth 
sensor.

Moreover, another criterion for the formulation of a junc-
tion is applied in cases of edges that belong to the outline 
of the folded garment. In these cases, the inclination of the 
internal edges regarding the corners of the outline of the gar-
ment is considered as a strong indicator of a non-accidental 
relation that could refer to an “arrow” or a “T” junction 
providing useful information on the garment’s configuration. 
This inclination is measured by calculating the distance of 
the corners’ top from the lines defining the internal edges 
(Fig. 10). An edge with short distance from the top of a 
corner is considered as a good candidate to form a junc-
tion. Therefore, an internal edge ���⃗ab and a corner formed 
from outline edges with top point c are considered to form 
a junction when:

where dper(a, b, c) is the perpendicular distance of point c 
from the edge ���⃗ab , � is a constant value that represents a 
percentage of maxdx and maxdx is defined in Eq. (2).

It should be commented that for the junction formula-
tion, edges of the garment are merged; nevertheless, the 
case of splitting larger edges to smaller ones in order to 
investigate new junctions is not explored. The main reason 

(3)dper(a, b, c) < 𝜅 ⋅max
dx

is that, during preprocessing (Sect. 4.1), line simplification 
is applied on large contours resulting in smaller segments. 
The line simplification parameters were adjusted through 
trial-and-error experiments so that the occurring edges 
represent adequately the curvature and the different parts 
of the layers’ outline. Rare cases of segments that would 
provide useful information and new junctions if they were 
further split might occur, nevertheless creating and testing 
more edges would lead to extra computational cost.

4.3  Junctions’ “dictionary” elements

The junction types studied in this paper are composed 
from two or three edges. In the case of two edges, the 
classification is easy and can be based on the angle and the 
depth difference of the two areas formed between them. A 
similar approach could be applied on junctions with three 
edges; nevertheless, during the recognition of the junc-
tions formed on the cloth, there might be edge combina-
tions that include noise edges. These cases make it difficult 
to distinguish them from a junction corresponding to the 
categories “T” and “arrow”. For example, a combination 
of an “I” junction with an edge occurring from a decora-
tive seam would be easily confused with a “T” junction 
(Fig. 9). Therefore, to deal with this problem extra ele-
ments are added for recognition to the junctions’ diction-
ary. These new elements comprise combinations of “L” or 
“I” junctions with an edge which can be located to either 
side, lower or higher, of the junction in a random position. 
In Fig. 11, a summary of illustrations of the additional 
dictionary elements is provided. Due to the complexity 
of the information, the junction recognition is not relying 
on simple calculations and the Random Forest classifier 
[23] is utilized so as to be trained to more complicated 
examples.

Fig. 10  Correlation of an edge in the interior of the garment with a 
corner located on the outline: a the colour image of the garment, b 
the extracted edges are depicted while the perpendicular of the point 
c to the line of the edge ab is marked with blue (colour figure online)

Fig. 11  Extra junctions explored by the junctions dictionary to deal 
with combinations with noise edges. The noise edge may be either to 
the upper or the lower level side without specific position or orienta-
tion
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4.4  Junctions’ “dictionary” utilizing random forests 
methodology

The classification of the elements of the “dictionary” is a 
complicated problem that cannot be resolved through simple 
calculations. The Random Forest classifier (Fig. 12) pro-
vides the capability to learn by examples in a fast, parallel-
ized manner while it produces probabilistic classification 
results that permit, in cases of multiple choices, to select 
the one with the highest probability. Moreover, according 
to [24], it is better suited for multi-class problems than clas-
sifiers such as SVM while it requires less training data and 
computational power than deep neural network approaches.

The goal of the proposed classifier is to classify three-
edge junctions to elements of the “dictionary”. Therefore, its 
inputs refer to features regarding the schema and the depth 
differences of the junction under classification while the 
assigned classes are the junction types. In order to extract 
the inputs of a junction, one of its edges is considered as 
initial and the other two are taken into account based on the 
order of appearance in a clockwise manner (Fig. 13). Based 
on this order, the Euclidean distances and angles of inter-
est between the first and the other two edges are extracted 
while the depths on both sides of each one of the edges are 
calculated. In addition, the information that an edge belongs 
to the outline of the folded garment and its side that belongs 
to the working table are declared.

For better understanding of these features, a schema of 
a junction that includes three edges ( ��⃗e1 = ���⃗ab , ��⃗e2 = ���⃗cd and 
��⃗e3 =

��⃗fg ) is presented in Fig. 14 while equations for calculat-
ing the depths alongside an edge, the distance and angle of 
interest between two edges are provided in order to facilitate 
the definition of the classifier inputs.

Therefore, the distance between two oriented edges is 
calculated as in Eq. (2), meaning it is the Euclidean dis-
tance between the end of the first edge and the start of the 
second one. For example the distance between ��⃗e1 and ��⃗e2 is:

where dist(b, c) the Euclidean distance between points b and 
c.

The angle of interest between two junction edges 
��⃗e1 =

���⃗ab and ��⃗e2 = ���⃗cd is defined by the following equation:

where lmin is a small predefined length that considers that the 
two edges are very close to each other.

For the extraction of depth differences between the two 
sides of an edge, two rectangular areas on the two sides 
defined by the edge are extracted (Fig.14c). The rectan-
gular areas length is the edge’s length l while their width 
w is predefined (10 pixels) . The mean depth of each area 
is extracted while their difference defines the width of the 
garment along the edge.

(4)l12 = dist(b, c)

(5)a12 =

{
�abc, if l12 > lmin

�abd, otherwise

Fig. 12  Random Forest diagram. The feature vector fi of a junction 
is explored by the trees of the Random Forest and, through majority 
voting, the probabilities of the junction for each class are calculated

Fig. 13  The three different orientations of an “arrow-1” junction 
regarding the edges ordering

Fig. 14  Width extraction along a garment’s edge: a the edges of a 
junction, b the distances and angles between the edges of a junction, 
c the rectangular areas explored for the width extraction of an edge 
are highlighted with blue and yellow colours, d explanatory table 
(colour figure online)
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Based on the aforementioned definitions, the inputs of the 
Random Forests classifier utilized for training and evaluation 
are the following: 

 1. The distance l12 between the initial and the second 
edge. Larger distances tend to have higher probabilities 
to refer to connections with noise-edges.

 2. The distance l13 between the initial edge and the third 
edge.

 3. The difference dl23 = l12 − l13 between the two afore-
mentioned distances. Values near zero indicate equally 
strong connections between the two candidate edges 
and the initial edge while large positive or negative 
values show the advantage of one edge over the other, 
i.e. higher probabilities to belong to the same layer 
with the initial edge.

 4. The angle a12 between the initial and the second edge. 
Considering that two edges of a junction could belong 
to the outline of the same layer, their angle would sig-
nify the layer’s change of curvature providing informa-
tion on the junction’s schema.

 5. The angle a13 between the initial and the third edge.
 6. The difference da23 = a12 − a13 between the calculated 

angles.
 7. The dD2 = D21 − D23 difference between the depths 

of the two sides of the second edge where D21 and D23 
are considered in a clockwise manner. The depth dif-
ferences provide valuable information that indicates 
the sides of the edges that most probably belong to the 
upper or the lower layer. Cases with small differences 
have higher changes to belong to noise edges.

 8. The dD3 = D31 − D32 difference between the depths of 
the two sides of the third edge.

 9. The difference dD�
2
= D�

21
− D�

23
 between depths D′

21
 , 

D′
23

 that are the same with the depths of the second 
edge unless for depths that do not belong to the gar-
ment, i.e. they belong to the table, and their depth is 
considered to be zero. This information shows that 
these edges are located at the outline of the half-folded 
garment and cannot be wrinkles.

 10. The difference dD�
3
= D�

31
− D�

32
 of depths D′

31
 , D′

32
 , 

that refer to the depths of the third edge but similarly 
to (9) take into account areas that do not belong to the 
garment by setting them to zero.

Therefore, according to these features, for each junction j 
under classification, a feature vector fj is created.

The outputs of the classifier are the probabilities of the 
input junction to belong to each one of the defined junction 
types of the dictionary. The class with the highest prob-
ability is considered to be the junction’s type. Actually, the 
classes of interest are all the three-edge junction types as 
they are depicted in Figs. 4 and 11. Moreover, these classes 

are divided into three subclasses according to the order of 
the edges at the feature vector fj provided as input. In this 
way, apart from the class type, each edge of the junction is 
mapped on the edges of its type schema.

5  High‑level feature extraction

In this section the extraction of high-level features of a gar-
ment’s configuration are explored. The low-level features 
are combined with each other based on the semantics of the 
“dictionary” so that the axes and the layers of the garment 
can be detected through their components.

5.1  Axis recognition

In this section, the detection of the unfolding axis is pre-
sented. At first, only one axis is considered while the type 
of the garment or any information on the axis location is 
not available (e.g. we do not take into account that the fold 
occurred from predefined robotic manipulations). To facili-
tate its detection, an axis’ definition based on Sect. 3.1, is 
utilized. Therefore, an axis can be defined as a sequence of 
junctions that fulfill the following rules: 

1. The axis starts with a junction that is classified as an 
“arrow-1” or an “L” junction.

2. The axis ends with a junction that is classified as an 
“arrow-2” or an “L” junction.

3. In-between the predefined junctions, zero to multiple “I” 
junctions can occur.

The proposed axis detection methodology explores all the 
outline edges of the garment (Fig. 15b), combines internal 
edges with the corners of the outline to create junction can-
didates (Fig. 15c), classifies them (Fig. 15d) and, once they 

Fig. 15  The axis detection procedure



437Intelligent Service Robotics (2021) 14:427–444 

1 3

satisfy the aforementioned criteria, ends up through an SVM 
classifier to the final axis (Fig. 15e).

At the first step of the axis detection process, all the edges 
of the folded garment’s outline are combined into junctions. 
The junctions might include either only two consecutive 
edges that form a corner or additionally include an inter-
nal edge that could refer to a part of an “arrow” or a “T” 
junction providing useful information on the garment’s con-
figuration. Nevertheless, it could be a noise edge that was 
combined with a simple “L” or “I” junction. Therefore, each 
outline corner might end up with zero, one or multiple inter-
nal edges. At this point, the “junction’s dictionary” is applied 
and the candidate junctions are examined. In the cases that 
no internal edge is assigned to a corner then the junction is 
classified as an “L” or “I” while in cases of multiple edges, 
only the junction that has the highest recognition probability 
from the Random Forest classifier is considered as valid.

Once all the corners of the garment’s outline are classi-
fied, axes that fulfil the aforementioned criteria are detected. 
Although these measures limit the possible cases, more than 
one axis candidates might occur. To recognize the real axis, 
an SVM with polynomial Kernel of 5th degree was utilized 
(Fig. 16). The SVM classifier is selected since it is suitable 
for binary problems without large amount of training data. 
The inputs to this SVM are enumerated in the following 
lines: 

1. The number of “arrow” junctions participating to the 
axis. According to the rules mentioned above an axis 
can have Nar “arrow” junctions, where Nar = {0, 1, 2} . 
Since the “arrow” junctions are strong indicators of folds 
their existence supports the hypothesis that an edge with 
“arrow” junctions is an axis.

2. The relative width Wr of the garment at the axis candi-
date area. For its extraction, the width of each candidate 
edge is calculated from the depth difference between 
the side of edge where there is the garment and the 
side of the table (for the depth difference calculation 
see Sect. 4.4 and Fig. 14c). Then, all the widths are 
normalized based on the larger one calculating in this 

way the relative widths. Larger widths can be justified 
by a garment’s fold; nevertheless, as it will be proved 
in the experiments, it is not always the case. There are 
cases where wrinkles or decorative features (e.g. pock-
ets) amplify the width of other parts of the garments. 
Furthermore, in thin fabrics, the depth differences are 
close to the camera’s tolerance as a result the calculated 
widths might have deviations that affect their ranking.

3. The length La of the axis candidate, which is defined 
by the Euclidean distance between its two ends. This 
parameter discourages the classifier from the selection 
of small edges, (e.g. the ones corresponding at the open-
ing-end of sleeves).

4. The number of arrow junctions that belong to other can-
didate axes ( Nc ). Although an “arrow” junction indicates 
a fold, the case of false detections cannot be ignored. 
Therefore, the existence of more than one edges with 
“arrow” junctions could indicate more folds but also it 
could be the result of a misclassification.

Although the SVM does not use as direct input the actual 
pixels and their depth values around the candidate axis, 
the three-dimensional information of the area is taken into 
account in the form of the number of arrow junctions Nar and 
the relative width Wr . In particular, if Nar > 0 the formula-
tion of two layers is implied. Moreover, the junction clas-
sification process that decides on the existence of “arrow” 
junctions uses the depth differences along the edges of the 
junctions as input. Finally, the relative width Wr , that comes 
from the calculation of the mean depth along each candidate, 
provides the ranked value in an effort to extract the thicker 
edge. This piece of information is more valuable than the 
absolute width of the edges since different garments can 
have different widths, i.e. different thicknesses.

For the evaluation of the axis detection methodology, two 
scenarios were explored: (1) the number of axes ( Naxis ) is 
considered a-priori known; (2) the number of axes is not 
known. In the first scenario, the results of the classifica-
tion are ranked so that only the first Naxis candidates with 
the highest probabilities are considered as axes, while, in 
the second scenario, each candidate is evaluated separately. 
Since the results of a simple SVM are binary, a modified 
version is used in the first case in order to extract probabili-
ties [25].

5.2  Upper layer extraction

Once the axis of the half-folded garment is known, the 
search of the upper layer can begin. The goal of this task is 
to find the sequence of edges that connects the two ends of 
the axis and forms the outline of the garment’s upper layer. 
To determine this sequence of edges, a search algorithm 
is applied. The algorithm is defined by the tuple ⟨E,A, T⟩ 

Fig. 16  The SVM classifier has four inputs while its output is binary 
with two classes: (1) axis, (2) simple edge
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that includes: (1) a state space E, that includes all detected 
edges apart from the axis; (2) an action space A that includes 
the possible interconnections between the states; (3) a state 
transition function T, that determines the next state of the 
sequence based on the states suggested by the action space 
A and (4) a search procedure, that deals with dead end 
sequences, meaning with sequences that do not end up con-
necting the two axis ends.

As it is already mentioned in Sect. 3, this algorithm intro-
duces new features to the methodology of [2], that also uses 
a state space, an action space and a transition function. In 
particular the same state space is used in both cases, nev-
ertheless this time a different action space and transition 
function are proposed. Therefore, the criteria of proximity, 
collinearity and continuity suggested for the calculation of 
the action space in [2] are substituted by the junctions’ for-
mulation criteria while the junctions’ “dictionary” takes the 
place of a neural network transition function. More details 
on the steps of the proposed algorithm are provided in the 
following subsections.

5.2.1  State space

The state space E is defined as the set E = {s1, s2,… , sN} , 
where N is the number of detected edges excluding the axis 
(to avoid taking this shortcut). The initial state s1 and goal 
state sG are defined by the junctions located at the ends of 
the axis. In the cases of “L” junctions, they are the edges that 
do not belong to the axis whereas in “arrow” junctions, the 
edges that signify the existence of the upper layer. In com-
binations that include one “arrow” and one “L” junction the 
exploration of the upper layer’s edge sequence starts from 
the “arrow” junction while the goal state is the edge of the 
“L” junction.

5.2.2  Action space

The action space A = {a1, a2,… , an} , defines the n possible 
interconnections between the states as they are defined by 
Eqs. (2) and (3) that determine the criteria for the formula-
tion of a junction. In this way, only certain actions are avail-
able at each state of the path. In Fig. 17, an example of the 
possible actions suggested by the action space is presented. 
Three different actions are allowed, i.e. three edges fulfil 
the criteria to form a junction with the edge corresponding 
to the state si.

5.2.3  State transition function

The state transition function T(si, (ai1, ai2,… , ain)) = s(i+1) is 
based on the junctions’ dictionary. The function combines 
the current state edge si with the edges occurring from the 
action space A and, according to the formed junction, the 

edge s(i+1) that suggests the continuity of the upper layer is 
selected. In cases where the action space A suggests more 
than two edges (Fig. 17), all the possible junctions (Fig. 18) 
are taken into account and the one with the highest probabil-
ity defines through its configuration the next state.

5.2.4  Search procedure

There are cases that, due to a false classification of the junc-
tions’ dictionary at the state transition function, the selected 
sequence of edges might not end up to the goal state or might 
lead to a loop intersecting itself, creating in this way a dead-
end situation. To deal with these circumstances, a depth first 
algorithm is utilized. It can be observed that each time the 

Fig. 17  Three different actions a1, a2, a3 suggested by the action 
space in order to proceed from state si to the next candidate state si+1 
are depicted in the corresponding images

Fig. 18  Three different junctions j1, j2, j3 based on the suggestions of 
the action space A and considered by the transition function T 
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action space provides to the transition function more than 
one state, then a branch is created. The sequence of the 
upper layers edges incorporates the edge-state suggested by 
the transition function; nevertheless, the rest of the choices 
are kept as branches. Therefore, once a dead-end situation 
occurs, the algorithm returns back to the last node where 
there was a branch and re-evaluates the possible junctions. 
This time, only junctions that do not suggest the previous 
edge state as a part of the upper layer are taken into account. 
This procedure is iterated until a path of edges that leads to 
the goal state is found or until there are no other options.

Once the path of edges that signifies the upper layer is 
extracted, the edges are connected so that the complete out-
line of the upper layer is formed (Fig. 19).

5.3  Lower layer extraction

The outline edges of a garment constitute edges of its upper 
and lower layer. Once the upper layer is found the remaining 
outline edges can be mapped to the lower layer. In Fig. 20 the 
upper and the lower layer of a folded garment are depicted.

6  Experimental results

The experiments are divided in three main parts. In the first 
part, the performance of the junction dictionary is evalu-
ated and, in particular, the performance of the Random For-
est classifier. In the second part, experiments regarding the 
axis detection methodology are described. Finally, the layer 
extraction is evaluated in the third part.

For the evaluation of the proposed methodologies on one-
fold examples, an online dataset [17] and a dataset that was 
collected specifically for this purpose, with garments occur-
ring from the robotic manipulations as they are described in 
[1], are utilized. The datasets include 30 different garments 
(13 in [17] and 17 in our own dataset) which belong to vari-
ous types, such as shirts, T-shirts, shorts, skirts and towels, 
while they are made of a variety of fabrics such as cotton, 
wool, polyester, denim or leather. Moreover, for the experi-
ments on garments with two folds, another dataset including 
30 configurations of garments of various types (skirt, shorts, 
trousers, towel, T-shirt) was collected while such examples 
did not exist in an online dataset.

For the dataset collection, the depth sensor is located so 
that it has a top view of the working table in a distance of 
0.7–1.0 meters. During the garment selection there was not 
any restriction to the garments’ width, nevertheless the usage 
of very dark coloured cloths was avoided since the depth 
sensor cannot operate correctly and provide data in these 
cases. In particular, the thinner width of the garments was 
less than 2 mm (3.5 mm at the seam lines) and it referred to 
a T-shirt while the thicker was a long sleeved shirt whose 
width was approximately 1.5 cm (these measurements refer 
to our dataset and were made by a meter to avoid errors by 
the depth sensor).

6.1  Junctions’ dictionary evaluation

During the training of Random Forests 200 examples were 
used for each junction type that were located in 400 different 
garment configurations of 15 different garments (from our 
dataset with one fold configurations) of various types such as 

Fig. 19  Extraction of the whole outline that defines the upper layer: 
a colour image of folded garment, b the edges that define the outline 
of the upper layer, c the complete outline of the upper layer as it is 
defined by the union of its edges (colour figure online)

Fig. 20  Extraction of the garment’s lower layer: a colour image of 
folded garment, b the extracted upper layer, c the lower layer showed 
in red (colour figure online)
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skirts, T-shirts, long-sleeve shirts, shorts, towels etc. These 
garments have various widths and a variety of decorative 
features such as pockets, collars or thick seams. The target of 
Random Forest is to classify the junctions and their orienta-
tion (as it is defined by the clockwise order of appearance).

For the training of the Random Forests 160 trees were uti-
lized with max depth equal to 20. The classifier was trained 
on 80% of the samples and tested on the remaining 20%. 
It managed to recognize correctly the 71.5% of the cases. 
Nevertheless, the biggest part of the misclassifications did 
not fail to recognize the edges of the junctions that belong 
to the same layer and the errors mainly referred to misinter-
pretations of the relative inclination between the edges (for 
example, an “L” junction combined with a noise edge could 
be mistaken for an “I” junction with a noise edge). In this 
scope, the classifier’s output provided correct information on 
the edges that belong to the same layer in 91.5% of the test 
cases. This feature is very useful since, in many cases, this 
piece of information can lead to correct layer recognition 
despite the misclassification of junctions participating to it. 
Moreover, it was observed that thicker garments provided 
better results while the performance was independent from 
the garment type.

During the development of the axis detection methodol-
ogy, it was observed that the possible junction types that can 
be detected on the outline of the garment comprise a subset 
of the total set of junctions. In particular, in these cases, the 
lower layer of the junctions, i.e. the working table, is a priori 
known since they are located on the outline, hence, the pos-
sible orientations are limited. Taking advantage of this fact, 
the Random Forest classifier is trained on fewer classes. This 
time, the performance reaches up to 84.6%, which leads to 
more correct classifications than in the case that the whole 
set of junctions is taken into account. Furthermore, in 97% 
of the test cases, the classifier recognized correctly the edges 
that belong to the same layer. The results of the Random 
Forest classifier are summarized in Table 1 for both cases 
of junctions’ sets, the whole set and the subset, explored in 
this paper.

6.2  Axis detection evaluation

For the evaluation of the axis detection methodology, 
375 different configurations of the garments that belong 
to the aforementioned datasets (with garments with one 
fold) were formed. For the SVM training 60% of the con-
figurations was used while the rest 40% was left for test-
ing. Moreover, during the training, k-fold cross-validation 
(where k = 5 ) was used to achieve generalization and avoid 
over-fitting.

Various scenarios regarding the number of axes and 
whether this number was a-priori known were evaluated. A 
common step to all the scenarios was the application of the 
rules mentioned in Sect. 5.1 so that the number of candidate 
axes is diminished. In 95% of the tested configurations, the 
true axis was included in the candidates suggested by the 
aforementioned rules. In the rest 5%, the correct axis was 
excluded due to misclassifications of the “arrow” and “L” 
junctions that lay to its ends.

The first scenario that was tested considers only one axis. 
In this case, in the 91% of the cases the axis was successfully 
detected. In the second scenario, the number of axes is not 
known, hence each edge is evaluated independently of the 
others. This time, in 80% of the tested configurations all the 
edges were classified correctly to axes and simple edges. 
Regarding only the results of the SVM classifier, meaning 
the evaluation of the results per edge and not per configura-
tion, the precision was 86.21%, the recall was 92.59% and 
F1-score 89.3% (Table 2). In all the scenarios, the existence 
of “arrow” junctions at the ends of the axes proved to be a 
valuable factor. Actually, cases with two “arrow” junctions 
were always recognized correctly in all the scenarios, while 
cases with two “L” junctions were proved to be the most 
prone to errors. Examples of successful axis detection are 
depicted in Fig. 21, while cases of failure are illustrated in 
Fig. 22.

The results presented in the previous paragraph referred 
to examples with one axis. To further evaluate the methodol-
ogy, tests were also made to configurations with two folds. 
The number of the folds is considered known a priori. The 
methodology detected successfully at least one of the axes in 
97% of the cases, while it detected successfully both axes in 
87% of the cases. Examples of successful detection of both 
axes are presented in Fig. 23.

In relation to similar work [17], our proposed method 
presented better results regarding the correct axis detection 
per configuration for garments with one fold, while other 
scenarios were not explored. Actually, in their approach the 
axis is extracted correctly in 87% of the cases while, for the 
same scenario, our method reached the performance of 91%. 
A summary of the experimental results referring to all the 
axis detection scenarios that are explored in this paper and 
the results of [17] is presented in Table 3.

Table 1  Performance of the Random Forest classifier regarding the 
output class and the correct correspondence of edges to the upper or 
lower layer

The whole set of junctions and the subset of the junctions at the out-
line of the garment are evaluated

All junctions (%) Outline 
junctions 
(%)

Classification performance 71.5 84.6
Layer correspondence per-

formance
91.5 97
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6.2.1  Upper layer extraction evaluation

For the evaluation of the upper layer detection method-
ology, 112 configurations of garments of various types 
(skirts, shorts, shirts and T-shirts) were utilized while the 
performance of the upper layer method reached the value 
of 83.04%. The reasons the proposed method failed in some 

cases to extract the upper layer are either due to misclas-
sifications of the junctions’ “dictionary” or due to missing 
edges that hampered the layer extraction procedure. In case 
of missing edges, that are more common in thin garments, 
the action space was not able to include the correct next 
state to the suggested actions, leading to failure. Moreover, 
highly wrinkled garments were more prone to errors since 
they usually lead to the examination of multiple junctions. 
Examples of the detected upper layers on half-folded gar-
ments are presented in Fig. 24 (online dataset) and Fig. 25 
(our dataset). To accomplish better understanding, for each 
tested configuration three images are provided: (1) an image 
depicting the extracted edges and (2) a colour image of the 
garment, where the edges that comprise the upper layer are 
drawn with green colour, (3) the outline of the upper layer 

Fig. 21  Results of successful axis detection method in various 
garments. The colour image with the axis marked in red and the 
extracted edges from the depth image are provided for each example 
(colour figure online)

Fig. 22  Examples of incorrect axis detection: a error due to misclas-
sification of the “arrow” junction formed by the fold, b error occur-
ring from the SVM classifier. The axis suggested by the classifier is 
marked in red (colour figure online)

Table 2  The performance of the SVM classifier for the evaluation of 
the garment’s outline edges as axes or simple edges

Precision (%) Recall (%) F1-score (%)

Successful axis detection 
per edge

86.21 92.59 89.3

Table 3  Evaluation of the performance of axis detection scenarios 
per configuration

One axis (%) Two axes/
one detec-
tion (%)

Two axes/
two detec-
tions (%)

Unknown 
(%)

Proposed 
approach

91 97 87 80

Stria et al. 
[17]

87 – – –
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as it is dictated by the extracted edges. Furthermore, cases of 
unsuccessful layer detection are depicted in Fig. 26.

For further evaluation of the upper layer detection algo-
rithm, some extra experiments are performed utilizing gar-
ments with two folds. These tests were limited to cases that 
the whole areas of the layers were visible to an observer, 
i.e. the layers did not intersect. Based on this restriction 30 
different configurations were evaluated, each one including 
two folds. Various garment types were utilized during the 

Fig. 23  Results of successful axis detection in cases with two folds. 
The colour image with the axis marked in red and the extracted edges 
from the depth image are provided for each example (colour figure 
online)

Fig. 24  Examples of successful upper layer detections of garments 
in a half-folded configuration from online dataset. For each garment 
three images are depicted. In the first one the detected edges are 
depicted, in the second one the edges that comprise the upper layer 
are presented in green while in the third one the outline of the upper 
layer is highlighted (colour figure online)

Fig. 25  Examples of successful upper layer detections of garments in 
a half-folded configuration from our dataset. For each garment three 
images are depicted. In the first one the detected edges are depicted, 
in the second one the edges that comprise the upper layer are pre-
sented in green while in the third one the outline of the upper layer is 
highlighted (colour figure online)
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tests such as skirts, shorts and T-shirts. In 90% of the cases 
at least one of the layers was detected correctly while in 
80% of the cases both layers were recognized. Examples of 
successful detections of the layers in configurations with 
twofold are presented in Fig. 27.

Comparing to two related works [2, 17], our approach, 
that was successful in 83.04% of the cases, has better results 
than [2], whose performance is 79.4%, while it does not 

have as good performance as [17] since their results reach 
the value of 89%. Nevertheless, the other two approaches 
do not extend to other scenarios with more than one folds. 
A summary of the performance of the upper layer detection 
method for all the explored cases in provided in Table 4.

Apart from being capable to generalize to more than one 
folds, the layer extraction approach is able to function in set 
ups that are not identical while it can handle garments of 
different type or fabric of the ones used for training. This 
mostly relies on the performance of the Random Forest clas-
sifier. Despite the fact that the classifier is trained on data 
from our own dataset for one fold examples, the method gen-
eralized to the other two datasets, meaning the online dataset 
and our dataset with configurations with two folds. A factor 
that facilitated it is the similar set ups between the cameras 
and the working tables, although they are not identical. Nev-
ertheless, the main reason is that the classifier depends on 
depth differences and not on depth values and, therefore, is 
more adjustable to minor set up changes. Moreover, during 
the collection of the training dataset minor changes on the 
set up occurred making the system more flexible to changes. 
Furthermore, a major accomplishment of the layer extrac-
tion method is that it handled new types of fabrics, such as 
leather that is included in the online dataset, and new types 
of garments such as a jacket of the online dataset and a pair 
of trousers of our own two-fold configuration dataset.

7  Conclusions

In this paper, a method for the extraction of the upper layer 
of a folded garment lied on a table by analysing and perceiv-
ing its configuration is proposed. The presented method is 
placed in a pipeline for the robotic unfolding of garments and 
constitutes a crucial part for its completion. In this scope, the 
garment is analysed into its conceptual parts, starting from 
primitive features, like junctions, and building up to more 
complex features, like the folding axis and the garment’s 
layers. In this scope, a “dictionary” translating junctions 
into indications of localized configurations is introduced 
while new methodologies for axis and layer detection are 
proposed. The method integrates human knowledge on the 

Fig. 26  Examples of unsuccessful layer detection. For each garment 
three images are depicted. In the first one the detected edges are 
depicted, in the second one the edges that comprise the upper layer 
are presented in green while in the third one the outline of the upper 
layer is highlighted (colour figure online)

Fig. 27  Examples of successful detection of both layers in cases 
of configurations with two folds. For each case three images are 
depicted: (1) the colour image of the folded garment, (2) the image 
depicting the detected edges with the edges of the first detected 
layer marked in red, (3) the image depicting the detected edges with 
the edges of the second detected layer marked in red (colour figure 
online)

Table 4  Evaluation of the performance of layer detection scenarios 
per configuration

One layer (%) Two layers/
one detection 
(%)

Two layers/two 
detections (%)

Proposed method 83.04 90 80
Stria et al. [17] 89 – –
Triantafyllou et al. 

[2]
79.4 – –
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semantics of visual features that indicate the garment’s con-
figuration and uses machine learning approaches to classify 
them and combine them.

The proposed methodologies are based on a generic 
folded configuration of a garment; therefore, they are inde-
pendent of its type. In this way, a variety of garments’ shapes 
can be handled which, especially in women’s wardrobe, can 
be large according to fashion. Moreover, tests showed that 
the proposed methodologies have the potential to generalize 
in cases with more than one folded layer.

Experiments proved the effectiveness of the method pro-
viding very good performance on different test sets and in a 
variety of garments, fabrics and configurations while tests 
showed that it can handle successfully new fabrics or gar-
ments’ types. Thicker garments and garments with less wrin-
kles provided, as it was expected, better results.

In this direction, a camera with better error tolerance and 
a strategy that straightens the garment from wrinkles could 
be tested in an effort to enhance the performance. Future 
work dictates the completion of the unfolding task through 
robotic manipulations. The robot’s aim will be to unfold the 
upper layer of the garment utilizing a strategy that takes into 
account the shape of the upper layer, the limitations of the 
robotic workspace and the working table while it will try to 
avoid the formulation of extra folds that could occur from 
the manipulations.
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