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Abstract
The control of a robot to achieve both good dynamic and static performance against external disturbances is a challenging 
task, especially when high speed and a wide range of motion is required. In this paper, a disturbance rejection sliding mode 
control (SMC) methodology is designed for a robot manipulator. This methodology synthesizes the SMC design with the 
active disturbance rejection control (ADRC) technique. An extended state observer is employed to estimate unknown distur-
bances, which is difficult to deal with in a conventional SMC design, and to simplify the SMC law design. A learning-based 
parameter tuning methodology is presented to autonomously obtain the control parameters offline. To develop a robust and 
transferring controller, a neural network is used to learn the joint actuation ability for the controller optimizing process. 
Compared with other state-of-the-art controllers, both numerical simulations and experiments of a 6-DOF robot are provided 
to demonstrate the proposed control method and design methodology. These results reveal that the proposed control method 
has a satisfying tracking performance and strong disturbance rejection ability.

Keywords  Robotics · Controller design · Active disturbance rejection control (ADRC) · Sliding mode control (SMC)

1  Introduction

In recent years, robots have increasingly played a significant 
role in daily services and industrial operations. Generally, 
robots are always devised for accurate and prespecified con-
tinuous trajectory tracking in a structured environment or 
required human–robot interaction in an unstructured com-
plicated environment. This results in potential trouble such 
as performance deterioration and contact impact with the 
working environment when unknown disturbances happened 
[1, 2]. Controlling a manipulator to guarantee a high track-
ing performance in the presence of unknown time-varying 
disturbances is still a challenge in the research community. 
In addition, conventional control approaches are often insuf-
ficient to deal with these problems effectively and require a 
lengthy design and complex tuning process [3]. Moreover, 
when unexpected contact/collision situations happened dur-
ing many tasks such as assembly, grinding and deburring, 

grasping, or manipulation of deformable and delicate 
objects, the accurate and rapid response ability against exter-
nal disturbances essentially determines the feasibility and 
reliability of further robot application. On the other hand, the 
parameter tuning based on experiments makes the controller 
hard to achieve optimal state and inconvenient to implement. 
Exploring effective and practical methodologies for robot 
controller design with a strong disturbance rejection ability 
has been a main concern.

Many model-based control strategies have been devel-
oped to increase the tracking performance and reliability of 
robots [4–7]. These methods utilize exact robot dynamics 
for controller design and illustrate superior performance in 
simulation environments. However, it is well known that 
the development of a real-world easy-to-use robot system 
often suffers from many restrictions such as system mode-
ling errors, environment uncertainties, and limited algorithm 
complexity. Therefore, modern control strategies based on 
an explicit model of a specific system mostly stay in the 
theoretical design and numerical simulation phase. The clas-
sic PID controller is the most widely used type in industrial 
applications. However, owing to its simple control law and 
limited parameter tuning range, it may be difficult for a PID 
controller to allow the robot to achieve both good dynamic 
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and static performance (the system performance after the 
transient process). In addition, when we need a robot to per-
form at high speed with a wide range of motion, the PID 
controller might no longer be effective or can even lead to 
instability of the controlled system [8].

To suppress disturbances, the sliding mode control 
(SMC) and disturbance rejection control strategies are effec-
tive owing to their strong robustness to unknown exogenous 
disturbances, parameter variations, and model perturbations 
[9–11]. The SMC is a widely utilized control strategy in 
real applications [12]; however, the traditional SMC can-
not effectively handle fast variable disturbances and may 
cause a chattering phenomenon owing to modeling errors 
and uncertainties, which degrades its performance in robots 
control [13]. Wang et al. [14] proposed a robust SMC meth-
odology for robotic systems with compliant actuators that 
employed a generalized proportional integral observer tech-
nique to estimate unknown disturbances. M. Van et al. [15] 
developed a tracking control approach for robot manipula-
tors where an adaptive backstepping sliding mode control is 
used. However, these control methods are not designed for 
pure joint control, and hence the corresponding performance 
with six-joint simultaneous motion is not presented. With 
the increase in robot DOFs, the dynamic coupling increases 
significantly and the modeling accuracy decreases at the 
same time, which causes fast variable endogenous distur-
bances and makes robot control problems much more dif-
ficult. Thus, the conventional SMC limits its performance 
to real robot applications. In addition, the conventional 
design procedure requires prior knowledge and many tun-
ing experiments.

Active disturbance rejection control (ADRC) is a type of 
disturbance rejection control method based on the PID con-
cept [16, 17]. The ADRC method does not require an explicit 
plant model but designs a unique extended state observer 
(ESO) to estimate and compensate for the total disturbance 
before the plant output has an impact [18]. The ADRC 
method only needs to know some basic system information 
such as the order of the system and the control input/output. 
This has the advantages of strong disturbance rejection abil-
ity and strong control robustness. In recent years, the ADRC 
method has been widely used in servo control systems [19], 
industrial process control [20], aerospace [21], and other 
research fields [22–24], thus exhibiting a promising future 
in industrial applications.

However, ADRC has been less applied to robot manip-
ulator control problems at present. Castaneda et al. [25] 
designed an adaptive controller based on ADRC to solve 
the trajectory tracking problem of a “Delta” parallel robot 
considering the uncertainty of the dynamics model. Talole 
et al. [26] designed an ESO-based feedback linearization 
controller for the trajectory tracking control of a flexible-
joint robotic system. A rotary single-link robot experiment 

indicated the efficacy of the ADRC approach. Xue et al. [27] 
integrated ADRC with an existing PD structure for the set-
point tracking control of robots. The effectiveness of the 
proposed modularized ADRC design is tested with a 1-DOF 
rotary manipulator. Madonski [28] studied the problem of 
estimating and suppressing periodic disturbances in robot 
control. The framework of ADRC was used, and experi-
ments on a 3-DOF torsional plant demonstrated the effec-
tiveness of the proposed scheme. Ren et al. [29] proposed 
a collision detection method based on ontology sensors 
(encoder and torque sensor) for collaborative robots using 
the ESO approach. Dong et al. [30] proposed a cascaded 
torque controller with an ADRC velocity inner loop to 
improve the control quality of the joint torque. The authors 
proposed an efficient and simple robot controller based on 
the ADRC method to realize the rapid and stable trajectory 
tracking of a robot [31].

All of these studies show that the ADRC has a great 
potential for robot control. However, for robot controllers 
that need high speed and high precision, the conventional 
ADRC has a simple feedback law in which a residual esti-
mate error causes system performance deterioration. In addi-
tion, the controller design methods such as parameter tuning 
are usually lengthy and based on experiments, which makes 
the obtained controller always achieve suboptimal perfor-
mance and inconvenient to implement.

In summary, the design of a robot tracking controller 
needs to guarantee three major requirements: (1) fast tran-
sient response and high precision, (2) robustness to model 
uncertainties and strong disturbance rejection ability, and (3) 
a simple design and tuning process. Motivated by the above 
issues, in this work, we developed a practical and effective 
control method for a robot system’s trajectory tracking per-
formance subjected to unknown time-varying disturbances. 
The main idea is to use the ADRC methodology to improve 
the robustness and accuracy of a traditional SMC controller. 
First, a tracking differentiator is used to obtain a smoothed 
reference position and velocity trajectory. Then, an ESO is 
employed to estimate and compensate for the model uncer-
tainties and unknown time-varying disturbances toward 
simplifying the SMC law and thus improving the tracking 
accuracy and robustness of the robot system. Furthermore, 
a learning-based parameter tuning method is presented to 
autonomously obtain the control parameters offline. To 
obtain a robust and transferring controller (which means 
the obtained controller can have similar performance under 
uncertainties and can be easily transferred from simulation 
to the real robot), a multilayer perceptron (MLP) network 
[32] is used to learn the joint actuation ability. Simulations 
and experiments are conducted to validate the proposed con-
trol design methodology.

Succinctly, our main contributions of this paper are:
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•	 Design of a practical and effective control method for a 
robot system’s trajectory tracking performance subjected 
to unknown time-varying disturbances.

•	 An autonomous learning-based controller design meth-
odology is presented to obtain the optimal control param-
eters.

•	 An actuation network is proposed to learn the joint actua-
tion ability in order to obtain a robust and transferring 
controller.

The rest of this study is organized as follows. A brief 
introduction of the dynamic model of a robot is given in 
Sect. 2. The design of the proposed disturbance-rejection 
SMC is presented in Sect. 3. The learning-based parameter 
tuning methodology, including a trained joint actuation net-
work, is developed in Sect. 4. Numerical simulations and 
experimental results in Sect. 5 demonstrate the effective-
ness of the proposed robust control method by comparing 
it with other three control methods. Finally, the conclusions 
are drawn in Sect. 6.

2 � Disturbance rejection SMC

2.1 � System dynamics modeling

Based on the Euler–Lagrangian method, the dynamics equa-
tions of an n-joint robot can be derived in terms of its joint 
variables as follows [33]:

where 𝐪, 𝐪̇, 𝐪̈ ∈ ℝ
n×1 , respectively, represent the joint 

angle, velocity, and acceleration; � ∈ ℝ
n×1 is the joint 

torque; �(�) ∈ ℝ
n×n is the symmetric positive definite iner-

tia matrix; �(�, �̇) ∈ ℝ
n×n represents the nonlinear Coriolis 

and centrifugal forces acting on the system; �(�) ∈ ℝ
n×1 is 

the gravitational torque; and 𝐝(𝐪, 𝐪̇, 𝐪̈, t) ∈ ℝ
n×1 is the gener-

alized system disturbance that contains the unmodeled sys-
tem dynamics and external disturbances. For robot tracking 
control, the disturbances caused of 𝐪̈ are less related [27] 
and 𝐪̈ is usually slowly varying in planning, so we ignore 

(1)𝐃(𝐪)𝐪̈ + 𝐂(𝐪, 𝐪̇)𝐪̇ + 𝐆(𝐪) + 𝐝(𝐪, 𝐪̇, 𝐪̈, t) = 𝛕

the influence of second derivative part 𝐪̈ in the generalized 
system disturbance � in the following sections.

Defining the variables as �1 = �, � = �, � = �1 , the sys-
tem dynamics (1) can be written as the following state-space 
description:

2.2 � Control strategy

In this section, we present a trajectory tracking control 
framework (disturbance rejection sliding mode control, 
or DRSMC) for robots with unknown time-varying dis-
turbances. Generally, the DRSMC method consists of an 
observer-based SMC law and an ADRC-based control archi-
tecture. The SMC law provides the basic control torque for 
trajectory tracking, and the ADRC-based control architec-
ture provides both control operational information used in 
the SMC law and online disturbance compensation. A block 
diagram of the DRSMC strategy is shown in Fig. 1.

In Fig.  1, �d is the given signal of the desired posi-
tions; 𝐪̃d, ̇̃𝐪d,

̈̃𝐪d are reference trajectories obtained from 
the desired positions; �a, �̇a are the actual joint angles and 
joint velocities; �1, �2, �3 are the augmented system states; 
�c is the command control torque; and �fw is the feedforward 
torque generated by the feedforward controller.

The overall DRSMC scheme includes the tracking dif-
ferentiator (TD) [17], extended state observer (ESO), and 
observer-based SMC law.

The TD is a preprocessing component that obtains the ref-
erence trajectory from the given signal of desired positions. 
A time-optimal differentiator can be obtained by solving the 
following equation:

(2)

⎧
⎪
⎨
⎪
⎩

�̇1 = �2

�̇2 = �−1(�1)(−�(�1, �2) �2 −�(�1) − � + �)

� = �1.

(3)

⎧
⎪
⎨
⎪
⎩

v̇1 = v2

v̇2 = −rsgn

�
v1 − v +

v2
��v2��
2r

�
,

Fig. 1   Control structure of 
DRSMC framework
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where v1 is the desired trajectory and v2 is its derivative; the 
parameter r can be selected accordingly to speed up or slow 
down the transient profile. And the approximated discrete-
time solution of Eq. (3) can be obtained as follows [17]

Using Eq. (4) twice, we can obtain the second derivative 
of the desired trajectory simultaneously

where qi = q̃
(i−1)

d
 are the generated reference trajectory 

for each joint, h is the controller instruction cycle, and 
fhan(x1, cx2, r0, h0) is a nonlinear control function as 
follows:

fhan is a time-optimal solution that guarantees the fastest 
convergence from generated reference trajectory to desired 
trajectory [34]. The parameter r0 is called the tracking gain, 
which affects the rising speed of generated reference tra-
jectory qi and approximately determines the bandwidth of 
the TD. The parameter h0 is a speed factor that eliminates 
high-frequency output oscillations and is usually set higher 
than the controller instruction cycle h , and c is the damping 
factor that determines the dynamic characteristic of the TD’s 
transient tracking process. These parameters can be adjusted 
individually according to the desired speed and smoothness.

The basic idea of the ESO is to estimate the integrated 
system disturbance �w , which includes unmodeled dynam-
ics and unknown time-varying disturbances. The ESO uses 
the control input and system output to augment the system 

(4)

{
v1(t + h) = v1(t) + h ⋅ v2(t)

v2(t + h) = v2(t) + h ⋅ fhan(v1(t) − v(t), c1v2(t), r0, h).

(5)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

q1(t + h) = q1(t) + h ⋅ q2(t)

q2(t + h) = q2(t) + h ⋅ fhan(q1(t) − qd(t), c1q2(t), r0, h)

q�
2
(t + h) = q�

2
(t) + h ⋅ q3(t)

q3(t + h) = q3(t) + h ⋅ fhan(q�
2
(t) − q2(t), c2q3(t), r1, h)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

d = r0h
2
0
, a0 = h0cx2, y = x1 + a0

a1 =
√
d(d + 8�y�)

a2 = a0 + sgn(y)(a1 − d)∕2

s1 = (sgn(y + d) − sgn(y − d))∕2

a = (a0 + y − a2)s1 + a2

s2 = (sgn(a + d) − sgn(a − d))∕2

,

(6)
fhan(x1, cx2, r0, h0) = −r0(a ∕ d − sign(a))s2 − r0sign(a).

additional state. Considering robot dynamics (2), the inte-
grated system disturbance �w can be given by

Augmenting �w as a system additional state �3 , system (2) 
can be expressed in the linear augmented state-space form as

According to the above-mentioned ADRC design meth-
odology, a third-order linear ESO can be designed to esti-
mate the integrated system disturbance.

where �0 is the estimated value of control amplification 
�−1 , � is the estimate error of the joint angles, � is the 
control torque, � is the actual joint angle, �1, �2, �3 are the 
estimated states of �1, �2, �3 , respectively, and �1, �2, �3 are 
the diagonal observer gain matrices of the ESO. Defining 
�1i = �1(i, i), �2i = �2(i, i), �3i = �3(i, i), i = 1, 2, ... , n , 
increasing �1i, �2i, �3i can reduce the estimated error and 
accelerate the convergence. However, a greater �1i, �2i, �3i 
means that the ESO is more sensitive to system noise. Fur-
thermore, �1i, �2i, �3i can be chosen as follows during pre-
liminary design work by a pole-placement method [35]:

where the tuning parameter �oi is the respective observer 
bandwidth.

Remark 1:  Considering a linear ESO system (9), if inte-
grated system disturbance �w is under the assumption that �w 
is bounded and continuously differentiable, and the observer 
gains �1i, �2i, �3i satisfy 𝛽1i, 𝛽2i, 𝛽3i > 0, and 𝛽1i𝛽2i > 𝛽3i , 
then the estimate errors are bounded [36]. This assumption 
is practical for a real robot system as the physical energy is 
limited and the mechanical system has a characteristic to 
filter the physical signal. We use these results as the stability 
constraints for ESO design in Sect. 4.

(7)�w = −�(�1)
−1�.

(8)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�̇1 = �2

�̇2 = �3 + �−1�

�̇3 = �̇
w

� = �1.

.

(9)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

� = �1 − �

�̇1 = �2 − 𝛽1 ⋅ �

�̇2 = �3 − 𝛽2 ⋅ � + �0 ⋅ �

�̇3 = −𝛽3 ⋅ �,

(10)�1i = 3�oi, �2i = 3�2
oi
, �3i = �3

oi
,
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We now introduce the observing errors:

Then, the estimated states can be written as

Under the assumption that �̇w is bounded, the bounds of 
lim
t→∞

� yield [37]

where �i is the submatrix of � with respect to the i-th joint 
variables, for example, �1 = [z1 − x1, z2 − x2, z3 − x3]

T 
where zi = �i(1), xi = �i(1) are the corresponding states of 
joint 1. Mi is the i-th component of the upper bound sup ||�̇w|| , 
and �i is the maximum real eigenvalue of the error system 
matrix �i.

Denote by �3 the solutions of (12), where,

Then, we obtain,

It should be noted that the bounds in Eq. (14) are a rather 
loose result, and that more accurate bounds can be obtained 
by assuming that disturbances that occur in engineering 
applications have typical forms. In addition, using appropri-
ate numerical simulations can also help to determine more 
precise error bounds for a specific ESO.

Remark 2:  The system model and some prior knowledge can 
be eliminated from the augmented system state �3 when the 
corresponding parts are eliminated from the ESO input � 
simultaneously. This makes the ESO easily modifiable after 
previous design. Generally, having a more accurate system 
model and prior knowledge means fewer unknown uncer-
tainties exist in the system. Thus, the ESO will produce more 
precise estimated results and require fewer observer gains or 
corresponding observer bandwidth.

The observer-based SMC law is designed to realize tra-
jectory tracking. The sliding mode surface � for robot system 
(1) is given by

� = [�1, �2, �3]
T = [�1 − �1, �2 − �2, �3 − �3]

T .

(11)�1 = �1 + �1, �2 = �2 + �2, �3 = �3 + �3.

(12)lim
t→∞

���i

�� ≤
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

(1 −
1

�
i

+
1

�2
i

)M
i

3

−�
i

M
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(13)�3 =

[
3

−�1
M1,

3

−�2
M2, ... ,

3

−�n
Mn

]T
.

(14)sup ||�3
|| ≤ �3.

where �1 = �d − �a , �2 = �̇d − �̇a represents the state 
tracking errors. �1 = diag(c11, c12, ..., c1n) , c11, c12, ..., c1n 
are constant sliding-mode surface parameters, and 
c11, c12, ..., c1n > 0.

Then, the approach law is

w h e r e  � = diag(�1, �2, ..., �n)  ,  𝜉1, 𝜉2, ..., 𝜉n > 0  a n d 
� = diag(k1, k2, ..., kn) , k1, k2, ..., kn > 0.

Substituting (9), (15) and (16) from (1), the observer-
based SMC law is designed as follows:

where �0(�, �̇) and �0(�) are the nominal system models of 
�(�, �̇) and �(�) , and �c is the estimated bound of the system 
error chosen as

where ⊙ is the Hadamard product operator that represents 
the elementwise product of two matrices. �u and �l are the 
estimated upper bound and estimated lower bound of the 
initial states, respectively. Hence, �u ≥ �l . A larger �c can 
cause greater chatter when defined errors �1, �2 arrive near 
sliding surface � = � . To obtain better control quality, we can 
include some decay factors �i(t) to revise the estimated �c as

where �1(t) is monotonically decreasing, and �2(t), �3(t) can 
be chosen as a piecewise function for which �2(t), �3(t) = 0 
when t ≥ t0 . t0 is a given time.

Remark 3:  The system model and some prior knowledge 
can be eliminated from the augmented system state �3 when 
the corresponding parts are also eliminated from the ESO 
input � simultaneously. This makes the ESO easily modifi-
able after previous design. Generally, a more accurate sys-
tem model and prior knowledge means that fewer unknown 
uncertainties exist in the system. Thus, the ESO produces 
more precise estimated results and requires fewer observer 
gains or corresponding observer bandwidth.

(15)� = �1�1 + �2,

(16)�̇ = −�sgn(�) − ��,

(17)
𝛕 = 𝐃(𝐜1𝐞̇1 + 𝐪̈

d
+ 𝛏sgn(𝐬) + 𝐤𝐬) + 𝐂0(𝐪, 𝐪̇)𝐪̇

+ 𝐆0(𝐪) − 𝐃𝐳3 + 𝐟
c
,

(18)�c = �((�3 + �u) ⊙ sgn(�) − �l).

(19)�
�

c
= �((𝜁1(t)�3 + 𝜁2(t)�u) ⊙ sgn(�) − 𝜁3(t)�l),
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Summing up the above analysis, the DRSMC method 
illustrated in Fig. 1 can be obtained.

2.3 � Stability analysis

Theorem  1:  Considering a robot system (1) under the 
bounded time-varying disturbances, the observer-based 
SMC scheme in the form of (9), (15), (16), and (17) is given. 
If the observer (9) has bounded estimate errors, the tracking 
error of system (1) will converge to the desired equilibrium 
point asymptotically.

Proof:  Combining (15) and (17), the derivative of the sliding 
surface (15) can be rewritten as follows: 

According to (11), we have

Consider the following Lyapunov function:

The derivative of V(�) yields

This means the defined errors �1, �2 arrive at sliding sur-
face � = � in finite time. The sliding motion is then described 
as

Since �1 > 0 , the system (24) can be verified as expo-
nentially stable. This shows that the tracking error will slide 
to the equilibrium point asymptotically under the proposed 
DRSMC control law. This completes the proof.

(20)

𝐬̇ = 𝐜1𝐞̇1 + 𝐞̇2 = 𝐜1𝐞̇1 + 𝐪̈
d
− 𝐪̈

= 𝐜1𝐞̇1 + 𝐪̈
d
− 𝐃−1(−𝐟 − 𝐝) − 𝐃−1𝛕

= − 𝛏sgn(𝐬) − 𝐤𝐬 − 𝐃−1(−𝐟 − 𝐝 − 𝐂0(𝐪, 𝐪̇)𝐪̇

− 𝐆0(𝐪) + 𝐟
c
) + 𝐳3.

(21)�̇ = −�sgn(�) − �� − �−1�c + �3.

(22)V(�) =
1

2
�T�.

(23)

V̇(�) = �T
.
� = �T (−𝜉sgn(�) − �� − �−1�

c
+ 𝜂3)

= − �T𝜉sgn(�)

− �T�� − �T ((𝜎3 + �
u
) ⊙ sgn(�) − �

l
− 𝜂3)

= −

n∑

i=1

𝜉
i

||si|| −
n∑

i=1

k
i
s
2
i

−

n∑

i=1

||si||((𝜎3)i + (�
u
)
i
− sgn(s

i
)((�

l
)
i
+ (𝜂3)i).

≤ −

n∑

i=1

||si||((𝜎3)i + (�
u
)
i
− ||(�l)i|| − ||(𝜂3)i||)

≤ 0

(24)�1�1 + �2 = �.

3 � Learning‑based controller design 
methodology

3.1 � Optimal design of DRSMC parameters

From the analysis in the previous section, we can see that 
the proposed DRSMC has much more control parameters 
than that of the PID controller. In summary, the parameters 
in the TD tracker are the speed factor r0 , filter factor h0 , and 
damping factor c . The parameters in the ESO are �1, �2, �3, 
and �0 ; and the parameters in the observer-based SMC law 
are �1, �, and � . The choice of different control parameters 
can greatly impact the closed-loop performance of the con-
trolled system.

Among these parameters, speed factor r0 , filter factor h0 , 
and damping factor c can be easily chosen according to the 
rapidity requirement and the maximum acceleration that the 
system can actually provide. However, the other parameters 
need to be well-designed to obtain a satisfying result, and 
this design process is generally realized by utilizing empiri-
cal formulas or manual tuning.

Since the proposed robot controller directly controls the 
joint torques, we expect that the parameter tuning progress 
should be offline and automatic to reduce the potential risk 
of robot online operation. According to the separation prin-
ciple [34], we can design the control parameters of the ESO 
and SMC law based on the system response. Then, these 
parameters are further adjusted according to the complete 
closed-loop system response.

In this paper, a genetic algorithm (GA) method [38] is 
used to optimize the residual control parameters offline 
according to the control objective function. This process 
only needs an excitation source that can achieve stable 
motion of the robot system. The excitation source we used 
here is a simple PID controller. Since the controller only 
needs to consider the system stability, it is very easy to 
design and implement. With an excitation source, we can 
let the robot track a group of desired trajectories and collect 
the control torques as well as the corresponding joint states 
including the joint angles, velocities, and torques. Note that 
the desired trajectories do not need to be well-designed when 
optimizing the control parameters; however, the actual joint 
trajectories should cover a relatively wide range of frequency 
spectra when training the actuator model [3].

The complete DRSMC parameter design process is as 
follows:

We want the used ESO can give fast and precise estima-
tion with a certain degree of noise suppression ability, to 
optimize the ESO parameters in Eq. (8), we use an objective 
function as follows:
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Algorithm 1 Optimal design of DRSMC parameters.

1: Design a stable excitation source to achieve stable robot motion (we used a PID
controller here, denoted as Controller 0);

2:
Let the robot track a group of desired trajectories by Controller 0 (we chose 10 sinuous 
desired trajectories with different frequencies here), and collect the control torques 
and the corresponding joint states;

3:
Optimize the ESO parameters offline according to the control torques and 
corresponding joint states collected in step 2, and average the obtained ESO 
parameters to get the optimal ESO;

4: Train a neural network to learn the actuation model according to the collected data in 
step 2;

5: Optimize the SMC law parameters offline utilizing the results in step 3 and step 4; 

6: Adjust these parameters according to the closed-loop system performance online.

where �i(t, n), �3(t, n), �0(n), �(t, n) represent the ESO esti-
mate errors, augmented state, control amplification, and 
control torque for joint n, respectively; T  is the simulation 
running time; and �1, �2, �01, �02, �03 are the given weighted 
factors.

In Eq. (25), J1 is the optimization objective part, which 
reflects the ESO ability for fast and precise estimation. J2 
is the regularization part, which is designed to improve the 
disturbance suppression ability of the obtained ESO and also 
prevent the parameters from increasing boundlessly in the 
optimization process. Then, the optimization problem can be 
solved by using the GA method under the parameter stability 
constraints.

For control law design, we want the controlled system can 
have a fast and smooth transient period with small steady-
state error. Similarly, the following objective function is con-
structed to optimize the SMC law parameters in Eq. (17) 
offline:

where

(25)

J(n) = �1J1(n) + �2J2(n)

=
�1

T

T

∫
t=0

(�01t
‖‖�1(t, n)‖‖1 + �02t

‖‖�2(t, n)‖‖1)dt

+ �2
‖‖‖‖

�(t, n)

�03�0(n)�3(t, n)
+

�03�0(n)�3(t, n)

�(t, n)

‖‖‖‖∞
.

(26)Je(n) = �1J1(n) + �2J2(n) + �3J3(n).

In Eq. (27), J1 reflects the general control ability con-
sidering the complete tracking process; J2 represents the 
maximum relative tracking error for t > T0 , T0 is a given 
time to eliminate insensitive errors in the initial tracking; J3 
represents the steady-state error; and �1, �2, �3, �01, and �02 
are the given weighted factors.

When optimizing the SMC law parameters, we found that 
the given desired trajectory must make a difference after 
several iterations in optimization. Otherwise, the obtained 
control parameters make the robot performance sensitive to 
the desired input, which means the system can only achieve 
good performance in tracking this training trajectory and 
lacks robustness to disturbances and unknown uncertain-
ties. Changing the trajectory amplitude and using different 
trajectory forms in optimization can help to obtain robust 
parameters.

Note that this design methodology is a general frame-
work that can be used for other controllers such as PID, 
ADRC, and SMC. The offline tuning result can also provide 
the guidance for online tuning with the optimal performance 
would get.

3.2 � Modeling the actuation ability

In this paper, the actuation ability (see Fig. 2) is the con-
trol-to-torque relationship that includes all communication 
delays, current-loop ability, measurement noise, and hard-
ware dynamics within one control loop. As an analytical 

(27)

J1(n) =
1

T

T

∫
t=0

(�01
‖‖�1(t, n)‖‖2 + �02

‖‖�2(t, n)‖‖2)dt

J2(n) = max(
||||

�1(t, n)

�d(t, n)

||||
) , in t ∈ [T0 , T].

J3(n) = ‖‖�1(t, n)‖‖1 , in t ∈ [T − ΔT , T]
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actuation model is extremely difficult to describe [3], we 
used supervised learning to train an actuation network that 
outputs an estimated torque at the joints given a history of 
command control torques and the joint velocities. Note that 
this obtained actuation network is only used in simulations 
placed between the control output and the joint input torque 
to make the simulation model more realistic. This MLP net-
work can provide lightly jitter output for controller training, 
that can prevent premature convergence and improve the 
robustness of obtained controller. We assumed that the joint 
actuations are independent of each other; hence, we trained 
the network of each joint separately.

More precisely, we used an MLP with 4 hidden layers of 
16 units each, as shown in Fig. 2. A history consisting of the 
last 10 sampling periods of the command control torques 
and joint velocities that correspond to each training data 
has a history of the last 0.01-s command control torques 

and joint velocities in this work. The length of each training 
data should be neither too long nor too short, as a too-dense 
history can make the training model more prone to overfit-
ting and computationally more expensive. In addition, the 
length of the history should be sufficiently longer than the 
system communication delays and the mechanical response 
time, which is about three to four sampling periods in our 
system. For the features that were chosen, we found that the 
joint angle information is of no help in training this actua-
tion network. By contrast, the joint velocity information is a 
necessary feature in this problem.

The dataset contains more than 500,000 samples, which 
are mentioned in the above section. About 80% of the gener-
ated data were used for training, and the rest were used for 
validation. We choose the commonly used ELU (Exponen-
tial Linear Unit [39]) activation function in the MLP net-
work. The root mean square (RMS) of the prediction error 
is used to evaluate the trained actuation network. Training 
one network takes about 3 h on one NVIDIA 12G GTX1050 
Ti GPU.

The validation result with the obtained actuation net-
work is shown in Fig. 3, where the ideal model has a zero 
communication delay, zero mechanical response time, and 
infinite bandwidth. Hence, the model can generate any com-
manded torque instantly. It can be observed that the trained 
model can simulate the dynamic performance of the torque 
response and has an average absolute error of 0.297 Nm on 
the validation set, which is lower than that of the ideal model 
(0.578 Nm). Although the static torque performance cannot 
be predicted precisely (see the curve before the step occurs 
in Fig. 3), this is reasonable and acceptable for the simula-
tion and controller design. Moreover, the trained actuation 
network can also add structural noise to the simulation sys-
tem, which is considered an effective way to improve the 
training of a model [40].

We should note that the simulated system can hardly 
represent the real system perfectly, the modeling errors, 

Fig. 2   Actuation ability and 
training of actuation network

Fig. 3   Validation of learned actuation network for commanded torque 
response
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machining errors, the joint flexibility, the dynamics of joint 
gear reducer and other unmodeled dynamics would constrain 
the model’s accuracy. Therefore, the controller in simula-
tion would suffer more constraints in the real robot system 
and the learning based offline training would get param-
eters which are not robust enough if we only use the robot 
model built by the MATLAB/SimMechanics toolbox. The 
MLP network can simulate the actuation ability (see Fig. 2) 
for training our controller, besides, this MLP network can 
provide lightly jitter output for controller training, that can 
prevent premature convergence and improve the robustness 
of obtained controller.

The controller parameters can be finally acquired by 
offline optimization using the trained actuation network. 
The performance of the obtained controller in simulation 
and experiment can be seen in Fig. 4. The settling time in 
the experiment is about 0.412 s, while that in the simulation 
is about 0.249 s. The overshoot in the experiment is about 
0.001°, while that in the simulation is about 0.003°. As can 
be seen in Fig. 4, we can get a quite effective controller in 
simulation without using the actuation network; however, 
this controller may not obtain a satisfactory performance 
in the real robot. We can also see that using the actuation 
network in training can help to obtain a more robust control-
ler, the simulation performance is similar and this controller 
performs much better in the real system. We can observe that 
the proposed learning-based autonomously design method-
ology is practical and effective for controlling a complex 
robot system.

4 � Simulation and experimental results

In this section, the proposed control method is validated by 
simulation examples and experimental studies. Four com-
parative control strategies (conventional PID controller, 
conventional SMC method [41], linear ADRC method [31], 
and the proposed DRSMC method) were tested. Since the 
built-in PID controller cannot track the step input, we set the 
built-in parameters as initial values in PID optimization. All 
of these controllers’ parameters are optimally tuned by using 
the proposed methodology in Sect. 4. In this particular case, 
the weighted factors in Eq. (25–27) are chosen as

Fig. 4   Performance of trained controller without using the actuation network (left) and performance of the controller using the actuation network 
in training (right)

Fig. 5   Power spectrum of joint torque when external force is applied
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The primary parameters in the GA method are chosen as 
follows: population size is 400, maximum number of itera-
tions is 400, crossover fraction is 0.8, mutation fraction is 
0.2, and migration fraction is 0.2.

We note that the proposed method would not increase the 
computational burden obviously compared with the conven-
tional PID method and SMC method [42, 43], the complete 
algorithm can be run well with 1 kHz frequency.

To realize feedforward compensation, we conduct 
dynamic identification for our robot using the method 
detailed in [44]. The joint friction is modeled as the follow-
ing Coulomb viscous friction:

where �f ,n represents the joint friction of joint n, and 
�c1, �c2 ∈ ℝ

n×1 are the friction parameters.
The bandwidth of the external disturbances was tested 

to guide the design of simulations and experiments. In this 
case, we set the robot in zero-force mode, which means we 
only provide gravity compensation and manually drag the 
robot to move several trajectories. The frequency spectra of 
the joint torques under human force were analyzed to reveal 
the characteristics of potential external disturbances in our 
system. The spectrum of one joint torque can be shown in 
Fig. 5, in which the power spectrum decreases by about 
3 dB below the 0-Hz value when the frequency is 0.5 Hz, 
decreases by about 10 dB when the frequency is 1.0 Hz, 

�1 = 2, �2 = 1, �01 = 2,

�02 = 1, �03 = 3 , in ESO optimization

�1 = 1, �2 = 10, �3 = 2000, �01 = 2,

�02 = 1 , in control law optimization.

(28)𝜏f ,n = �c1(n)sgn(q̇n) + �c2(n)q̇n,

and decreases by more than 20 dB when the frequency is 
4.0 Hz, which means more than 90% of the power caused 
by external effect in joint space is centralized with the band-
width of 4.0 Hz. This means external disturbances applied 
to the robot mainly generate disturbance torques with the 
bandwidth of 4.0 Hz in joint space. As all of these spectra 
have similar characteristics, the bandwidth of external dis-
turbances in robot joint space can be approximately consid-
ered as 4.0 Hz.

4.1 � Simulation results and discussion

The robot tracking process is simulated in the MATLAB/
Simulink environment. The robot model of a 6-DOF 
manipulator (Fig. 9, which is used in our experiments) is 
set up using the MATLAB/SimMechanics toolbox, and the 
model physical parameters are set according to the given 
robot URDF file. The friction parameters of each joint in 
Eq. (28) are set according to the system dynamic identifica-
tion results:

To simulate the noise and communication delays in meas-
urements, the feedback joint angles of the sensor were cor-
rupted by zero-mean white noise with a standard deviation 
of 0.001° and 0.001 s of time delay. According to the robot 
manual, the joint torques are limited to corresponding rated 
torques of 85 Nm, 85 Nm, 40 Nm, 40 Nm, 10 Nm, and 10 
Nm, respectively.

First, we compare the control performance of the control 
methods mentioned above. In this simulation case, all joints 
are expected to track the reference square-wave signals, 

�c1 = [5.6665, 2.951, 2.7750, 2.9656, 1.4458, 1.5185],

�c2 = [10.4242, 13.1298, 9.6565, 3.5454, 2.4864, 2.0506],

Fig. 6   Tracking trajectories of robot under different control methods
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which have an amplitude greater than 10° (considered a wide 
range for robot to track), simultaneously. No extra distur-
bance torque is applied to the system in this case. Figure 6 
shows the tracking curves of the joint angles under these 
comparative controllers. All joints of these controllers were 
optimally tuned using the same methodology in Sect. 4, and 
a description of the joints can be seen in Fig. 9.

As can be seen in Fig. 6, the PID controller exhibits good 
performance in rapidity but has a certain overshoot and rela-
tively long settling time. The LADRC method also shows 
good performance in rapidity but has mostly no overshoot. 
The SMC method has a smooth tracking performance but the 
rising speed is a little slow. The DRSMC method provides 
the best tracking performance considering the rapidity and 
steady-state errors, which demonstrates that the proposed 
control strategy can achieve promising tracking perfor-
mance. The control torque (or control input) of comparative 
controllers are shown in Fig. 7.

To illustrate the robustness of these controllers against 
unknown time-varying disturbances applied to the robot, a 
disturbance torque is applied to each joint simultaneously. 
The controller parameters remain the same, and correspond-
ing reference trajectory is a sine wave (amplitude is 11.46°, 
and frequency is 1.0 Hz). We consider that a time-varying 
disturbance is the superposition of a sine-wave disturbance 
and constant disturbance, as follows:

where Tqi is chosen as a 25% value of the maximum i-th 
joint output torque. The sine-wave disturbance frequency fdis 
is chosen as 4 Hz, which is the bandwidth of potential exter-
nal disturbances in our system (see Fig. 5). We should note 
that the higher frequency of disturbance applied, the larger 
the tracking error would have; here we give the results of a 

(29)disi(Nm) =

{
0, t < t1

Tqi + Tqi sin(2𝜋fdis(t − t1)), else

Fig. 7   Control torque (control input) of the comparative controllers
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disturbance with 4 Hz since it is the upper limit frequency 
of disturbances, which provides the worst condition for the 
robot controller.

The trajectory tracking curves of the joint errors against 
unknown time-varying disturbances are shown in Fig. 8, 
where the disturbance is applied at t = 4.0 s . We can observe 
that the DRSMC method provides the least peak-valley error 
and average error after a short settling time of suppressing 
disturbances. The simulation results verify that the proposed 
DRSMC method can adequately suppress a wide range of 
unknown time-varying disturbances compared to the PID, 
LADRC, and SMC methods.

4.2 � Experimental results and discussion

The robot used in the experiments is a 6-DOF Elfin col-
laborative robot, as shown in Fig. 9. A PC-based controller 
is implemented to process data and control the robot directly 
via an EtherCAT bus. The real-time (RT) running frequency 
of the robot system is set to 1 kHz (the bus cycle is 1 ms). A 
control algorithm is employed using the ROS environment 
under an RT-Linux core. The parameters of the PID control-
ler used in the data acquisition phase in Sect. 2 are set as 
P = 10, I = 0.1, and D = 5.

In the first experiment, we compare the control perfor-
mance of different control methods with no extra distur-
bance torque applied to the system. All joints are expected 
to simultaneously track the reference square-wave signals 
in a wide range simultaneously. All controllers are further 
tuned with proper gains to provide a good performance with 
regard to the closed-loop tracking response considering a 
compromise between the response rapidity and steady-state 
error. The experimental results are shown in Fig. 10. In these 
figures, the dotted lines represent the reference trajectory of 
each joint, and the solid lines represent the joint tracking 
trajectories using comparative control strategies.

As can be seen in Fig. 10, the conventional PID con-
troller can barely control the robot to track the trajectories 
with a large amplitude step change. This occurs because the 
required steady-state error and system stability restricted the 
parameters’ tuning range. Generally speaking, utilizing the 
ADRC control scheme or the SMC approach can improve the 
system control performance in contrast to the PID control-
ler. For further discussion, four representative step-response 
performance characteristics are calculated to compare these 
control strategies and are given in Table 1. tr, ts, �%, and ess 
are the average rise time (here, the rise time represents the 

Fig. 8   Tracking trajectories of robot against unknown time-varying disturbances under different control methods

Fig. 9   Illustration of 6-DOF experimental robot system
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first time that the response curve arrives at 90% of the sta-
ble-state value), average settling time within the 2% error 
band, average percentage overshoot, and average absolute 

steady-state error of the six robot joints, respectively. These 
first three characteristics tr, ts, �% show the dynamic per-
formance and the characteristic ess demonstrates the static 

Fig. 10   Tracking trajectories of experiment robot under different control methods
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performance. The control torque (or control input) of com-
parative controllers are shown in Fig. 11.

The results demonstrate that the LADRC method can 
greatly reduce the system settling time (by about 58.3%) 
and percentage overshoot (by about 29.6%) compared with 
the PID controller. Meanwhile, the steady-state error is 
reduced by about 27.6%. This shows that the usage of TD 
and ESO can balance the response rapidity and steady-state 
error because the discontinuous reference trajectories can 
be smoothed by TD to bound the calculated errors, and the 
ESO provides estimation and compensation of unknown dis-
turbances. However, further decreasing the system steady-
state error on the basis of maintaining a satisfying response 
rapidity can be difficult under the LADRC method since the 
ESO cannot accurately estimate and compensate the joint 
static friction. Then, the problem becomes similar to that 
for the PID controller.

Table 1   Step-response performance characteristics of four compara-
tive control strategies

PID LADRC SMC DRSMC

tr[s] 0.2097 0.2482 0.2442 0.2162
ts[s] 0.9834 0.4096 0.3213 0.2763
�% 29.7891% 0.1747% 0.0001% 0.0984%
ess[°] 0.0300 0.0217 0.0159 0.0018

Table 2   Disturbance rejection ability of four comparative control 
strategies

PID LADRC SMC DRSMC

Mp[°] 1.1862 0.3480 0.1290 0.0749
Mp−p[°] 1.4449 0.2059 0.0865 0.0851
Ma[°] 0.4187 0.0457 0.0753 0.0015

Fig. 11   Control torque (control input) of the comparative controllers
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The SMC method exhibits better tracking performance 
than LADRC method and can reduce the system settling 
time by about 21.5% and decrease the steady-state error by 

about 26.7%. The reason is that the designed sliding motion 
guarantees the control performance of the nominal sys-
tem. The proposed DRSMC method has the best tracking 

Fig. 12   Tracking trajectories of joint errors against unknown time-varying disturbances under different control methods
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performance with regard to the response rapidity and steady-
state error and can have a similar rise time as the PID con-
troller, which approximates the shortest rise time our system 
can provide. Meanwhile, its settling time is also the shortest 
and approximates the rise time, which indicates that the cor-
responding transient period is smooth and steady. In addi-
tion, the DRSMC method mostly exhibits no overshoot or 
steady-state error owing to the sliding motion and the ESO 
compensation.

The results of the contrast experiments using the above 
four controllers against unknown time-varying disturbances 
are shown in Fig. 12. The representative characteristics are 
calculated in Table 2, where Mp, Mp−p, and Ma represent 
the average maximum value of the joint error, average peak-
valley error in one cycle, and average joint error in 10 stable 
cycles of the 6 robot joints after disturbances are applied, 
respectively. The corresponding disturbances are given 
as Eq. (29), where the disturbance frequency is chosen as 
4 Hz, and t1 is chosen as 0.5 s. It should be noted that the 

disturbances applied here are comparatively significant, with 
a peak value of 50% of the rated torque with the upper-bound 
disturbance frequency. In addition, all controller parameters 
here remain the same as in the first experiment. The con-
trol torque (or control input) of comparative controllers are 
shown in Fig. 13.

From Fig. 12 and Table 2, we can observe that the PID 
controller has the largest error caused by applied dynamic 
disturbances and the largest stable error mainly caused by 
constant disturbances. This shows that it is difficult for the 
PID controller to suppress strong time-varying disturbances 
regardless of whether they are dynamic or constant. Com-
pared with the PID method, the LADRC method can effec-
tively suppress the time-varying disturbances, especially 
constant disturbances. According to (14), we know that 
the ESO can estimate bounded disturbances and precisely 
estimate the constant disturbance. Therefore, the LADRC 
method can exhibit good performance despite unknown 
disturbances.

Fig. 13   Control torque (control input) of the comparative controllers
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The SMC method can greatly decrease the maximum 
error caused by dynamic disturbances since the sliding 
motion along the sliding surface can rapidly reduce the joint 
error after disturbances are applied. However, its stable error 
is larger than that of the LADRC method. The proposed 
DRSMC method can combine the advantages of the LADRC 
method and SMC method, which can largely suppress both 
dynamic disturbances and constant disturbances. Figure 14 
illustrates the suppressing disturbance ability of the DRSMC 
method under a given disturbance bandwidth. The distur-
bance frequencies in d1, d2, d3, and d4 are chosen as 0 Hz, 
0.5 Hz, 1 Hz, and 4 Hz.

As shown in Fig. 14, the DRSMC method has a great 
ability for disturbance rejection over the disturbance fre-
quency range; furthermore, the DRSMC can greatly sup-
press low frequencies, especially static disturbances. The 
joint tracking error can be reduced to less than 0.01° over 
the − 3 dB bandwidth even when the disturbance has a peak 
value of 50% of the rated torque. These experimental results 
prove that the proposed DRSMC method has a strong ability 
for unknown time-varying disturbance rejection and good 
application potential.

5 � Conclusions

A practical and effective trajectory tracking control frame-
work with a strong disturbance rejection ability for robots 
was presented in this paper. By combining the active distur-
bance rejection scheme, an ESO-based SMC law was devel-
oped to realize effective trajectory tracking while actively 
estimating and compensating unknown disturbances and sys-
tem uncertainties simultaneously. A learning-based control-
ler design methodology was introduced to realize the opti-
mal design of the proposed controller, and an autonomous 

learning method was developed for transferring the robot 
joint actuation ability.

To obtain a robust and transferring controller, a neural 
network was used to learn the joint actuation ability for the 
controller optimizing process. Simulation results and experi-
mental results verified that the proposed controller design 
methodology is effective and robust, and the proposed con-
trol strategy can achieve satisfying tracking performance 
with a strong disturbance rejection ability. As an extension 
of this research project, future work will develop a scheme 
to adaptively adjust the controller online and use more 
feedback information to create a control policy for certain 
applications.
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