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Abstract
This paper proposes a fine semantic mappingmethod using dense segmentation network (DS-Net) to obtain good performance
of semantic mapping fusion. First, the RGB image and the depth image are used to generate a dense indoor scene map via
the state-of-the-art dense SLAM (ElasticFusion). Then, the DS-Net is constructed based on DenseNet’s dense connection
to perform precise semantic segmentation on the input RGB image. Finally, the long-term correspondence is established
between the indoor scene map and the landmarks using continuous frames both in the visual odometer and in loop detection,
and the final semantic map is obtained by fusing the indoor scene map with the semantic predictions of the RGB-D video
frames of multiple angles. Experiments were performed on the NYUv2, PASCAL VOC 2012, CIFAR10 datasets and our
laboratory environments. Results show that our method can reduce the error in dense map construction and obtain good
semantic segmentation performance.
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1 Introduction

In the fields of robotics and computer vision, semantic map
lays a foundation for realizing human–robot interaction and
human–robot fusion, and it is widely used in robot naviga-
tion, robot manipulation and augmented reality. It is always
an important research issue to construct an incremental and
robust semantic map in real time. Owing to the rapid devel-
opment of simultaneous localization and mapping (SLAM),
the robot can use sparse or dense point clouds to map envi-
ronments to the 2D or 3D grid maps [1]. Great achievements
have been made in autonomous navigation and automatic
obstacle avoidance by using geometric map and feature map.
However, the robot agent cannot get more from these maps
which only contain geometric and point cloud information.
So, it is difficult and even impossible for the robot to under-
stand complex environments and difficult to be competent for
more complex tasks. In order to realize friendly understand-
ing of complex environments, semantic map that integrates
semantic and geometric information must be established to
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improve the ability of the robot in path planning and other
more sophisticated tasks.

Currently, semantic mapping framework has two main
parts: semantic segmentation performed by convolutional
neural network (CNN) and map construction based on
SLAM. Some CNN-based methods focus on improving the
accuracy of semantic segmentation [2,3]. However, to max-
imally extract the information in the maps, we often deepen
the network layers and build robotic systems with more
rigorous computation, because large amounts of comput-
ing resources are needed to perform operations such as
3D reconstruction, camera pose estimation, and CNN-based
semantics. To achieve the real-time performance,McCormac
et al. [2] constructed a semantic 3D map by combining CNN
and dense SLAM system, and Hermans et al. [4] proposed a
2D–3D label transformation based on Bayesian updates and
dense pairwise 3D Conditional Random Fields. The above
frame-skipping strategy can improve the run-time perfor-
mance, but its application is limited. This is because it tends
to bring inaccuracy in fast camera motions.

The SLAM systems generally establish the correspon-
dence from 2D frames to globally consistent 3D maps.
Comparedwith other mature SLAM systems such as RGB-D
mapping [5], Kintinuous [6] and BundleFusion [7], Elas-
ticFusion [8] is better to represent semantic information.
ElasticFusion uses surface elements (surfels), which are
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suitable for classifying point clouds and parsing semantic
information, to generate and fuse point clouds, and deforma-
tion maps are used to ensure globally consistent mapping in
the closed loop.

The latest developments in semantic mapping focus on
twomain aspects. One is to improve the accuracy of semantic
segmentation. The other is to use the semantic information in
the closed-loop detection module in SLAM to correct poses
and obtain a more consistent map. Niko Sünderhauf at al. [9]
proposed an object-oriented semantic mapping method and
discussed its application in SLAM data association based on
the established semantic map, but they only considered a few
object classes in semantic segmentation. Bowman et al. [10]
realized the integration of semantic information into SLAM.
They formulated an optimization problem over sensor states
and semantic landmarks, which integrate metric informa-
tion, semantic information, and data associations. Then, they
decomposed it into two interconnected problems: estimation
for discrete data association and landmark class probabilities,
and continuous optimization overmetric states.McCormac et
al. [2] implemented semantic mapping by performing prob-
ability fusion on semantic segmentation and dense 3D point
clouds, in which probabilistic event model is adopted in
semantic segmentation. However, the method fails to gen-
erate accurate semantic maps by probability multiplication
and does not perform well for 3D semantic segmentation in
complex environments.

To construct real-time and efficient semantic map, we pro-
pose a semantic segmentation network based on DenseNet
[11] by combining ElasticFusion and the DS-Net segmen-
tation network, in which 2D segmentation of input frames
is performed by using the built DS-Net framework, and the
mapping from2D segmentation to 3Dpoint clouds is realized
by using the Bayesian framework.

This paper is organized as follows: Section 2 describes the
semantic map-related works in recent years. Section 3 intro-
duces our method. In Sect. 4, experiments on the CIFAR10,
NYUv2 [12] and the real environments of our laboratory are
performed to verify the effectiveness of our approach. This
paper is concluded in the last section.

2 Related work

2.1 Semantic mapping

Semantic mapping is a challenging task in semantic SLAM,
which is to construct semantically annotated dense 3D maps
for indoor scenes. 3D semantic maps are mostly built accord-
ing to the following three main stages [4,13] : (i) frame-wise
segmentation for estimating the per-pixel class probabilities
of input frames, (ii) 2D–3D label transfer from 2D seman-
tic segmentation to 3D maps, (iii) 3D refinement to denoise

the class probabilities of 3D maps. Hermans et al. [4] used
Random Decision Forest (RDF), Bayesian framework and
Conditional RandomField (CRF) to carry out the above three
stages, respectively. CRF works on each element of the 3D
map reconstructed via SLAM, and it helps to obtain high-
precision semantic map but it has a heavy computation load.
SemanticFusion [2] also uses CRF to optimize the 3D seman-
ticmap afterBayesian fusion but has no obvious performance
improvement.

Some works only identified partial 3D maps without
generating dense semantic 3D maps. Bowman et al. [10]
improved the performance of RGB SLAM in camera pose
and scale estimation by utilizing not only low-level geomet-
ric features such as points, lines and surfaces but also the
detected target landmarks. Salas-Moreno et al. [14] mapped
indoor scenes at the level of semantically defined objects,
but this method is limited to mapping objects in pre-defined
databases. It does not provide dense labeling for the entire
scene that contains walls, floors, doors, and windows. Naka-
jima et al. [15] proposed a semantic mapping approach by
assigning class probability to each region of the 3D map
established by a SLAM framework with a ResNet-based
structure and geometric-based segmentation.

2.2 2D semantic segmentation

CNN can greatly reduce the input resolution through suc-
cessive pooling operations and it is well suitable for image
classification task and semantic segmentation. The semantic
segmentation structure is generally a convolutional neural
network with deconvolution modules, in which CNN real-
izes feature extraction of input image and assigns an initial
category label to each pixel, and the deconvolution module
is to output a probability density map with the same resolu-
tion as the input image. The structure with deconvolution and
convolution has been applied successfully in semantic seg-
mentation [16–18]. In [19], the fully convolutional network
(FCN) is proposed to extract features by using the Visual
Geometry Group (VGG) model [20] and output the segmen-
tation result. In FCN, the 1×1 convolutional layer is used to
represent spatial information, the unpooling layers are used
to preserve the original resolution of input image, and the
skipping connections are used to improve the robustness of
semantic segmentation.

Some robust 2D semantic segmentation networks, such as
Deeplab [21], ICNet [22] and SegNet [23], are implemented
by either addingmore layers or fine-tuning the network struc-
ture. These methods improve the convolution layers by using
global and context information to extract more sufficient fea-
tures. In these sparsely connected network structures, since
a large number of neurons and the deeper network structure
are introduced, it is difficult to train the network and achieve
the expected goal in real-time applications. For example, Ivan
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Fig. 1 A DenseNet with three dense blocks

Krešo et al. [24] put forward a ladder-style segmentation net-
work and improved the semantic segmentation accuracy to a
certain extent, but the network structure of jump connection
also greatly increases the number of layers and parameters
of the network.

2.3 DenseNet

The traditional object classificationmethodsgenerally extract
the same features for the same type of objects and output them
as the recognition probabilities or positions of the objects
in the image. Since sparse connections in traditional neural
networks such as FractalNets [25], Highway network [26]
and ResNets [27] cannot fully extract features, Huang G et
al. proposed a new convolution network architecture, Dense
Convolutional Network (DenseNet), as shown in Fig. 1.

To facilitate downsampling, the network is divided into
multiple densely connected dense blocks. In each dense
block, the direct connections between any two layers with
the same feature map size can greatly reduce the number of
parameters and improve the utilization of parameters. Such
dense connections also effectively reduce the loss of some
information about the image during conversion due to the
pooling operation. Different from traditional CNN schemes,
DenseNet can achieve good performance without increas-
ing the depth of the network and the number of neurons, so
it can alleviate the vanishing-gradient problem, strengthen
feature propagation, encourage feature reuse, and substan-
tially reduce the number of parameters. The convolution and
pooling used in DenseNet consist of a batch normalization
layer and an 1×1 convolutional layer followed by a 2×2
average pooling layer. Unlike deeply supervised nets (DSN)
[28], DenseNet has a single loss function, making model
construction and gradient calculation easier.

Since the feature maps of different layers are connected
in DenseNet, they are required to maintain the same feature
size, which in turn limits the implementation of downsam-
pling in the network. So, the transition layers are set between
different dense blocks to fully extract the features of all pre-
vious layers and reduce the number of redundant features.
For example, Zhang at al [29] reconstructed CT images from
sparsely sampled sinusoids by using filter back projection
(FBP) and then fed the FBP results to the DenseNet-based
deep neural network. To reduce the compression artifacts
of high efficiency video coding, Li at al. [30] proposed a

DenseNet-based approach as the in-loop filter of efficient
video coding.

In traditional semantic mapping methods, the semantic
segmentation network based on sparse convolution cannot
extract sufficient information and the accuracy of semantic
map is not toohigh. So, the deeper network structure is used to
fully extract image features, but it is difficult to guarantee the
real-timeperformance of the system.Therefore,wepropose a
semantic segmentation network based onDenseNet to obtain
fine semantic segmentation effect.

3 Method

As shown in Fig. 2, our method consists of three main
parts: a SLAM framework for real-time reconstruction of
indoor scenes, a specially designed 2D semantic segmenta-
tion network DS-Net, and a Bayesian update scheme. First,
a geometric edge map is generated from the current depth
frame, and the RGB image and the depth image obtained
from the input RGB-D image are used to generate a dense
indoor scene map via the ElasticFusion system. Second, pre-
cise semantic segmentation is performed on the input RGB
image via DS-Net and returns the class probability of each
set of pixels. Finally, the update class probability is assigned
to each surfel in the 3Dmap by the Bayesian update scheme,
and the final semantic map is generated by updating these
probabilities using the correspondence between the frames
provided by SLAM. In this method, camera pose based on
SLAM is used to establish the relationship between the pixels
of each keyframe and realize incremental fusion by stacking
the semantic label information of keyframes with the spatial
coordinates of the SLAM landmarks. By Bayesian update,
the long-term correspondence between the indoor scene map
and the landmarks is established using continuous frames
both in the visual odometer and loop detection, and the final
fused semantic map is obtained by integrating the indoor
scenemapwith the semantic predictions of the RGB-D video
frames of multiple angles.

3.1 Scenemap construction

The dense three-dimensional reconstruction based on RGB-
D images generally uses the grid model to fuse point clouds,
and directly realizes the reconstruction in the spatial grid
based on the extracted dense feature points. However, since
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Fig. 2 The framework of our method

there is the lack of management of point cloud information,
it is very difficult to make subsequent semantic annotation.
Traditional SLAM algorithms generally improve the posi-
tioning accuracy of the robot by continuously optimizing the
camera trajectory or feature points.When calculating camera
pose, the traditionalmethods usually use 3D featurematching
to perform rough pose calculation and then use the Iterative
Closest Point (ICP) [31] algorithm to fine-tune the pose. The
ICP algorithm calculates the pose byminimizing the distance
from the point to the plane. In ElasticFusion, however, it not
only calculates the pose of the RGB image through color
consistency constraints, but also calculates the pose of the
point cloud through the ICP algorithm.

In the geometric pose calculation, we use the depth image
to estimate the camera pose transformation. The motion
parameter ξ can be obtained through the ICP algorithm,
which is to minimize the point-to-face error between the 3D
back projection vertices:

Eicp =
∑

k

((
vk − exp(ξ̂ )T vkt

)
· nk

)2
(1)

where vk and nk are the corresponding vertex and normal
in the previous camera coordinate frame. T is the current
estimate of the transformation from the previous camera pose
to the current one, and exp(ξ̂ ) is the matrix exponential that
maps the Lie algebra to the corresponding Lie group.

Photometric pose estimation is realized in our method, in
which the scene representation is an unordered list of surfels
M (similar to the representation in Keller et al. [32]), where
each surfelMs has the following attributes: position p ∈ R3,
normal n ∈ R3, color c ∈ N3, weight w ∈ R, radius w ∈ R,
initial time stamp t0 and last updated time stamp t . We try to

find the motion parameters ξ to minimize the cost over the
photometric error (intensity difference) between pixels:

Ergb =
∑

u∈Ω

(
I
(
u, clt

) − I
(
π

(
K exp(ξ̂ )T p(u, Dl

t )
)
, ĉat−1

))2

(2)

where the value of ĉat−1 is from the estimated active model
part, not just from the previous frame. clt is a new frame of
color image.Bymapping theLie algebra to the corresponding
Lie group, the spatial points in the coordinate system of depth
map are converted into the world coordinate system.

When completing geometric pose calculation and photo-
metric pose estimation, we minimize the joint cost function:

Etrack = Eicp + wrgbErgb (3)

with the same wrgb=0.1 as in [33]. The Gauss–Newton non-
linear least-squares method with a three-level coarse-to-fine
pyramid scheme is used to obtain the minimum joint cost
function.

In our method, ElasticFusion uses the surfels model to
integrate the point clouds, which contain position infor-
mation, normal vectors, and color information, and then
updates, merges, displays, and projects point clouds based
onOpenGL. On this basis, continuous optimization of recon-
struction map is performed to improve the reconstruction
accuracy. Therefore, it is suitable to use the surfels model to
represent the observed scene for semantic annotation. Figure
3 shows the surfels model.

The ElasticFusion algorithm consists of four steps: (1)
converting theRGB image and depth image into point clouds,
(2) acquiring coordinates and normal vectors of point clouds,
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Fig. 3 The surface elements (surfels) model

(3) estimating the camera pose parameters by the ICP algo-
rithm and the photometric method [34] for point clouds
registration, and (4) using the random ferns algorithm [35] to
achieve loop detection, integration and point cloud updates.

Local loop detection is the basis for reconstruction and
segmentation. If the loop has not been detected when the
camera moves, the reconstructed map will become a ghost
image. To ensure the local surface consistency of the whole
map, when the loops are revisited, the visual odometer and
loop detection in SLAM establish the long-term correspon-
dence between the landmark objects and the map, therefore
reducing the error of the system in constructing dense map.
The semantic predictions frommultiple angles obtained from
theRGB-Dvideo frames are integrated into amap to improve
the effect of semantic segmentation. In ElasticFusion, the
reconstructed surfels are divided into ACTIVE and INAC-
TIVE by time nodes. ACTIVE is the reconstructed surfels of
the current frame, and INACTIVE is the reconstructed surfels
of the previous frame. With the movement of the camera, the
current frame pose Tcur of the current moment tcur is calcu-
lated. At the position Tinc of the previous frame of time tina ,

the surfels are projected onto the plane, and the coordinates
of the previous frame and the surfels of the current frame in
the world coordinate system are calculated as Tcur P(u, Da

t )

and Tina P(u, Da
t ), respectively, and the two frames are reg-

istered to establish the following constraint:

Qp = (Tcur P(u, Da
t ); Tina P(u, Da

t ); tcur ; tina)
= (Qp

s ; Qp
d ; ts; td) (4)

where Tinc is the camera pose obtained by aligning the pro-
jected surfels of the ACTIVE frame of the camera system
to the INACTIVE frame of the world system. The camera
pose is obtained by setting the surfels point of the INAC-
TIVE frame in the world system as the registration model,
and setting the surfels point of the ACTIVE frame in the
camera system as the frame to be registered. If the two point
clouds overlap and there is a loop, the projected two point
clouds with the overlapping points can be accurately regis-
tered and aligned, thereby providing an accurate dense map
for the system.

3.2 The DS-Net architecture

Figure 4 shows theDS-Net network structure designed on the
basis of DenseNet. In DS-Net, there are four dense blocks,
eight deconvolutions, four unpoolings, and other operations,
such as batch normalization (BN) [36] and rectified linear
units (ReLU) [37]. Four B modules (B1, B2, B3, B4) and
four D modules (D1, D2, D3, D4) transmit features in a
cascading way. Each dashed box B consists of a pooling
operator, a dense block, and a convolution layer; Each dashed
box D includes an unpooling operator and two deconvolu-
tion layers. The pooling operators, the dense blocks, and the
convolution layers in the B module are used to fully extracts
both high-level and low-level features of the input image by
the dense connections between dense blocks. The deconvo-

Fig. 4 The network architecture of DS-Net
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Fig. 5 A dense block with four convolution layers

lution and unpooling operations in the D module are used to
recover high-quality images from previously extracted fea-
ture maps. Our method generates object segmentation masks
using the deconvolution network, inwhich a dense pixel-wise
class probability map is obtained by successive operations of
unpooling, deconvolution, BN and ReLU.

3.2.1 Dense block

Figure 5 shows the network structure of a dense block we
defined in DS-Net. Here, BN normalizes the corresponding
feature map x to a specific distribution of y by using the
formula y=γ (x-μ)/δ+β, where μ is the average of x , δ is the
variance, γ is the scale factor, and β is the offset value.

In Fig. 5, the direct connection of different convolution
layers in dense block is used to fully extract both the advanced
and low-level features from the input image. In this process,
the resolution of the image does not change. Any two adja-
cent layers in dense block are directly connected by multiple
operations such as BN, ReLU and convolution layers. The
1×1 convolution layer in theBmodule is to decrease the large
number of input feature maps caused by too many input fea-
tures after concatenations, and improve the computational
efficiency. In the B module, the linear growth in the num-
ber of features is compensated by the reduction in the spatial
resolution of each feature map after the pooling operation.
Therefore, each layer in dense block can not only benefit
from both low-level and advanced functions in feedforward
setting, but also reduce the risk of gradient explosion or dis-
appearance.

In dense block, the feature maps obtained from all its pre-
vious layers and the map learned from the current layer are
both input into the subsequent layer. This structure allows the
gradients to be sent back to their respective places in the net-
work more quickly. The number of network layers in dense
block also has an important impact on the segmentation effect
and the real-time performance of the network.

3.2.2 Deconvolution network

In the deconvolution network, images are reconstructed from
the extracted features obtained from dense blocks. In Fig. 4,
each dashed box D is a deconvolution network containing
the deconvolution and unpooling modules. The deconvolu-

tion network upsamples the previous feature map, expands
the image pixels, performs deconvolution, and obtains the
weights. As the upsampling path increases the spatial reso-
lution of feature map, the linear increase in the number of
features brings a high memory requirement, especially for
full resolution features in the pre-softmax layer. To reduce
this limitation, the crossover structure with unpooling and
deconvolution is used in the deconvolution network. We do
not use the skip structure here because its performance gain
is not too significant; instead, it will bring a lot of parame-
ters. Therefore, in our network structure, the deconvolution
is only connected to the last dense block, not to all previ-
ous dense blocks. The feature map that the last dense block
outputs already contains the information from all previous
dense blocks with different resolutions.

The pooling operation in convolution network is to filter
noisy activations in the lower layers by abstracting activa-
tions in a receptive field with a single representative value.
Although it contributes to classification by retaining only
robust activations in the upper layers, spatial information
within a receptive field will be lost during pooling, which
will have a great influence on precise localization required
for semantic segmentation. In our network, the pooling cor-
responds to the unpooling, and the network remembers the
output positions of the pooling and determines the output
unpooling locations. The unpooling layer outputs an enlarged
but sparse activation map. The deconvolution layers densify
the sparse activations in unpooling through the convolution-
like operations with multiple learned filters and output an
enlarged and dense activation map. Therefore, all available
feature maps with given resolutions can be used to recover
the final semantic segmentation map of the input image.

3.2.3 Network parameter selection

The parameter setting has an important influence on the
performance of the network. A major difference between
DenseNet and other CNNs is that the output of the net-
work layer of DenseNet has a small number of feature maps,
but CNNs has hundreds or even thousands of feature maps,
including a large number of redundant feature maps. In order
to obtain the number of featuremaps suitable for our network,
we conducted a comparative experiment on the networkswith
different feature map numbers in Sect. 4.1, and obtained the
best number of feature maps K as shown in Table 1.

In Fig. 4, the Bmodule is composed of one 2×2MaxPool-
ing, one dense block, followed by one BN, one ReLU, one
1×1 convolution, and one dropout with p = 0.2. The D mod-
ule consists of one 2×2Unpooling, two 2×2 deconvolutions,
two BNs, and two ReLUs. Table 1 shows the parameters of
DS-Net, in which the convolution module is a 3×3 convolu-
tion layer with a step size of 2.
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Table 1 Parameters of DS-Net

Layers Parameters Output size

Convolution 3×3 conv 224×224×16

B1 2×2 MaxPooling 112×112×16

Dense Block1 112×112×80

BN+ReLU+1×1 conv 112×112×16

B2 2×2 MaxPooling 56×56×16

Dense Block2 56×56×80

BN+ReLU+1×1 conv 56×56×16

B3 2×2 MaxPooling 28×28×16

Dense Block3 28×28×80

BN+ReLU+1×1 conv 28×28×16

B4 2×2 MaxPooling 14×14×16

Dense Block4 14×14×80

BN+ReLU+1×1 conv 14×14×16

D1 2×2 Unpooling 28×28×16

2×2 deconv+BN+ReLU 28×28×16

2×2 deconv+BN+ReLU 28×28×16

D2 2×2 Unpooling 56×56×16

2×2 deconv+BN+ReLU 56×56×16

2×2 deconv+BN+ReLU 56×56×16

D3 2×2 Unpooling 112×112×16

2×2 deconv+BN+ReLU 112×112×16

2×2 deconv+BN+ReLU 112×112×16

D4 2×2 Unpooling 224×224×16

2×2 deconv+BN+ReLU 224×224×16

2×2 deconv+BN+ReLU 224×224×14

In dense block, the concept of receptive fields, i.e., filter, is
introduced. A large-sized filter will help the network extract
a more abstract feature map, but it will cause the loss of
information and the increase in the number of parameters.
Generally, multiple small-sized filters have fewer parameters
than a large-sized filter. For example, assuming that the input
and output feature maps of the convolutional layer have the
same size of C , if we use three 3×3 filters, there are a total
of 3×(3×3×C×C) = 27CC parameters, while the number
of parameters of a 7×7 filter is 49CC . So, we use three 3×3
convolution layers in DS-Net, rather than a large-sized filter
of 7×7 convolution layer.

3.3 Probability fusion

Due to the uncertainty of the environment and the sensor,
the keyframe correspondence given by the SLAM system

can use recursive Bayesian updates to update the labels of
multiple keyframes. Camera pose can be used to establish the
relationship betweenkeyframes, realizing incremental fusion
by stacking the semantic label information of keyframeswith
the spatial coordinates of the SLAM landmarks. However, a
single 2D semantic segmentation will generate inconsistent
labels between successive frames during camera movement.
For the keyframe Kt of the camera video at time t , we define
the category label distributed on the surfels Sn in the 3D
map as li . If the spatial coordinates of Sn are not fused in
the keyframe Kt , we use recursive Bayesian to update the
probability of the corresponding category label as follows:

p(li |K1,...,t ) = 1

Zi
p(li |Kt )p(li |K1,...,t−1) (5)

where Z is normalized constant. In order to obtain the prob-
ability of the corresponding category label on Sn given the
corresponding keyframe, we define the pixel coordinates of
Sn in the keyframe Kt as x(Sn, t) and the coordinate matrix
of the corresponding category label as Mx(Sn ,t), and after
recursive Bayesian update we get the probability:

p(Sn → li |K1,...,t ) = 1

Zi
p(Mx(Sn ,t) = li |Kt )p(li |K1,...,t−1)

(6)

4 Experiments

In this section, three main experiments are conducted. First,
as the encoder of the semantic segmentation system, our clas-
sification network is built based on DenseNet and tested on
the CIFAR10 dataset. Second, because the amount of data
with category labels in NYUv2 cannot meet the require-
ment to train our segmentation network, it is trained on the
VOC2012 split dataset [38] and fine-tuned on the NYUv2
training set in the Caffe framework with 13 semantic classes
defined by Couprie et al. [39]. Finally, our semantic seg-
mentation system and SemanticFusion [2] are compared on
NYUv2 and our laboratory environment to show the perfor-
mance of fine-grained segmentation. The test sequences we
selected include the bathroom_0003 scene, bedroom_0014
scene, bedroom_0003 scene, livingroom_0005 scene, and
livingroom_0013 scene in NYUv2. In addition, numerical
results for several segmentation networks are described to
further prove the performance of our semantic system. All
the experiments are performed on an Intel Core i7 3.3GHz
CPU and Nvidia GTX 1060 GPU.
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Fig. 6 Accuracy for different numbers of layers in dense block

4.1 Network parameter tuning

The parameters to be optimized in DS-Net include the num-
ber of dense blocks, the number of convolution layers in each
dense block, and the number of feature maps in each dense
block. Same as in DenseNet, the number of dense blocks is
set to 4. So, the experiment is conducted to choose the num-
ber of layers in dense block and the number of feature maps
in the convolution layer. The optimal network parameters are
selected according to the experimental effects by trying dif-
ferent numbers. In experiment, the number of network layers
L in dense block is set to 3, 4 and 5, respectively, and the
number of feature maps K in dense block is set to 8, 16 and
32, respectively. The CIFAR10 dataset has a total of 60,000
color images of ten categories, with 6000 images each cat-
egory. When building our dataset, we divided these 60,000
color images into 10 epochs by using k-fold cross valida-
tion. The numbers of different types of images in each epoch
need not to be the same. We randomly disrupted the order
of the training samples in order to prevent the occurrence
of excessively regular data, for it may lead to overfitting or
non-convergence and ultimately affect the accuracy of the
network. Figure 6 shows the accuracy for different numbers
of layers in dense block. Figure 7 shows the accuracy for
different numbers of feature maps in dense block.

From Fig. 6, we can see that when L changes from 3
to 4, the prediction accuracy of the network is improved
significantly with the increase in convergence speed. When
L changes from 4 to 5, the network prediction accuracy of
L = 5 increases in the early epochs. However, as the time
increases, the prediction accuracy has nomore improvement,
even lower than the accuracy of L = 3. When L = 5, the
convergence speed of the network becomes slower and more

Fig. 7 Accuracy for different numbers of feature maps in dense block

unstable than the other two curves. This is because more
training samples are needed to avoid overfitting as the depth
of the network increases.Moreover, the L = 5 network needs
longer time to train more parameters, and so influences real-
time calculation. Therefore, we choose L = 4 as the number
of layers in dense block.

From Fig. 7, we find that the network can achieve the best
results when K = 16. In dense block, the output of each
nonlinear transform has K feature maps, and the input of the
lth layer is K0+ (l−1)∗K . If we take the feature map as the
global state of dense block, the training goal of each layer
is to determine the updated value to be added to the global
state. Thus, the number K of feature maps generated by each
layer determines how much information each layer needs to
update the global state. In the later stage of network training,
there is very slightly decrease in accuracy. The reason is that
the number of feature maps is not enough to achieve full
extraction of image features. For K = 32, as the network
width increases toomuch, the number of network parameters
increases significantly, and the convergence becomes more
difficult. Therefore, considering both accuracy and training
time, we choose K = 16 as the optimal number of feature
maps.

We compared the classification network with the best L
and K obtained as above with the VGG-16-based network
constructed byNoh et al. [16] on theCIFAR10dataset. Figure
8 shows the accuracy of ours and Noh et al. It can be seen
that our network can get higher accuracy than Noh et al.
In the early four epochs, the convergence is very fast. After
then, the network reaches a high and stable accuracy value.
In general, real-time segmentation systems should have fast
and accurate object detection ability.
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Table 2 Performance on
PASCAL VOC 2012 test set

Method L = 3 L = 4 L = 5 K = 8 K = 16 K = 32 mIoU

L = 3,K = 8
√ √

78.8

L = 3,K = 16
√ √

79.5

L = 3,K = 32
√ √

78.3

L = 4,K = 8
√ √

82.1

L = 4,K = 16
√ √

83.2

L = 4,K = 32
√ √

81.6

L = 5,K = 8
√ √

80.7

L = 5,K = 16
√ √

81.4

L = 5,K = 32
√ √

80.9

PSPNet [42] n/a 82.6

DeepLabv3 [43] n/a 81.6

EncNet[44] n/a 82.9

DFN[45] n/a 82.7

Fig. 8 Accuracy for ours and Noh et al. on the validation dataset

4.2 Semantic segmentation network

After establishing the classification network, the semantic
segmentation network can be constructed. We trained it on
the PASCAL VOC 2012 dataset and compared it with most
current advanced segmentation networks. A total of 6929
objects in 1464 training images and 1449 verification images
in PASCAL VOC 2012 can be used for segmentation tasks.
And there are 1456 test images of variable sizes in the dataset.
Since there are a large number of images without split labels
in the PASCALVOC 2012 dataset, we use the annotations in
Hariharan et al. [40] to obtain 10,582 enhancement images
for training. In the experiment, the 512×512 crop is used, and
the learning rate of pretrained weights is divided by 8. The
results are measured with the Intersection over Union (IoU)
metric. For a given class c, predictions (oi ), and targets (yi ),

the IoU is defined as

IoU(c) =
∑

i (oi == c ∧ yi == c)∑
i (oi == c ∨ yi == c)

(7)

where ∧ is the logical AND operation, while ∨ is the logical
OR operation. IoU is computed over all the pixels i of the
dataset.

We compared our segmentation network DS-Net on VOC
2012 with the new state-of-the-art methods such as PSPNet
[42], DeepLabV3 [43], EncNet [44] and DFN [45], which
have not been pretrained on COCO [41]. Table 2 shows the
comparative results, as well as those with regard to the num-
ber of layers L and the number of feature maps K in dense
block. We can find that when L and K are 4 and 16, respec-
tively, our segmentation network can get better segmentation
accuracy, which is in accord with the classification results as
shown in Figs. 6 and 7. The mean IoU (mIoU) values in
regard to the number of layers L and the number of fea-
ture maps K illustrate the role of the classification module
on the segmentation network. Under the same experimental
conditions, due to the dense convolution in our classification
network, the mIoU of our DS-Net segmentation network is
already slightly higher than other networks.

4.3 Semantic mapping

In our semantic system, ElasticFusion is used to generate
dense indoor scene maps by using RGB images and depth
images. ElasticFusion calculates the pose through color con-
sistency constraints on RGB image and the ICP algorithm
on point clouds and then continuously optimizes and recon-
structs 3D maps of environment through the surfels model.
Inspired by Amiri’s work [46], we save time stamp, position
(x , y, z), and pose quaternion (qx , qy, qz, qw) of each frame
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Fig. 9 a The dense map of our laboratory and b its corresponding
camera trajectory estimation (m)

Fig. 10 The semantic segmentation results of our method with Seman-
ticFusion on the NYUv2 dataset

while completing map construction of real scenes and plot
the camera trajectory.

The experimental results are shown in Fig. 9. The upper
is the real-time dense scene map about 20 square meters in
our laboratory by using ElasticFusion and RGB-D camera,
and the bottom is the camera trajectory plotted with the saved
camera pose of each frame. The calculation of camera pose

and the composition method based on the surfels model in
ElasticFusion contribute to this accurate dense map in Fig. 9.
For either large-sized items such as people and curtains or
relatively small items such as display screens, boxes, andkey-
boards, they are all reconstructed well in the 3D dense map.
It is evident that accurate trajectory estimation for camera
output accounts well for accurate 3D dense maps. The above
results provide a solidation for constructing good semantic
map for our semantic fusion system.

After completing the construction of 3D dense maps, we
can perform precise semantic segmentation in Caffe and
compare our semantic fusion systemwith SemanticFusion on
NYUv2. Figure 10 shows the results of single video frames.
In the first column are the original RGB images, the second
are dense maps of indoor environments constructed by Elas-
ticFusion, the third are semantic segmentationmaps obtained
by SemanticFusion, and the last are semantic segmentation
maps obtained by our method.

For the objects not appearing completely in video frames,
for example, the rightmost pillow in the first scene, ElasticFu-
sion can realize its reconstruction, but SemanticFusion has an
erroneous probability prediction and generates the semantic
map with segmentation error. Since the densely connected
network in DS-Net fully extracts image edge features of
objects, our system can generate more accurate probability
maps and then get better results. For the more complex bath-
room environment of the second scene, our system also has
better performance in boundary segmentation of different
objects and obtains a more satisfactory semantic map. For
the third scene with strong light, which has a great influence
on object detection, our system also has a good segmenta-
tion result. Strong light makes it difficult to detect the object
from a certain angle of view. But we can get more proba-
bility maps for the same object from multiple views where
it appears in the video frame sequence, and get more deci-
sions for the final Bayesian update. For the dimly lit scene
shown as the fourth scene, our system shows a better seg-
mentation effect for similar objects than SemanticFusion.
This is because our method can realize the reuse of high- and
low-level features of different objects through dense connec-
tions. In contrast, for most sparse CNNs, some features may
lose during their transmission process. We can also see that
both our system and SemanticFusion failed to recognize the
objects like glass. This shows that the ElasticFusion algo-
rithm has some difficulty in achieving better reconstruction
effect in this condition.

To fully verify the segmentation performance of our sys-
tem, several more complex scenes in NYUv2 are chosen for
experiment. Due to the depth loss and frame rate degradation
in video sequences of the NYUv2 test set, we selected the
video sequences with the camera sampling rates from 20 to
30 FPS for tracking and reconstruction. The depth map on
the nearest time stamp is projected onto the RGB coordinate

123



Intelligent Service Robotics (2021) 14:47–60 57

Fig. 11 The semantic maps by our system on the NYUv2 dataset

Fig. 12 The semantic maps of our laboratory environments

space to achieve image alignment and generate the video
sequence of the scene.

Figure 11 shows dense maps (upper) and semantic maps
(bottom) by our semantic system, respectively, of (i) the bed-
room_0003 sequence, (ii) livingroom_0005 sequence and
(iii) livingroom_0013 sequence in NYUv2. Since Elastic-
Fusion can provide precise camera trajectory and real-time
reconstruction, continuous frames in the visual odometry and
loop detection can be used to establish the long-term corre-
spondence between the landmarks and the dense map during

the movement of the RGB-D camera. We can see that our
fusion algorithm can build precise semantic segmentation
maps for the scenes reconstructed by ElasticFusion. Large
objects in the scenes, such as sofas, walls, and floors, have
not been miss-segmented by our system, while small objects
that continuously appear in the scenes are reconstructedmore
completely in our semanticmaps.Moreover, our system real-
izes the real-time construction of indoor large-scale semantic
maps on the public dataset using the laptop, validating its bet-
ter online performance.

We evaluated the effectiveness of our method with the
real scenes about 6 square meters in our laboratory with dif-
ferent distances from the RGB-D camera. Figure 12 shows
the results of our fusion system and SemanticFusion. In the
first column are the original RGB images, the second are
dense SLAM maps constructed by ElasticFusion, the third
are semantic segmentation maps by SemanticFusion, and the
last are semantic segmentation maps obtained by our system.

We can see that different objects can be represented clearly
in the semantic maps. In the first scene, our method shows a
better segmentation effect for the intersection part of the cur-
tain and the wall, as well as that of the display and the photo
frame. In the second scene, our system also shows superior
results for the table and chair with complex shapes. In the

Table 3 Information about test
data

Test data Frames Surfels Graph nodes Local nodes

bedroom_0003 2265 1.2 × 106 98 8

livingroom_0005 1139 5.7 × 105 49 6

livingroom_0013 1195 6.1 × 105 52 5

lab 54 4.3 × 104 4 2

lab_map 605 4.8 × 105 39 3
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third scene, although the measured objects are far from the
camera, we can see that our system not only has a better
effect on large objects such as window, table, chair, but also
on small objects such as the photo frame on the table and the
picture hanging on the wall. Owing to the sufficient extrac-
tion and feature reuse of object information in our network,
continuous frames in visual odometry and loop detection can
be used to establish the long-term correspondence between
the landmarks and the dense map. So, our system has better
robustness and better performance in feature extraction and
edge detection for complex objects. However,we can also see
in Fig. 12 that there are unrecognized parts in the semantic
maps representing by black areas, showing that ElasticFusion
used in our method cannot realize the real-time reconstruc-
tion for complex scenes.

In order to prove the generality of our semantic SLAM
system, we list in Table 3 our information as detailed in [47]
about our laboratory scenes and the NYUv2 data we used.
Quantitative evaluations are performed on several systems
including ours. In Table 3, bedroom_0003, livingroom_0005
and livingroom_0013 are the 3D space map information
about NYUv2, and lab and lab_map as shown, respectively,
in Figs. 9 and 12, are the information about the real environ-
ments of our laboratory.

All the information in Table 3 contains loop detection,
including the laboratory semantic map of lab with only
54 frames. On the one hand, loop detection can eliminate
accumulated construction errors, and continuous frames in
loop detection can establish the long-term correspondence
between the landmarks and the map. So, semantic predic-
tions from multiple angles of RGB-D video frames can be
integrated into a map to reduce the errors of dense maps and
optimize the effect of semantic segmentation. When we con-
struct a three-dimensional space map or a semantic map for a
real environment, more surfels models are needed and more
computing resources are required. This is why we can com-
plete a large-scale semantic map construction for the public
dataset, but only a part of real laboratory scene semantic map
can be completed in real time.

In order to give a quantitative evaluation, we conducted
a comparative experiment with different methods. From the
NYUv2 dataset, we selected a video sequence with the frame
rate higher than 2Hz as the test sequence. Table 4 shows
the experimental results of different systems. RGBD-SF-
CRF and RGBD-SF are the segmentation accuracy of each
type of objects, respectively, with and without using CRF
in SemanticFusion system. Yoshikatsu-Geometric-Only and
Yoshikatsu are the accuracy of each type of objects, respec-
tively, by geometric segmentation only andbyboth geometric
and semantic segmentation.

Comparedwith theHermansmethod, ourmethod achieves
11.3% higher accuracy on average. Although our method is
nearly the same as SemanticFusion in average accuracy, it Ta
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has better segmentation for some categories. Particularly, it
has the best segmentation accuracy for the table class with an
increase of 10.9%. For furnitures, chairs, and other objects,
the segmentation accuracy increases by 9.9%, 7.2% and
4.7%, respectively. Compared with the Yoshikatsu method,
our method achieves only 0.8% higher accuracy on aver-
age. For some shape-consistent objects, it has relatively
poor segmentation accuracy. This is because the Yoshikatsu
method relies more on the geometric information of objects,
such as bed, furniture, sofa, and television. Their border
information is closely related to their category information.
However, for some objects with irregular shapes such as
books, the Yoshikatsu method performs poorly, while our
method achieves relatively better results on these categories.
One important reason is that our network can obtain more
details about small objects and complex objects. So, it can
recover each type of objects by transferring these features
during the upsampling phase.

5 Conclusions

In this paper, we propose an effective semantic segmentation
method, in which the SLAM map and probabilistic map are
fused to construct semantic map. We built the classification
network based on DenseNet, the DS-Net segmentation net-
work, and our final semantic mapping system. Experiments
are conducted to evaluate the effectiveness of ourmethod. For
either single-frame RGB image or continuous video frames,
our method shows its higher segmentation accuracy and
effectiveness in semantic map construction. However, it also
has some limitations. For example, some special objects like
glass cannot be recognized, so the constructed semantic map
cannot be fully labeled. It can also be seen that some recon-
structed scenes are not too perfect, for these maps contain the
areas that cannot be reconstructed in real time. Therefore, the
next step we will take is to further improve its real-time per-
formance and accuracy.
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China (61873008) and Beijing Natural Science Foundation (4182008,
4192010).

References

1. Cadena C, Carlone L, Carrillo H et al (2016) Past, present, and
future of simultaneous localization andmapping: toward the robust-
perception age. IEEE Trans Rob 32(6):1309–1332

2. McCormac J, Handa A, Davison A et al (2017) Semanticfusion:
dense 3d semanticmappingwith convolutional neural networks. In:
IEEE international conference on robotics & automation (ICRA),
pp 4628–4635

3. Yang S, Huang Y, Scherer S (2017) Semantic 3d occupancy map-
ping through efficient high order crfs. In: IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp 590–597

4. Hermans A, Floros G, Leibe B (2014) Dense 3d semantic map-
ping of indoor scenes from RGB-D images. In: IEEE international
conference on robotics & automation (ICRA), pp 2631–2638

5. Henry P, Krainin M, Herbst E et al (2014) RGB-Dmapping: Using
depth cameras for dense 3d modeling of indoor environments. Int
J Robot Res 31(5):647–663

6. Whelan T, Johannsson H, Kaess M et al (2013) Robust real-time
visual odometry for dense RGB-Dmapping. In: IEEE international
conference on robotics & automation (ICRA), pp 5724–5731

7. Dai A, NieSSner M, Zollhöfer M et al (2017) Bundlefusion: real-
time globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM Trans Gr 36(3):24

8. Whelan T, Salas-Moreno RF, Glocker B et al (2016) Elasticfusion:
real-time dense slam and light source estimation. Int J Robot Res
35(14):1697–1716

9. Sunderhauf N, Pham TT, Latif Y et al (2017) Meaningful maps
with object-oriented semanticmapping. In: IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp 5079–
5085

10. Bowman SL, Atanasov N, Daniilidis K et al (2017) Probabilistic
data association for semantic slam. In: IEEE international confer-
ence on robotics & automation (ICRA), pp 1722–1729

11. Huang G, Liu Z, Laurens VDM et al (2017) Densely connected
convolutional networks. In: IEEE conference on computer vision
and pattern recognition (CVPR), pp 2261–2269

12. Silberman N, Hoiem D, Kohli P et al (2012) Indoor segmentation
and support inference from RGBD images. In: European confer-
ence on computer vision (ECCV), pp 746–760

13. Vineet V, Miksik O, Lidegaard M et al (2015) Incremental dense
semantic stereo fusion for large-scale semantic scene reconstruc-
tion. In: IEEE international conference on robotics & automation,
pp 75–82

14. Salas-Moreno RF, Newcombe RA, Strasdat H et al (2013) Slam++:
simultaneous localisation and mapping at the level of objects. In:
Computer vision pattern recognition (CVPR), pp 1352–1359

15. Nakajima Y, Tateno K, Tombari F et al (2018) Fast and accurate
semantic mapping through geometric-based incremental segmen-
tation. In: IEEE/RSJ international conference on intelligent robots
and systems (IROS), pp 385–392

16. Noh H, Hong S, Han B (2015) Learning deconvolution network
for semantic segmentation. In: IEEE international conference on
computer vision (ICCV), pp 1520–1528

17. Hong S, Noh H, Han B (2015) Decoupled deep neural network for
semi-supervised semantic segmentation. In: Advances in neural
information processing systems, pp 1495–1503

18. Schuler CJ, HirschM, Harmeling S et al (2016) Learning to deblur.
IEEE Trans Pattern Anal Mach Intell 38(7):1439–1451

19. Shelhamer E, Long J,Darrell T (2017) Fully convolutional net-
works for semantic segmentation. In: IEEEconferenceon computer
vision and pattern recognition (CVPR), pp 3431–3440

20. Simonyan K, Zisserman A (2014) Very deep convolutional net-
works for large-scale image recognition. In: International confer-
ence on learning representations, pp 472–483

21. Chen LC, Papandreou G, Kokkinos I et al (2018) Deeplab:
Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Trans Pattern Anal
Mach Intell 40(4):834–848

22. Zhao H, Qi X, Shen X et al (2018) Icnet for real-time semantic
segmentation on high-resolution images. In: Proceedings of the
European conference on computer vision (ECCV), pp 405–420

23. Badrinarayanan V, Kendall A, Segnet Cipolla R (2017) A deep
convolutional encoder-decoder architecture for scene segmenta-
tion. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

123



60 Intelligent Service Robotics (2021) 14:47–60
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