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Abstract
Despite the recent success of state-of-the-art 3D object recognition approaches, service robots still frequently fail to recognize
many objects in real human-centric environments. For these robots, object recognition is a challenging task due to the high
demand for accurate and real-time response under changing and unpredictable environmental conditions. Most of the recent
approaches use either the shape information only and ignore the role of color information or vice versa. Furthermore, they
mainly utilize the Ln Minkowski family functions tomeasure the similarity of twoobject views,while there are various distance
measures that are applicable to compare two object views. In this paper, we explore the importance of shape information,
color constancy, color spaces, and various similarity measures in open-ended 3D object recognition. Toward this goal, we
extensively evaluate the performance of object recognition approaches in three different configurations, including color-
only, shape-only, and combinations of color and shape, in both offline and online settings. Experimental results concerning
scalability, memory usage, and object recognition performance show that all of the combinations of color and shape yield
significant improvements over the shape-only and color-only approaches. The underlying reason is that color information is
an important feature to distinguish objects that have very similar geometric properties with different colors and vice versa.
Moreover, by combining color and shape information, we demonstrate that the robot can learn new object categories from
very few training examples in a real-world setting.

Keywords 3D object recognition · Open-ended learning · Robotics · Lifelong robot learning

1 Introduction

One of the primary goals in service robotics is to develop
perception capabilities that will allow robots to interact with
the environment robustly. Toward this goal, a robot must be
able to recognize a large set of object categories accurately.
Furthermore, in order to interact with human users, this pro-
cess of object recognition cannot take more than a fraction
of a second. In human-centric environments, the robot may
frequently face a new object that visually can be either very
similar or not similar to other categories. For example, con-
sider apples and oranges categories: what is the difference
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between apples and oranges? They both fall within the class
of fruits, both are edible, have a similar spherical shape, and
grow on trees. Although object recognition is a typical task
that is performed intuitively by human cognition, it can be
quite complex when a robot has to do it.

A 3D object recognition system is composed of several
software modules such as Object Detection, Object Rep-
resentation, Object Recognition, and Perceptual Memory.
Object detection is responsible for detecting all objects in
a scene. Object representation is concerned with the calcu-
lation of a set of features for the given object. The obtained
representation is then sent to the object recognition mod-
ule. The target object is finally recognized by comparing its
representation against all the descriptions of known objects
(stored in the perceptual memory). As you can see, object
representation plays a prominent role because the output
of this module is used for learning as well as recognition.
Moreover, the representation of an object should contain suf-
ficient information to be able to recognize the same or similar
objects seen from different perspectives. Therefore, several
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Fig. 1 Step by step visualization of the process in the GOOD object
descriptor, creating a representation of a “Vase” object. a 3D point cloud
of the object, its bounding box, reference frame, and three projected
views; b–d three projection planes created from these views, with a

number of bins of 5. The projections are then converted into histograms
by counting the number of points falling in each bin, as shown in e–g;
Finally, the GOOD object representation is created by concatenating
the three histograms as visualized in h

important questions should be taken into account when rep-
resenting an object: which perceptual data should be used?
How to represent it to the robot? Which senses would a per-
son use to classify highly similar objects? Arguably, we can
confidently state that vision would be the most important
sense, while other senses such as touch could be used for this
task.

Going from this, we still do not have a definite answer on
what the difference is between apples and oranges. An apple
can be colored orange, while a green-colored orange could
also be considered an orange. The same mutual relation goes
for their shape. Taking this in mind, describing objects only
by either shape or color will likely lead to confusion eventu-
ally. In this work, we assume that an object has already been
segmented from a scene. The extracted point cloud of the

object, containing RGB and depth data, is used to describe
the shape and color of the object for distinguishing objects
that have a very similar shape with a different color or vice
versa. Toward this goal, we extend the Global Orthographic
Object Descriptor (GOOD) [13] by adding color constancy
information as an aid to improve object recognition perfor-
mance. GOOD is a lightweight object descriptor that creates
a convenient object representation directly from a 3D point
cloud. As 3Ddata containsmore structural information about
objects, it is more robust than RGB data to the effects of illu-
mination and shadows [22]. The required steps leading to the
eventual GOOD object representation for a vase object are
shown in Fig. 1. In summary, this paper contains the follow-
ing main contributions:
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– To develop a 3D object descriptor that represents both
shape and color constancy information for a given object.

– To extensively evaluate the role of shape features, color
constancy, color spaces, and similarity measures in open-
ended 3D object recognition.

The remainder of this paper is organized as follows. InSect. 2,
we briefly discuss related works. The methodology for com-
puting the object descriptor is presented in Sect. 3. Evaluation
of the proposed descriptor is presented in Sect. 4. Finally, in
Sect. 5, conclusions are presented, and future research is dis-
cussed.

2 Related work

Three-dimensional object recognition has been under inves-
tigation for a long time in various research fields, such as
pattern recognition, computer graphics, and robotics [4,14,
20,28]. Although an exhaustive survey of 3D object descrip-
tors is beyond the scope of this paper [2,6,26], we will review
the main efforts.

Object representations based on just RGB data are sen-
sitive to illuminations and shadows. Moreover, they cannot
provide accurate representations of the shape of objects. To
cope with aforementioned limitations, 3D data can be used
to facilitate the representation of objects. Existing 3D object
representation approaches are based on either global or local
descriptors. As the name suggests, global descriptors repre-
sent the complete object. In contrast, local descriptors encode
an object in a piece-wise manner, representing small patches
of the object around specific key points, e.g., [18]. Gener-
ally, global descriptors are increasingly used in the context
of 3D object recognition, object manipulation, as well as
geometric categorization. These must be efficient in terms of
computation time as well as the memory, to facilitate real-
time performance. Some descriptors use a reference frame
(RF) to compute a pose-invariant description. Therefore, this
property can be used to categorize 3D shape descriptors into
three categories, including (i) shape descriptors without a
common reference; (ii) shape descriptors computed relative
to a reference axis; (iii) shape descriptors computed relative
to an RF.

Most of the shape descriptors of the first category use cer-
tain statistic features or geometric properties of the points on
the surface like depth value, curvature, and surface normals
to generate a description. For instance, W. Wohlkinger and
M. Vincze [29] introduced a global shape descriptor called
Ensemble of Shape Functions (ESF) that does not require
the use of normals to describe the object. The characteristic
properties of an object are represented using an ensemble
of ten 64-bin histograms of angle, point distance, and area

shape functions. ESF completely ignores the potential role
of color information.

In contrast, the descriptors in the second and third cat-
egory encode the spatial information of an object’s points
using an RF. In the second category, Viewpoint Feature His-
togram (VFH) [25] is a well-known descriptor. It is based
on another set of descriptors, the point feature histogram
(PFH) [27], more specifically the fast point feature histogram
(FPFH) [24]. The histogram of a PFH results from consid-
ering several angular features between the normals of pairs
on the point cloud. What VFH adds to FPFH is the consid-
eration of a viewpoint component. The direction from the
viewpoint to the centroid of the object is translated to all
points. The angle between this and the normal of the points
constitutes the first component of the histogram. The other
components of the histograms are similar to FPFH, but the
pan, tilt, and yaw angles are now computed between the nor-
mals of the points and the viewpoint direction of the centroid.
In the third category,we have theGlobalOrthographicObject
Descriptor (GOOD) [13], which performs a principal com-
ponent analysis on the point cloud of an object to make an
unambiguous reference frame for the object. The resulting
RF is then used to create three orthogonal projection of the
object with respect to the X, Y, and Z axes. Each of these
projections is then converted into a histogram and then com-
bined using two statistical features, in particular the entropy
and variance, to provide the final descriptor of the object.
The Globally Aligned Spatial Distribution (GASD) [17] and
VFH-Color [30] also fall into the third category. GASD
explores the idea of forming an object descriptor contain-
ing both color and shape information. GASD represents the
shape information, almost similar to the GOOD descriptor.
VFH-Color combines the original VFH descriptor with the
color quantization histogram. Both GASD and VFH-Color
descriptors incorporate color information into the descriptor
to increase their discriminative power. We refer the reader
to two comprehensive surveys on local feature descriptors
[5,16]. In this paper, we select one descriptor from each cat-
egory, including ESF, VFH, and GOOD.

In recent studies on object recognition and grasping,much
attention has been given to deep Convolutional Neural Net-
works (CNNs). It should be noted that there are several
differences between the proposed approaches and CNN-
based approaches. Deep learning approaches work well if
we have a fixed set of object categories and a massive num-
ber of examples per category that are sufficiently similar to
the test images. In real-world scenarios, these assumptions
are not satisfied, and the robot needs to learn new concepts
using very few training examples on-site. While deep learn-
ing is a very powerful tool, there are several limitations to use
such approaches in open-ended domains. CNNs are incre-
mental by nature but not open-ended since the inclusion of
new categories enforces a restructuring in the topology of
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the network. In other words, the target set of classes is prede-
fined in incremental learning, and the representation of these
classes is improved over time, whereas in open-ended learn-
ing the set of classes is growing continuously. Moreover,
CNNs are data-hungry approaches, and training with limited
data leads to poor performance. Catastrophic forgetting is
another important limitation of these approaches.

3 Proposed approach

A point cloud of an object is represented as a set of points,
pi : i ∈ {1, . . . , n}, where each point is described by their
3D coordinates [x, y, z] and RGB information. In this work,
we mainly use the GOOD object descriptor to represent the
object as a histogram [8,13]. The reason why we use the
GOOD rather than other 3D object descriptors is that the
GOOD is a pose- and scale-invariant descriptor, and therefore
suitable for 3Dperception in autonomous robots.As shown in
Fig. 1, this method performs a principal component analysis
on the point cloud of an object to find the eigenvectors of
the object. In particular, given a point cloud of an object that
contains n points, the center of gravity of the object is first
calculated as c = 1

n

∑n
i=1 pi . The normalized covariance

matrix, �, of the object is constructed:

� = 1

n

n∑

i=1

(pi − c)(pi − c)T . (1)

Then, eigenvalue decomposition is performed on the �,
therefore, we have: �V = EV where V = [v1, v2, v3]
contains the three eigenvectors, E = diag(λ1, λ2, λ3) is
a diagonal matrix of the corresponding eigenvalues and
λ1 ≥ λ2 ≥ λ3. Since the covariance matrix is symmetric
positive, its eigenvalues are positive and the eigenvectors are
orthogonal. In this work, the first two axes of an object’s ref-
erence frame, X andY , are defined by the eigenvectors v1 and
v2, respectively. We define the Z -axis as the cross-product
of v1 × v2. The reference frame estimated for an example
partial point cloud is shown in Fig. 2.

It is worth mentioning that over different trials, the direc-
tion of eigenvectors is not unique and has 180◦ ambiguity. A
sign disambiguation method is used to avoid this problem.
The resulting unambiguous local reference frame, centered
on the object, is then used to create three orthogonal projec-
tion planes. The projections are divided up in a grid of n × n
bins, which are used to compute a normalized distribution
matrix by counting how many points fall within each bin.
The histogram of the plane is created by stringing the rows
of the matrix together. The obtained histograms correspond-
ing to the three projections are then combined to form a single
representation for a given object. The histogram appearing

Fig. 2 Reference frame estimated for a partial view of a bottle object:
the X, Y, and Z axes are represented by red, green, and blue lines. The
bounding box of the object is also computed by finding minimum and
maximum points in each axis (colour figure online)

first in the combined histogram is the one with the highest
entropy. The second one is the one with the lowest variance
of the remaining two, automatically placing the remaining
one in the last position.

The GOOD object descriptor does not contain color
information. Therefore, we have decided to append color
constancy information to the GOOD object descriptor by
taking an average color of all points of the object. The idea
of considering color constancy information is inspired by
the work of Bramão et al. [1], which showed the importance
of color constancy in object recognition tasks. Therefore, the
integration of color constancy information of an object seems
to be sufficient to improve the performance of object recog-
nition. Color diagnostic objects will have a single dominant
color that is typical for this object and could be used for the
recognition of this object. Non-color diagnostic objects will
not have a dominant color value and thus cannot really be
used to recognize an object. Human perception and recogni-
tion, of course, do not just use color constancy information to
recognize objects. However, the research byBramão et al. [1]
showed that the color diagnosticity of an object significantly
influences the performance of object recognition. In most of
cases, in addition to the shape properties, it is sufficient to
only look at the color constancy information. Moreover, the
cost of the implementation is less than using an independent
texture descriptor (e.g., ORB [23]), and it is not substantially
altering the shape descriptor. Given this point that only m
bins are appended to the final object description for the color
constancy information, it would not really affect the GOOD
descriptor. It is worth to mention that the size of m depends
on the color space. In most cases, m is set to three, which is
much smaller than the size of the shape descriptor (3 × n2).
Therefore, to avoid the dominance of the shape information,
we add the parameter color weight,w. In all experiments, the
obtained object representations are paired with an instance-
based learning (IBL) approach (see, e.g., [21]). Therefore,
a category is described by a set of known instances. An
advantage of the IBL approaches is that they can recog-
nize objects using a minimal number of experiments, and
the training phase is very fast. IBL is a baseline approach
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to evaluate object representations. However, more advanced
approaches like SVM and Bayesian [9,12] approaches can
be easily adapted. Similarly, a simple baseline recognition
mechanism in the form of the nearest neighbor classifier is
used. In particular, IBL approaches can be seen as a combina-
tion of particular object representation, similarity measure,
and classification rule. Since representing color constancy in
different color spaces may lead to different results, we con-
vert the object’s color constancy into three different color
spaces, including RGB, YUV, and HSV, and further discuss
the procedure of combining color constancy and shape infor-
mation to form a descriptor for a given object and color
spaces. In a real-world scenario, the different color spaces
can lead to different results when the lighting conditions in
the scene change. Therefore, additional real-world experi-
ments are performed in which an extra light source is placed
underneath the camera. The results of these experiments
could show a relation between the applied color space and its
robustness with regard to environmental lighting conditions.

In RGB space, often the most popular color space, colors
are made up of red, blue, and green channels, having a range
of values [0, 255].We get the RGB values for all points of the
object and calculate the summation of each channel values
separately. We then get the average colors of the object by
dividing the obtained red, green, blue values by the number
of points of the object. Finally, since the shape information is
normalized, i.e., having a range from0 to1,we also normalize
the obtained color values to be in the range of [0, 1], by diving
each color to 255. The obtained values are then appended to
the shape description of the object.

YUV space is mainly used for television transmission and
represents a color by three components, one channel for lumi-
nance and two channels for chrominance. The Y component
determines the brightness of color, which is referred to as
luminance. The U and V component determines the color
itself, also called chroma. The value of Y ranges from 0 to
255, while the value of U and V ranges −128 to +127. The
YUV values can be derived from the RGB values using the
following linear transformation:

⎡

⎣
Y
U
V

⎤

⎦ =
⎡

⎣
0.299 0.587 0.114

− 0.168 − 0.331 0.500
0.500 − 0.418 − 0.0813

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ +
⎡

⎣
0
128
128

⎤

⎦ ,

(2)

where 128 is added to the U and V component to make
sure that each of the YUV components ranges in [0, 255].
Afterward, the obtained colors are normalized and appended
to the histogram of the object as done for the RGB color
space.

HSV color spacewas developed to take into consideration
how humans view color, where H stands for hue, S stands for

saturation, and V stands for value. In particular, it describes
a color (hue) in terms of the saturation (shade) and value
(brightness). The hue components represent the angle, which
has a range of [0, 360] degrees. The saturation component
describes the percentage of gray in a particular color and
value works in conjunction with saturation and describes the
brightness or intensity of the color, with a range from [0, 100]
percent. The RGB value of every detected point is converted
to HSV; this is done using the minimum and maximum value
of the normalizedRGBvalue of the point in the point cloud. It
is worth to mention that the final object descriptor is formed
the same way as the other two color spaces. The normalized
HSV color dissimilarity, d, of two object views, p and q, can
be computed using the following equations:

h = min(abs(hq − h p), 360 − abs(hq − h p)

180.0
,

s = abs(sq − sp),

v = abs(vq − vp)

255.0
,

d = h + s + v, (3)

As stated earlier, after forming the object descriptor con-
taining both color and shape information, we use the color
weightsparameter to set how important the difference in color
is of the two compared object representations. We are doing
this because in the representation of the object, the number
of bins representing the shape of the object is much more
than the number of bins representing the color information
(675 bins vs. 3 bins), and hence the shape information will
largely dominate the decision. Therefore, we calculate the
difference by using a weighted distance function, as shown
below:

D(p, q) = (1 − w) × ds(p, q) + w × dc(p, q), (4)

where ds is the difference in the shape space, dc is the differ-
ence in the color space, and w is the color weight, which is
a value between 0.0 and 1.0.

4 Result and discussion

Three types of experiments were carried out to evaluate the
proposed approach. It should be noted that in addition to
the GOOD descriptor [13], two popular state-of-the-art 3D
object descriptors including, VFH [25] and ESF [29] were
evaluated, which are available in the Point-Cloud Library.1

We compare the obtained results and use the best config-
uration as the system’s default configuration in the second

1 http://pointclouds.org/.

123

http://pointclouds.org/


334 Intelligent Service Robotics (2021) 14:329–344

Table 1 System configurations
that obtained best object
recognition accuracy

No. Descriptor #bins Distance function Accuracy Time (s)

1 GOOD 15 Manhattan 0.97 3.351

2 GOOD 15 Gower 0.97 3.450

3 GOOD 15 Sorensen 0.97 3.512

4 GOOD 15 Motyka 0.97 3.666

5 GOOD 15 Euclidean 0.97 4.078

6 GOOD 15 Cosine 0.97 4.297

7 GOOD 15 Dice 0.97 4.380

8 GOOD 25 χ2 0.97 4.219

9 GOOD 30 Bhattacharyya 0.97 5.771

10 GOOD 35 Bhattacharyya 0.97 6.116

11 GOOD 35 χ2 0.97 5.348

12 ESF — Manhattan 0.97 8.055

13 ESF — Sorensen 0.97 7.983

14 ESF — Neyman 0.97 7.983

15 ESF — Bhattacharyya 0.97 8.055

16 ESF — Euclidean 0.97 8.174

round of experiments (open-ended evaluation). In the fol-
lowing subsections, we have investigated the importance of
shape information and similaritymeasures using an extensive
set of offline evaluations and considered the importance of
color constancy and color spaces in a broad set of open-ended
assessments.

4.1 Classical offline evaluation using the restaurant
object dataset

For this round of experiments, we have used the restau-
rant object dataset since it has a small number of classes
(10 categories) with a significant intra-class variation that is
suitable for performing extensive sets of experiments. The
parameter of the selected object descriptors must be tuned
to provide a good balance between recognition performance,
memory usage, and processing speed. The descriptiveness
of the GOOD descriptor was evaluated with varying number
of bins, n, ranging from 5 to 50 with an interval of 5. For
the VFH descriptor, we performed a parameter sweep on the
normal estimation radius parameter, ranging from 2 to 10 cm
with an interval of 2 cm, to find the valuewhich resulted in the
highest accuracy. The ESF object descriptor does not have
any parameters to be optimized. Furthermore, the choice of
the similarity measure has an impact on the recognition per-
formance. Since the selected object descriptors represent an
object as a normalized histogram, the dissimilarity between
two histograms can be computed by different distance func-
tions. We refer the reader to a comprehensive survey on
distance/similarity measures provided by Cha [3]. In this
work, during the selection of the distance functions, care
was taken to select functions that are dissimilar to each other.

This policy will increase the chance that different distance
functions lead to different results. Based on these consid-
erations, the following 14 functions have been explored:
Euclidean, Manhattan, χ2, Pearson, Neyman, Canberra, KL
divergence, symmetric KL divergence,Motyka, Cosine, Dice,
Bhattacharyya, Gower, and Sorensen. We refer the reader to
[3] to check the mathematical equations. We therefore per-
formed a total of 224 = (10 × 14) + (5 × 14) + 14 tenfold
cross-validation experiments to obtain best configuration for
each method. All combination of parameters that obtained
the best accuracy is summarized in Table 1. By compar-
ing all experiments, it is clear that the GOOD with 15 bins
and aManhattan (city-block) distance function configuration
obtained the best performance in terms of accuracy and com-
putation time. The Manhattan distance function is in the L p

Minkowski family and has very low computational expenses.
The accuracy of the proposed system with this configuration
was 0.97. A complete experiment (including both learning
and recognition phases) using this configuration took 3.351 s.
The following results are computed using this configuration
unless otherwise noted.

Although a large number of bins provides more details
about the point distribution, it increases computation time,
memory usage, and sensitivity to noise. The descriptiveness
of VFH was not as good as the other descriptors. VFH with
the radius parameter set to 6cm and Canberra distance func-
tion resulted in the best performance with a 0.94 accuracy
followed by the same radius parameter and aMotyka function
which resulted in an accuracy of 0.93. One crucial observa-
tion is that for VFH, there is a significant drop in performance
when the normal estimation radius becomes too small or too
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large. Itwas observed that ESFperformedwell on all distance
functions, always having a precision greater than 0.95.

Several factors influence the computation time of an
instance-based object recognition approach. They include (i)
number of training instances, (ii) distance function, and (iii)
object descriptor. In this round of experiments, the number
of instances was the same for all of the approaches. In the
case of distance functions, it is worth mentioning that a dis-
tance function requires the same amount of time regardless
of the input objects, i.e., constant time O(1). Therefore, dis-
tance functions should be compared in terms ofmathematical
complexity and not time complexity. By comparing themath-
ematical equation of the selected distance functions, it is clear
that the Manhattan function is the optimum one. To evalu-
ate an object descriptor’s computation time, we randomly
select 20 objects and measure the average computation time
required to generate representations for the given objects.
We observed that the GOOD achieved the best performance,
which was around 10 and 44 times better than ESF and VFH,
respectively. The underlying reason is that the GOOD works
directly on 3D point clouds and requires neither triangulation
of the object’s points nor surface meshing [8]. Therefore, we
use the GOOD descriptor as the basis of the proposed model
in the remaining experiments.

4.2 Open-ended evaluation using RGB-D object
dataset

In this round of experiments, we explore the importance of
color constancy and color spaces. To evaluate the perfor-
mance of object recognition approaches in an open-ended
domain, Kasaei et al. [10] have recently adopted a teaching
protocolwhich simulated the simultaneous nature of learning
and recognition. The main idea is to emulate the interactions
of a robot with the surrounding environment over long peri-
ods. The teaching protocol determines which examples are
used for training the algorithm, and which are used to test
the algorithm. This protocol is based on a Test-then-Train
scheme, which can be followed by a human user or by a
simulated user. We develop a simulated teacher to follow
the protocol and to autonomously interact with the system
using teach, ask, and correct actions. In this experiment, the
robot initially has zero knowledge, and the training instances
become gradually available according to the teaching proto-
col.

The idea is that the simulated teacher introduces a cate-
gory to the robot using three randomly selected object views.
The robot creates a model for that category based on these
instances. Afterward, the teacher picks a never-seen-before
object view and tests the robot to see if it has learned the
category, and learning this category does not interfere with
the previously learned categories. This is done by asking
the robot to recognize unseen object views of the currently

known categories.When the robot makes a misclassification,
the teacher will provide feedback with the correct cate-
gory. This way, the robot adjusts its category model using
the mistaken instance. The simulated teacher estimates the
recognition accuracy of the robot using a sliding window of
size 3n iterations, where n is the number of categories that
the robot has already learned. If the number of iterations it
took since the last time the agent learned a new category is
less than 3n, all results are used. If the recognition perfor-
mance of the agent is higher than the protocol threshold, τ ,
the simulated teacher introduces a new category. It is worth
mentioning that the original protocol suggests to set the τ

to 0.67, meaning the object recognition accuracy is at least
twice the error rate. In our experiment, we set the proto-
col threshold to 80% since we aim to force the robot to
learn and recognize object categories more precisely. This
way, object recognition accuracy is at least four times better
than error. Furthermore, considering such a high threshold
not only makes it harder to learn new object categories, but
also highlights the importance of combining color and shape
information in open-ended learning scenario. This relatively
high protocol threshold also allows for robustness tests, as
configurations that are still able to learn many categories can
be considered to be more robust. If the agent could not meet
this protocol threshold after a certain number of iterations
(e.g., 100), a breakpoint is encountered. This way, the simu-
lated teacher can state that the agent cannot learn any more
categories. The agent may learn all existing categories before
reaching the breaking points. In such cases, it is no longer
possible to continue the protocol, and the evaluation process
is halted. In the reported results, this is shown by the stopping
condition, “lack of data.”

4.2.1 Dataset and evaluation metrics

In this round of experiments, we use the Washington RGB-
D dataset [15]. This dataset is known as one of the largest
available 3D objects datasets and consists of 51 categories
with 250.000 views of 300 objects. When an experiment
is carried out, learning performance is evaluated using sev-
eral measures [7,19,21], including: (i) the number of learned
categories (NLC) at the end of the experiment, an indica-
tor of how much the system was capable of learning; (ii)
the number of question/correction iterations (QCI) required
to learn those categories and the average number of stored
instances per category (AIC), indicators of time and mem-
ory resources required for learning; (iii) global classification
accuracy (GCA), computed using all predictions in a com-
plete experiment, and the average protocol accuracy (APA),
i.e., average of all accuracy values successively computed to
control the application of the teaching protocol. GCA and
APA are indicators of how well the system learns.
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Table 2 Summary of evaluation
using shape information

No. w QCI NLC AIC GCA APA

1 0.0 648.10 ± 196.76 18.90 ± 4.38 11.78 ± 1.35 0.74 0.84

Table 3 Summary of evaluation
in RGB color space

No. w QCI NLC AIC GCA APA

1 0.1 922.20 ± 459.24 24.10 ± 7.53 11.60 ± 1.84 0.76 0.84

2 0.2 1217.70 ± 669.51 31.80 ± 11.66 10.84 ± 1.40 0.78 0.84

3 0.3 1881.60 ± 555.00 44.70 ± 8.10 11.28 ± 1.27 0.80 0.841

4 0.4 1751.80 ± 477.00 45.70 ± 7.04 10.19 ± 1.19 0.81 0.85

5 0.5 1656.20 ± 260.22 49.40 ± 4.72 8.92 ± 0.80 0.82 0.85

6* 0.6 1632.50 ± 153.28 51.00 ± 0.0 8.30 ± 0.77 0.84 0.86

7* 0.7 1509.50 ± 104.62 51.00 ± 0.0 7.55 ± 0.57 0.85 0.86

8* 0.8 1452.30 ± 76.15 51.00 ± 0.0 7.07 ± 0.47 0.86 0.87

9* 0.9 1410.20 ± 43.18 51.00 ± 0.0 6.79 ± 0.38 0.86 0.88

10 1.0 1257.10 ± 609.35 33.30 ± 10.84 10.50 ± 1.38 0.79 0.85

Best result highlighted by bold and italic values
*Stopping condition was “lack of data”

4.2.2 Results

Since the order of introducing the categories may have an
effect on the performance of the system, ten experiments
were carried out for each of shape-only, color-only (w =
1.0), and nine combinations of shape and color in three men-
tioned color spaces, i.e.,w ∈ {0.1, 0.2, . . . , 0.9}, resulting in
330 experiments. This is due to the nature of IBL approaches
that the recognition of new objects relies on all the previously
learned objects. For example, if the teacher introduces a red
apple right after a red tomato (both a red color and a simi-
lar shape), it would be harder to recognize this new object
than when a banana was introduced after the red tomato (dif-
ferent color and different shape). Detailed summaries of the
obtained results are reported inTables 2, 3, and 4 and depicted
in Figs. 3, 4, 5, 6, and 7. For all results, boxplots are added to
show the variation of obtained results for each configuration
based onminimum, first quartile,median, third quartile, and
maximum performances. Line plots are also added to display
the average number of learned categories as a function of
color weight.

One important observation is that considering color con-
stancy information significantly improved object recognition
performance. It was found that the performance of the agent
is improved by increasing the level of color weight in all
color spaces. Notably, the agent learned all 51 categories in
all color spaces when the color weight was in the range of
0.6 ≤ w ≤ 0.9. It isworth tomention, in this range, all exper-
iments concluded prematurely due to the “lack of data,” i.e.,
no more categories available in the dataset, indicating the
potential for learning many more categories. Moreover, it
was observed that neither the agent with color-only nor the

one with shape-only configurations could learn all categories
in all of the experiments.

On closer inspection, we can see that the combination of
HSV color and shape model resulted in a better performance
in all levels of color combination, as clearly shown in Fig. 3.
By comparing all approaches, it is also visible that the agent
learned all categories faster in HSV space than in other color
spaces. It can also be concluded that shape+HSV (w = 0.9)
obtained the best GCA and APA with stable performance.
In contrast, the performance of the agent with shape-only
(w = 0.0) configuration was the worst among the evaluated
configurations. In the case of color-only (w = 1.0), the best
performance was obtained in HSV color space, where the
agent on average learned 42.30 categories, and YUV and
RGB spaces achieved the second and third places by learning
on average 40.20 and 33.30 categories, respectively.

Figure 4 illustrates “how fast” the learning occurred in
each of the experiments while shedding light on the num-
ber of learned categories (blue lines). It shows the number
of question/correction iterations (QCI) required to learn a
certain number of categories. We can see that, on average,
the longest experiments were observed with shape+YUV,
when the w parameter was set to 0.5. The shortest ones were
observed with shape+HSV with w = 0.8. It should be noted
that the agent with shape+HSV (w = 0.8) configuration was
able to learn all 51 categories in all experiments, while the
experiments with shape+YUV (w = 0.5) were stopped due
to reaching the break point condition after leaning 50 cate-
gories on average (seeTables 4, 5). In the case of shape+RGB,
the best performance of the agent was achieved when the
w was set to 0.5. With this shape+RGB configuration, the
agent on average learned all categories using 1410.20±43.18
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Fig. 3 Summary of open-ended
evaluation of all approaches;
These plots show the number of
learned categories versus color
weight for all experiments in
four different spaces. Boxplots
represent the distribution of
obtained results for each
configuration based on
minimum, first quartile, median,
third quartile, and maximum
performances. The blue lines
represent the average number of
learnt categories as a function of
color weight (colour figure
online)

Fig. 4 Summary of open-ended
evaluations: these graphs show
the number of
question/correction iterations
(QCI) required to learn a certain
number of categories as a
function of color weight. The
blue lines also represent the
average number of learned
categories in different
combinations of color and shape
(colour figure online)
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Table 4 Summary of evaluation
in YUV color space

No. w qci nlc aic gca apa

1 0.1 802.30 ± 443±21 21.90 ± 7.49 11.53 ± 1.72 0.75 0.84

2 0.2 1183.20 ± 572.72 29.40 ± 10.13 11.64 ± 1.43 0.77 0.84

3 0.3 1507.00 ± 587.95 36.30 ± 8.87 11.62 ± 1.53 0.79 0.84

4 0.4 1524.10 ± 655.25 39.10 ± 9.31 10.65 ± 1.79 0.80 0.84

5 0.5 2095.50 ± 161.95 50.30 ± 1.64 10.95 ± 0.85 0.81 0.84

6* 0.6 1817.70 ± 138.34 51.00 ± 0.0 9.31 ± 0.76 0.82 0.85

7* 0.7 1659.90 ± 84.90 51.00 ± 0.0 8.32 ± 0.47 0.84 0.86

8* 0.8 1455.10 ± 58.64 51.00 ± 0.0 7.23 ± 0.35 0.85 0.87

9* 0.9 1375.50 ± 26.95 51.00 ± 0.0 6.58 ± 0.31 0.87 0.88

10 1.0 1568.30 ± 664.25 40.20 ± 9.56 10.55 ± 1.71 0.80 0.84

Best result highlighted by bold and italic values
*Stopping condition was “lack of data”

Table 5 Summary of evaluation
in HSV color space

No. w QCI NLC AIC GCA APA

1 0.1 958.80 ± 523.49 25.80 ± 10.08 10.89 ± 1.69 0.77 0.84

2 0.2 1639.30 ± 618.87 40.50 ± 10.33 11.01 ± 1.18 0.80 0.84

3 0.3 1717.40 ± 407.80 46.40 ± 6.92 9.90 ± 0.98 0.81 0.84

4 0.4 1628.00 ± 114.81 49.90 ± 2.60 8.7079 ± 0.62 0.83 0.85

5* 0.5 1608.50 ± 113.54 51.00 ± 0.0 8.12 ± 0.56 0.84 0.86

6* 0.6 1454.20 ± 71.34 51.00 ± 0.0 7.17 ± 0.45 0.85 0.87

7* 0.7 1406.20 ± 43.20 51.00 ± 0.0 6.73 ± 0.36 0.87 0.88

8* 0.8 1369.60 ±19.66 51.00 ± 0.0 6.46 ± 0.29 0.87 0.88

9* 0.9 1371.90 ± 28.90 51.00 ± 0.0 6.42 ± 0.33 0.87 0.89

10 1.0 1624.00 ± 513.38 42.30 ± 7.66 10.34 ± 1.78 0.81 0.85

Best result highlighted by bold and italic values
*Stopping condition was “lack of data”
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Fig. 5 This graph shows the number of instances stored in the models
of all of the categories in three system configurations: shape-only, color-
only, and shape+HSV (w = 0.9). Each bar represents the three instances
provided at the introduction of the category, together with any instances
that had to be corrected somewhere along the experiment. Onion, jar-
food, and camera were the most difficult categories for shape-only,
color-only, and shape+color configurations, respectively, i.e., requir-
ing the largest number of instances. It should be noted that categories

that were introduced near the end of the experiment have been tested
less, which is clearly visible in a general trend for fewer instances to
be included for categories appearing later. The agent learned 20, 46,
and 51 categories with shape-only, color-only, and shape+color (HSV)
configurations, respectively. It is worth to mention that the shape+color
experiment finished due to lack of data condition, showing the potential
to learn many more categories

question/correction iterations. It was also observed that the
longest experiments were continued for 1881.60 ± 555.00
question/correction iterations with shape+RGB (w = 0.3)
configuration and the agent on average was able to learn
44.70 ± 8.10 categories (see Table 3).

Figure 5 represents the exact number of stored instances
per category for shape-only, color-only (HSV), and shape+HSV
(w = 0.8). By comparing the obtained results, it can be
concluded that the agent with shape +HSV configuration
not only stored much fewer instances per category but also
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Fig. 6 Summary of open-ended
evaluations: these graphs
represent the average number of
stored instances per category
and the average number of
learned categories at the end of
experiments as an indicator of
how much memory each
approach uses to learn a certain
number of categories. The blue
lines display the average number
of learned categories as a
function of color weight (colour
figure online)

Fig. 7 These graphs show the global classification accuracy as a function of the number of learned categories in three different color spaces. In all
these experiments, color weight was set to 0.9

it could learn more categories as well. Figure 6 provides
a detailed summary of the obtained results concerning the
average number of stored instances per category (AIC) as
a function of color weight. By comparing all approaches, it
is clear that shape+HSV, shape+YUV, and shape+RGB on
average stored less than seven instances per category to learn
all categories,while shape-only and color-only requiredmore

than 10 instances per categories to learn 18.90 and 33.30
categories, respectively. The shape+HSV (w = 0.9) config-
uration on average stored smallest number of instances per
category (see Table 5).

Figure 7 shows the global classification accuracy obtained
by the best combination of shape and color as a function of the
number of learned categories in three different color spaces
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Fig. 8 Our experimental setup
consists of a computer for
human–robot interaction
purposes, a Kinect sensor, and a
UR5e robotic-arm as the
primary sensory-motor
embodiment for perceiving and
acting upon its environment. We
also use an extra lamp to test the
performance of the system
under varying light conditions

End-effector 
(QbHand) 

Action device
(UR5e robot)

Perception device
(Kinect camera)

The four objects used
in this experiment

Extra Lamp
(used for varying light conditions)

Lamp movement
trajectory

(i.e., the best configuration in each color space is highlighted
by the bold and italic in respective tables). One important
observation is that accuracy decreases in all approaches,
as more categories are introduced. This is expected since
a higher number of categories known by the system tends to
make the classification task more difficult.

4.3 Real-robot experiment

To show the strength of the proposed approach, we carried
out a real-robot experiment in the context of the serve_a_coke
scenario. We have integrated the proposed approach into the
cognitive robotics system presented in [11]. In this experi-
ment, a table is in front of a Kinect sensor, and a user interacts
with the system. There is one instance of four object cat-
egories on the table: CokeCan, BeerCan, Cup, and Vase.
This is a suitable set of objects for this test, since there are
objects with very similar shapes and different colors (Coke-
Can, BeerCan, and Cup) and also objects with very different
shapes and similar colors (CokeCan and Vase). The experi-
mental setup is shown in Fig. 8. It consists of a computer for
human–robot interactions, a Kinect sensor for perceiving the
environment, and a Universal Robot (UR5e) for manipula-
tion purposes.

Figure 9 presents some snapshots of this experiment. It is
worth mentioning that a constraint has been applied to the Z-
axis of objects, which forces its initial direction to be similar
to the direction of the table’s Z-axis. At the start of the exper-
iment, the set of categories known to the system is empty,
and therefore, the system recognizes all table-top objects as
Unknown (Fig. 9a). It should be noted that the robot can
learn about a set of categories in advance from batch data
(i.e., dataset of observations with ground truth labels), and

improves its knowledge in active and on-linemanners. A user
interacts with the system by teaching all object categories.
The system conceptualizes them using the extracted object
views and recognizes all objects properly (Fig. 9b). In this
task, the robot must be able to detect the pose of objects as
well as to recognize the label of all active objects. Afterward,
it has to grasp the CokeCan object (Fig. 9c, d) and transport
it on top of the Cup object and serve the drink (Fig. 9e).
The robot finally returns to the initial pose (Fig. 9f). It was
observed that the proposed object descriptor is capable of
providing distinctive global features for recognizing geomet-
rically similar objects with different colors and vice versa.
This evaluation also illustrates the process of learning object
categories in an open-ended fashion.

Most object recognition systems are sensitive to light-
ing conditions and require a fair amount of time and effort
to calibrate. We performed another real-time demonstra-
tion to evaluate the robustness of the proposed approach
under various lighting conditions. As shown in Fig. 8, we
placed a lamp underneath the Kinect camera as an extra
source of illumination and changed its position through
the experiment. Figure 10 shows a sequence of snapshots
of the behavior of the system in this experiment. It was
observed that by combining shape features and color con-
stancy information, we achieved a good level of robustness
against varying lighting condition. In particular, the system
could recognize all objects correctly under various light-
ing conditions (see Fig. 10a–e). Some misclassification also
happened. Figure 10f shows a snapshotwhere the robot incor-
rectly recognized the BeerCan and the CokeCan objects
as Vase, and correctly recognized the Vase and the Cup
objects. A video of these experiments is available online at:
https://youtu.be/a9cL21sf6Qc
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Fig. 9 System performance during the serve_a_coke scenario; a Ini-
tially, the system starts with no knowledge of any object. The posture of
the UR5e arm in each state is also visualized. The table is then detected,
as shown by the green polygon. Afterward, the object candidates are
detected and highlighted by different bounding boxes. The local refer-
ence frame of each object represents the pose of the object as estimated
by the object tracking module. b A user then teaches all the active

objects to the system, and all objects are correctly recognized, i.e., the
output of object recognition is shown in red on top of each object. c The
robot then finds out the CokeCan object and goes to its pre-grasp area
and d picks it up first from the table. e The robot retrieves the position
of Cup first, and then moves the CokeCan on top of the Cup and serves
the drink. f Finally, the robot goes back to the initial position

5 Conclusion

In this article, we have investigated the importance of shape
features, color constancy information, and similarity mea-
sures in open-ended 3D object recognition. Toward this goal,
an instance-based 3D object category learning and recogni-
tion has been developed, which can be seen as a combination
of a memory system, an object representation, a similarity
measure, and a nearest neighbor classifier. We have selected

three state-of-the-art global 3D shape descriptors, namely
GOOD [13], ESF [29], and VFH [25], which provide a good
trade-off between descriptiveness, computation time, and
memory usage and are suitable for real-time robotic appli-
cation. Besides, a multitude of distance functions has been
implemented to measure the similarity of two object views.
Accordingly, 224 system configurations have been examined
in offline settings.
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Fig. 10 System performance under various lighting conditions: a–e the robot could recognize all objects correctly under varying light conditions;
f some misclassifications also happened where the robot could not recognize BeerCan and CokeCan objects correctly

The offline experiments have been performed to opti-
mize the parameters of selected shape descriptors and
investigate the importance of similarity measures. It was
observed that the combination of the GOOD descriptor
(number_of _bins = 15) and the Manhattan function led
to the best result in terms of both accuracy and computation
time. We then investigated the importance of color infor-
mation in an open-ended learning setting. In particular, we
have added the color constancy information of an object to
its shape description. A set of 330 open-ended experiments

has been performed in three popular color spaces includ-
ing: RGB, YUV, and HSV. In this round of experiments, we
adopted a teaching protocol to incrementally evaluate the
performance of the system concerning several characteris-
tics, including descriptiveness, scalability, and experiment
time.

Experimental results show that the overall classifica-
tion performance obtained with the proposed shape+color
approach is clearly better than the best accuracies achieved
with the color-only and shape-only methods. In particu-
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lar, by setting the color weight parameter in the range of
0.6 ≤ w ≤ 0.9 in all color spaces, the agent could learn
all categories in all experiments with stable performance.
This might suggest that there are reliable color differences
between categories and similar color valueswithin categories
in the Washington RGB-D dataset [15]. This is not always
the case in the real-world environment. Furthermore, it was
observed that the performance of the agent with color-only
setting (w = 1) was better than the shape-only configura-
tion (w = 0). This might be caused by a data bias in the
dataset.Concerning computational time (QCI), the best result
was obtained with shape+HSV (w = 0.9), followed by the
shape+YUV with the same w. It was also observed that the
agent could learn new categories from very few examples
in an incremental and open-ended manner. A real demon-
stration was also carried out to show the usefulness of the
proposed method.

Although the addition of color information to the object
representation improved the performance of object recog-
nition, the number of bins representing the color constancy
information was greatly outnumbered by the number of bins
dedicated to the shape of the objects. The color information
had a small role in the resulting histogram since only the
color constancy of the object was used. In the continuation
of this work, we would like to investigate the possibility of
integrating color information in a concrete manner. Further-
more, separate distance functions could be used to estimate
the similarity of objects in terms of shape and color informa-
tion.
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