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Abstract
This paper presents the perception system of a new professional cleaning robot for large public places. The proposed system
is based on multiple sensors including 3D and 2D lidars, two RGB-D cameras and a stereo camera. The two lidars together
with an RGB-D camera are used for dynamic object (human) detection and tracking, while the second RGB-D and stereo
camera are used for detection of static objects (dirt and ground objects). A learning and reasoning module for spatial–temporal
representation of the environment based on the perception pipeline is also introduced. Furthermore, a new dataset collected
with the robot in several public places, including a supermarket, a warehouse and an airport, is released. Baseline results
on this dataset for further research and comparison are provided. The proposed system has been fully implemented into the
Robot Operating System (ROS) with high modularity, also publicly available to the community.
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1 Introduction

Many industrial, commercial and public buildings, such as
supermarkets, airports, trade fairs and hospitals, have huge
floor surfaces that need to be cleaned on a daily basis. Clean-
ing these surfaces is time-consuming and requires substantial
human effort involving repetitive actions. These cleaning
activities take place at different times of the day, often with a
tight schedule, depending on the area that has to be cleaned
and on the available time slots. The economic viability of the
cleaning service provider often relies on low wages and low-
skilled personnel. Furthermore, cleaning tasks have often
been related to workers’ health issues. Therefore, floor wash-
ing activities are well suited to robotic automation [27,30].

However, the development of such a floor washing robot
faces many new challenges, including operational auton-
omy, navigation precision, safety with regard to humans and
goods, interaction with the human cleaning personnel, path
optimization, easy setup and reprogramming. Prior to the
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Fig. 1 The FLOBOT prototype in action in a supermarket in Italy

EU-funded project FLOBOT (Floor Washing Robot for Pro-
fessional Users,1 see Fig. 1), there was no robot that satisfies
the requirements of both professional users and cleaning ser-
vice providers.

In this paper, we describe the entire perception pipeline
of FLOBOT, including software modules for visual floor
inspection and human tracking to enable safe operation. In
addition, the extension of these two modules for learning of
and reasoning about the environment surrounding the robot
is also presented. In particular, we use a 3D lidar, an RGB-
D camera and a 2D lidar for human detection and tracking,
and a stereo camera and a second RGB-D camera for floor
dirt and object detection. The proposed system covers both
dynamic (mostly human) and static objects, providing the
required perception technologies for robotic cleaning in pub-
lic spaces. The contributions of this paper are fourfold:

– First, we present a large-scale (long-range and wide-
angle) human detection and tracking system using three
heterogeneous sensors. A high-level fusion method uses
data association algorithms to combine the detections
from each sensor. The proposed system also includes a
new RGB-D camera-based leg detector.

– Second, we introduce a new online method to detect
ground dirt in front of the robot without the need for
pre-training on dirt and floor samples.

– Third, we cumulatively gather the information about the
dynamic and static objects during the robot’s work pro-
cess, building and refining a spatial–temporal model of
the environment, and develop high-level semanticswhich
can help to improve future cleaning schedules.

– Fourth, we introduce a new dataset accessible for pub-
lic download,2 entirely based on ROS (Robot Operating
System) [31], which was collected with the real robot
prototype in real environments including an airport,ware-
house and supermarket. These data are difficult to obtain,

1 http://www.flobot.eu/.
2 http://lcas.github.io/FLOBOT/.

and similar datasets were previously unavailable to the
research community.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the related literature. Then, we
introduce the FLOBOT perception system in Sect. 3, includ-
ing both hardware and software aspects. Sections 4, 5 and
6 detail the human detection and tracking, dirt and object
detection, as well as the environment reasoning and learn-
ing modules, respectively. Section 7 presents our dataset and
the corresponding evaluation results for our system. Finally,
conclusions and future research directions are discussed in
Sect. 8.

2 Related work

2.1 Human detection and tracking

Humandetection and tracking are essential for service robots,
as a robot often shares its workspace and interacts closely
with humans.AsFLOBOTuses a 3D lidar, anRGB-Dcamera
and a 2D lidar for human detection and tracking, we first
review some related work using single sensors, followed by
a discussion of methods fusing data from multiple sensors.

3D lidar has been adopted by a growing number of
researchers and industries, thanks to its ability to provide
accurate geometrical information (i.e., point cloud) about its
environment over a long range and wide angle. Moreover,
it is robust to lightness variance, thereby very suitable for
long-term robot autonomy [24,25,41]. However, due to the
low feature density compared to cameras, false positives are
more likely. The situation is even worse when the person is
far away from the sensor as the point cloud becomes increas-
ingly sparse with distance [21,28,42].

Existing work on 3D-lidar-based human detection can be
roughly divided into two categories, namely segmentation-
classification pipelines and end-to-end pipelines. The former
first clusters the point cloud [6,44,47] and then classifies the
cluster based on a given model. This model can be based
on machine learning [21,28,44] or object motion [10,34].
The end-to-end pipeline is nowadays closely linked to deep
learning methods, which allow us to extract pedestrians and
other objects directly from the point cloud [1,49].

The RGB-D camera has been widely used for human
detection for many years. Although the visual range is
relatively narrow, it can accurately perform detection and
tracking tasks due to its ability to combine color and dense
depth information [35]. Later work has shown that perfor-
mance can be further improved without sacrificing detection
accuracy if we only check the upper body of the person from
the depth data using template matching [19]. Another alter-
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Table 1 Comparison of key features of lidar and RGB-D camera

Sensors Detection distance Field of view Imaging density Property

3D lidar Far Large Medium Intensitya

2D lidar Medium Medium Low Intensitya

RGB-D camera Near Small High Colorb

aThe intensity of the lidar echo varies with the surface material of the object, so it can be used to help classify objects
bThe appearance of color can be affected by lighting conditions

native of extracting people from environmental images is
through motion detection [38,39].

So far, 2D lidar is still themostwidely used tool for robotic
mapping and localization. However, since usually installed
close to the ground, it is also particularly suitable for human
leg detection [2]. Although false alarms are difficult to avoid,
the 2D lidar can still provide a useful contribution to the
robustness of the perception system. A comparison of the
aforementioned sensors is given in Table 1.

Conventionally, each type of sensor performs a specific
function and, only in rare cases, shares information with
other sensors. However, relying solely on a single sensor
prevents the implementation ofmore advanced and safer nav-
igation algorithms in autonomous mobile service robots for
human environments. A practical and effective multi-sensor-
based method was proposed by [3]. It combines a monocular
camera and a 2D lidar, utilizing a fast implementation of
the unscented Kalman filter (UKF) to achieve real-time,
robust multi-person tracking. In order to deal with people
tracking for mobile robots in very crowded and dynamic
environments, [26] presented a multi-modal system using
two RGB-D cameras, a stereo camera and two 2D lidars.
For outdoor scenarios, [36] introduced an integrated system
to detect and track people and cars using a camera and a
2D lidar installed on an autonomous car, while [22] mainly
focused on fast-moving people tracking.

Despite a thorough review of the prior art, we did not find
any related work demonstrating sensor fusion with 3D lidar
data for people tracking as FLOBOT does. Held et al. [17]
developed an algorithm to align 3D lidar data with high-
resolution camera images but for vehicle tracking only. In
our previous work [42,44], we illustrated an online learning
framework for 3D lidar-based human detection; in [37], we
showed an efficiency trajectory prediction using deep learn-
ing, while in [43] an online transfer learning framework is
described for 3D lidar-based human detection.

2.2 Dirt detection

Cleaning robots have proven to be the pioneers of personal
service robots and started to populate our homes. Although
many are based on simple behaviors, there is an increasing
trend toward sensor-based systems with awareness of their

environment. But while behavior-based systems are being
augmented by SLAM-driven approaches, awareness of dirt
and other pollutants is still not part of any current systems.

Theutility of suchdirt detection technology lies not only in
giving robots the ability to approach cleaning tasks in a proac-
tive fashion. It would also enable cleaning contractors to
quantify their service. Turbidity sensors were considered and
tested for this task since they are already applied in machines
like dishwashers, but were not pursued further sincewe strive
for robots that anticipate instead of just react.

There is little work approaching visual dirt detection, and
the few methods tackling this task reduce the problem to
classification of clean versus polluted areas. The method
proposed by [7] assumes different spatial frequencies in the
polluted and clean areas of the images. Effectively, the back-
ground/floor is therefore limited to only one frequency/color,
whereas everything outside this spectrum is classified as dirt.
This situation also influences the availability of datasets, of
which to our knowledge there is only one [7].

Novelty detection provides a general framework for solv-
ing the dirt detection task. Classical approaches [29] are often
frugal in their data consumption but not as effective as mod-
ern CNN based approaches like [14] which have involved
training processes. We found approaches based on GMMs
(Gaussian Mixture Models) [12] like [11] to be quite robust,
even when the application is not as well delimited as in [14].

2.3 Object detection

Detecting objects and evading them is typically part of the
navigation module, which often relies solely on lidar data.
A top-mounted 3D lidar often leaves blind spots in the driv-
ing direction due to occlusion by the chassis and the limited
vertical field of view. Small objects would therefore only be
perceivable at a distance too high for reliable detection.

In the context of cleaning robots, this could be prob-
lematic depending on the utilized cleaning equipment. For
example, with a rotating brush tiny objects could be spun
away, which is not necessarily desired. In the case of the
robot only being equipped with a rubber lip (e.g., squeegee),
objects could interfere with cleaning operations by jamming
between the rubber and floor. In the case of human-driven
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cleaning machines, this often requires the operator to manu-
ally remove the obstacle.

With floor-facing RGB-D or stereo cameras, we have
cost-effective options to detect these obstacles and take corre-
sponding actions, especially since fitting a planemodel to the
floor fits the needs of our scenarios. Everything protruding
above this model with sufficient significance is considered
an obstacle. The most prominent method of fitting such a
plane model is RANSAC [20,40,45]. Working on disparity
images, plane extraction can also be achieved by line fit-
ting in v-disparity space [46,48]. In their initial form, these
algorithms only fit one perfect plane to a given input frame,
whereas reality often demands more flexible floor models.

Our work in [33] gives room for some curvature along
planes to compensate for inaccuracies in both floor and sen-
sor. We furthermore adapted the noise model derived by [15]
to guide a more sensible thresholding scheme that allows us
to detect objects as small as 2 cm at distances smaller than
1.3 m.

2.4 Environment reasoning and learning

To enable a service robot to achieve robust and intelligent
behavior in human environments for extended periods (i.e.,
long-term autonomy), continuous learning and reasoning
about the environment is key [25]. Pioneering work [23]
focuses on representing the uncertainty by combination of
periodic functions obtained through frequency analysis (i.e.,
the FreMEn method). In particular, it models the uncertain-
ties as probabilistic functions of time, allowing integration
of long-term observations of the same environment into
memory-efficient spatiotemporal models. To extend the dis-
crete FreMEn framework to both discrete and continuous
spatial representations, [24] expanded the spatial model with
a set of wrapped time dimensions that represent the periodic-
ities of the observed events. By using this new representation,
[41] modeled periodic temporal patterns of people presence,
based on peoples’ routines and habits, in a human populated
environment. The experimental results showed the capability
of long-term predictions of human presence, allowingmobile
robots to schedule their services better and to plan their paths.

For professional cleaning robots like FLOBOT serving
large public places, both static and dynamic objects in the
environment are worth learning. Different from the previous
representations, we use heatmaps to model the presence of
humans (dynamics) [37], dirt and static objects [13], in both
continuous and discrete spaces. The heatmap is a graphical
representation of data where the individual values contained
in a matrix are represented as colors, which can provide an
intuitive portrayal of the changing environment.

3 FLOBOT perception system

Perception ability is an important feature that distinguishes
robots from traditional automata. Effective perception is
an essential component of many modules required for an
autonomous robot to operate safely and reliably in our daily
life. FLOBOT is equipped with a variety of advanced sen-
sors to build a heterogeneous and complete sensing system
for both internal (e.g., velocity and orientation of the robot)
and external (e.g., image and distance of the object) factors.
The requirement for multiple sensors is mainly due to the
fact that different sensors have different (physical) properties,
and each category has its own strengths andweaknesses [43].
Meanwhile, ROS has become the de facto standard platform
for development of software in robotics. Its high modularity
and reusability facilitate the cooperative development within
the project consortium and the dissemination of results to
the community. Next, we introduce the FLOBOT perception
system including both hardware and software aspects.

3.1 Hardware configuration

The mobility of FLOBOT is empowered by a typical three-
wheeled base including two rear wheels powered by a single
source and powered steering for the third (front) wheel, as
shown in Fig. 2. The sensor configuration is illustrated in
Fig. 3. Specifically, it includes:

– A 3D lidar (Velodyne VLP-16) is mounted at 0.8 m
from the floor, on the top of the robot. It captures a
full 360◦ scene and generates point clouds of its sur-
roundings. In order to adapt to its vertical field-of-view
(30◦), we placed the sensor at the front of the robot and
matched the streamlined design at the back to minimize
occlusion. Although the effective detection distance of
the lidar can reach approximately 100 m, as the dis-
tance increases, the point cloud will become increasingly
sparse, which prevents human detection beyond 30 m.
However, this distance has fully met the safety require-
ments of FLOBOT.

– TwoRGB-D cameras (ASUSXtion PROLIVE), one fac-
ing forward and one facing the ground, are mounted at
0.55 m and 0.72 m from the floor, respectively, and used
to detect human, dirt and objects.

– A pointing downward stereo camera (ZED), mounted at
0.66 m from the floor, is used as a complement to the
floor-facing RGB-D camera. On surfaces with enough
texture and in extremely bright situations its reliability
was greater than the active RGB-D sensor, but its lack of
precision meant that it was eventually omitted.

– A 2D lidar (SICK S300) is mounted on the front of the
robot, 15 cm from the ground. It has a 270◦ horizontal
field of view and a measurement range up to 30 m. As
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Fig. 2 The three-wheeled mobile base and the cleaning unit of
FLOBOT prototype

Fig. 3 The sensor configuration of the FLOBOT prototype

aforementioned, although its main use is in mapping and
localization, its lower position is particularly suitable for
human leg detection.

– Two OEM incremental measuring wheel encoders are
mounted on the outer cover (i.e., solution tank) of the
robot and connected to the shafts of the rear wheels to
obtain the robot’s odometry.

– An IMU (Inertial Measurement Unit, Xsens MTi-30)
is installed in the front interior of the robot, horizon-
tally placed above on z-axis of the front steering wheel.
It provides the linear acceleration, angular velocity and
absolute orientation of the robot, and in combinationwith
the odometry, the pose estimation of the robot itself can
be greatly improved.

In addition to the above, other sensors include omnidirec-
tional trigger-bumpers, cliff sensors and sonars. Even though
they are not directly connected to the perception software
modules, there is an independent safety system triggering

Fig. 4 Connection diagram between sensors and computers

the emergency brake depending on the input, as well as the
2D lidar, which is the main purpose of using these sensors.

Processing Unit 1 (PU1), a passively cooled industry
computer hosting the ROS core, is used as master com-
puter, which ensures operation of the most essential system
modules such as sensor fusion, map-based navigation, 3D
lidar-based human detection and tracking. Processing Unit
2 (PU2), a consumer PC with a dedicated high-performance
GPU, serves as slave unit which is responsible to process
computational intense and algorithmically complex jobs,
especially for the visual computing such as dirt and floor
object detection. The communication between PU1 and PU2
is wired ensured by a Gigabit switch. Regarding the network
connectivity of the sensors (see Fig. 4), the 3D and 2D lidars,
the wheel encoder and IMU are wired connected to PU1,
while the three cameras are connected to PU2. In addition,
FLOBOT is equipped with a 104Ah Lithium battery that can
provide about 2-3 hours of autonomy.

3.2 Software architecture

The FLOBOT software system is based entirely on ROS,
a middleware designed with distributed computing in mind.
The software communication between PU1 and PU2 is there-
fore achieved through a ROS network consisting of a single
ROSmaster and multiple ROS nodes. The perception system
consists of twoparts: dynamic and static object detection.The
formermainly refers to humans,while the latter includesfloor
objects and dirt. Details of the algorithms for navigation and
ROS integration of perception modules are shown in Fig. 5.

4 Human detection and tracking

The human detection and tracking system simultaneously
uses three different sensors to robustly track human move-
ments in real time and therefore increases the safety of the
robot. It fuses information about human location detected
by the forward-facing RGB-D camera, the 2D and the 3D
lidars, using Bayesian filtering [4]. The system is robust
enough thanks to the sensor configuration aswell as the detec-
tion and tracking algorithms implemented. In particular, the
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Tablet

Table Application

Processing Unit 1

Wheel Encoders

SLAM,
Path Planning

High Level Logic

Velodyne 
3D Laser Ranger

FTP

Motors
(Wheels, Brush,

Punps)

Processing Unit 2

RGB-D
Upward Facing

RGB-D
Ground Facing

Upper Body Detection Plane Detection

Human Detection,
Trajectory Prediction

Dirt Detection

Occupancy Mapping Dirt Mapping

Fig. 5 The FLOBOT software architecture. Solid lines are ROS-based
communication, while dotted lines portray other methods

Fig. 6 The UML diagram of the perception pipeline for human detec-
tion and tracking

combined use of 2D and 3D lidars provides long-range and
wide-angle detection and additionally minimizes the percep-
tion occlusions, while the RGB-D camera is more reliable
in the short range with accurate and robust algorithms. The
sensor location can be seen in Fig. 3, and a detailed view of
the proposed system as a UML diagram is shown in Fig. 6.

An initial version of the software was implemented on
a MetraLabs Scitos G5 robot platform, in collaboration
with researchers from another EU project STRANDS [16].
The robot was equipped with sensors similar to the ones
devised for the FLOBOT, i.e., a forward-facing RGB-D cam-
era and a 2D lidar. The former is used to detect the human
upper body (i.e., upper_body_detector) [19], while the lat-
ter is used to detect human legs (i.e., leg_detector) [2].

Fig. 7 A screenshot of our multisensor-based detection and tracking
system in action. The sparse colored dots represent the laser beams
with reflected intensity from the 3D lidar. The white dots indicate the
laser beams from the 2D lidar. The colored point clouds areRGB images
projected on depth data of the RGB-D camera. The robot is at the center
of the 3D lidar beam rings. The numbers are the tracking IDs, and the
colored lines represent the people trajectories generated by the tracker.
For example, the person with tracking ID 49 has been detected by the
RGB-D-based upper_body_detector (green cube), the 2D lidar-based
leg_detector (green circle), and the 3D lidar-based object3d_detector
(blue bounding box) (color figure online)

In accordance with the FLOBOT requirements and spec-
ifications, in particular with the lower position of the
RGB-D camera and the introduction of the 3D lidar, we
have subsequently implemented two new human detection
modules, i.e., an RGB-D camera-based leg detector (i.e.,
rgbd_leg_detector) and a 3D lidar-based human detector
(i.e., object3d_detector), and further improved the tracker
(i.e., bayestracking and bayes_people_tracker) to adapt to
long-distance large-volume people tracking. Moreover, the
twonewlydevelopedmodules are based onPCL (PointCloud
Library) [32], which is the state-of-the-art C++ library for 3D
point cloud processing. For an intuitive understanding of the
various detectors and their outputs, please refer to the exam-
ple in Fig. 7. The following paragraphs describe eachmodule
in detail.

4.1 3D lidar-based human detector

The 3D lidar-based human detector can be learned in either
online [42–44] or offline manner. For FLOBOT, the detector
is based on a support vector machine (SVM) [9]. We evalu-
ated the state-of-the-art SVM features for a 3D lidar-based
human classifier [44] and selected several of them, combined
with a new developed feature to improve classification per-
formance according to the needs of FLOBOT. The specific
details are shown in Table 2. Seven features (a total of 71
dimensions) were used, of which ( f1, . . . , f4) were intro-
duced by [28], f5 and f6 were proposed by [21], while f7
was presented by [44]. Both online and offline modes train
the classifier using LIBSVM [8]. For offline training, the “L-
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Table 2 Features used for 3D lidar-based SVM human classifier

Feature Description Dim.

f1 Number of points included
in the cluster

1

f2 Minimum cluster distance
from the sensor

1

f3 3D covariance matrix of the
cluster

6

f4 Normalized moment of
inertia tensor

6

f5 Slice feature for the cluster 20

f6 Reflection intensity’s
distribution

27

f7 Dis. from the centroid of
each slice to the sensor

10

CAS 3D Point Cloud Annotation Tool 2”3 can be used. For
the online case, please refer to our previous work [42–44] for
more details.

Conventionally, the offline supervised learning techniques
can guarantee the performance of the classifier. However,
labeling the training examples is tedious work which implies
labor costs. It is also to be expected that the classifier is
required to be retrained with every change in sensor setup
or when being introduced to a new environment, as expected
for a product like FLOBOT. We thus developed an online
learning framework to not only adapt to different environ-
ments and allow the robot to update its human model on the
fly, but also to compete with or exceed classifier performance
of offline models. Moreover, the online framework enables
long-term robot autonomy, including the acquisition, main-
tenance, and refinement of the human model and multiple
human motion trajectories for collision avoidance and robot
path optimization.

4.2 RGB-D camera-based upper body detector

A new RGB-D camera-based upper body detector was orig-
inally developed by the STRANDS [16] project and adapted
for use in FLOBOT. It uses a template and the depth infor-
mation of the camera to identify upper bodies, i.e., shoulders
and head [19]. To reduce the computational load, this detec-
tor employs ground plane estimation to determine a region
of interest (RoI) most suitable to detect the upper bodies of a
standing or walking person. The actual depth image is then
scaled to various sizes, and the template is slid over the image
trying to find matches.

3 https://github.com/yzrobot/cloud_annotation_tool/tree/devel.

4.3 RGB-D camera-based leg detector

The camera-based leg detector was developed to enhance the
close-range human detection with the forward-facing RGB-
D camera, mounted on the FLOBOT at 0.55m from the floor.
A cosine similarity approach is used, and themain steps of the
detection process are illustrated in Algorithm 1. Specifically,
a registered RGB-D point cloud is first down-sampled to
obtain fewer points to speed up subsequent processing. The
obtained point cloud is further processed by removing any
planes contained,which further improves the efficiencyof the
pipeline, especially in indoor environments. The remaining
points are then segmented based on Euclidean distance and
leg candidates are filtered according to a set of predefined
rules. Next, color histograms of the candidates are calculated
and any twoof themare compared using the cosine similarity:

similarity = cos(θ) = A · B
‖A‖‖B‖ =

∑n
i=1 Ai Bi

√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

(1)

Finally, candidates with a strong similarity are considered
a pair, while the closest pair within a certain distance are
considered to be human legs.

Algorithm 1: RGB-D camera-based leg detection using color
histogram

1. Downsampling incoming registered RGB-D point cloud using the
PCL VoxelGrid filter;

2. Removing all planes from the point cloud using the PCL plane
segmentation;

3. Segmenting the points at 0.55 m from the ground using the PCL
Euclidean Cluster Extraction;

4. Filtering leg candidates according to the following rules:
- Feet off the ground are no more than 0.2 m high;
- Legs are upright parallelepiped;
- Legs are within a reasonable size (e.g., between 0.1m3 and

0.5m3);
5. Calculating color histogram (e.g., 64 bins) of the leg candidates;
6. Calculating the cosine similarity between any two candidates;
7. Labeling the closest pair of candidates as leg if their similarity is
greater than the similarity threshold of 0.8 and the Euclidean
distance between them is less than 1.0 m.

Please note that in Algorithm 1, the parameter values are
pre-defined empirical values set based on our experiments
with theL-CASdataset [42]. The released source code allows
users to enter different parameter values as needed to get
the best performance according to their robot’s operational
environment.
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4.4 2D laser-based leg detector

The 2D laser-based leg detector is part of the official ROS
people stack4 andwas initially proposed by [2]. It is very suit-
able for our use in FLOBOTbecause, similarly to the original
paper, our robot has a 2D laser scanner located at 0.119 m
off the ground. A set of 14 features have been defined for
legs detection, including the number of beams, circularity,
radius, mean curvature, mean speed, and more. These fea-
tures are used for the supervised learning of a set of weak
classifiers using recorded training data. The AdaBoost algo-
rithm is then employed to turn these weak classifiers into a
strong classifier, detecting legs from laser range data.

4.5 Bayesian tracker

The Bayesian tracker was developed for robust multi-sensor
people tracking, exploiting the rich information provided by
the FLOBOT platform. It extends and improves the solution
proposed by [3], which allows to combine multiple sensor
data, independently from the particular detection type and
frequency. This tracker implementation is based on the UKF,
whichhas been shown to achieve results comparable to a sam-
pling importance resampling (SIR) particle filter in several
people tracking scenarios, but with the advantage of being
computationally more efficient in terms of estimation time.
It is also possible to switch between UKF and SIR filters, or
choose a standard extended Kalman filter (EKF), since they
have all been implemented in the Bayesian tracking library.

In the current ROS implementation, different tracking
configurations can be used by defining the noise parame-
ters of a 2D constant velocity (CV) model to predict human
motion. Together with additional observation models, this
is used to compensate during temporary detection losses. A
gating procedure is applied using a validation region around
each new predicted observation [5], based on the chosen
noise parameters, to reduce the risk of assigning false posi-
tives and wrong observations. New validated detections are
then associated with the correct target using a simple near-
est neighbor (NN) data association algorithm or the more
sophisticated and robust, but also computationally expen-
sive, Nearest Neighbour Joint Probabilistic Data Association
(NNJPDA). Detections that have been consistently found
within a specific time interval, but have not been associated
with any existing target, are stored and eventually used to
create new tracks. For more details, please refer to [3,4].

4 https://github.com/wg-perception/people.

Fig. 8 Detected rubbish (left) and object (right)

5 Dirt and object detection

The dirt and object detection module5 follows a simple
pipeline (see Fig. 5): starting with a point cloud generated
by the floor-facing RGB-D sensor we split up the data into
floor and obstacles by a simple plane fitting approach; the
plane mask together with the RGB image provides the input
for the dirt detection; dirt detection then fits a model to the
prevalent floor patterns and considers every outlier as dirt.
For an intuitive understanding of the dirt and object detec-
tion approaches, please refer to the example in Fig. 8. The
following paragraphs describe each part in detail.

5.1 Object detection

Depending on the configuration of the cleaning equipment,
it is beneficial to stop operation of the robot when objects
appear in front of the robot. If there is a rotating brush oper-
ating in front of the squeegee, most of the tiny objects would
just be spun away, but in case there is a rubber lip, objects
could get caught in it and interfere with the cleaning opera-
tion. Since not all obstacles are caught by the relatively sparse
lidar data, we see the use of the RGB-D sensor as an obvious
solution in these cases.

Conceptually, plane segmentation should be sufficient to
differentiate floor fromobstacles. Depending on the evenness
of the floor, thresholds need to be adapted to make the plane
model generous enough to handle deviations. In [33]we show
that incorporating curvature into the floor model proves to be
vital to overall performance.We furthermore adopted a noise
model for depth-dependent thresholds. This enables us to put
the thresholds extremely close to the sensor’s noise level to
detect objects which might only be protruding a few cen-
timeters above the ground. Most objects higher than 2 cm
are detected at distances smaller than 1.3 m, which is suffi-
cient for our application.

5 https://rgit.acin.tuwien.ac.at/root/flobot.
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5.2 Dirt detection

Despite the FLOBOT project’s premise to operate the robot
in a multitude of environments, it was not expected to collect
mission data until the final stages of the project. Algorithms
with long training phases and an appetite for a vast amount of
domain-specific training data were therefore discarded in our
considerations, and an unsupervised approach was selected.

Our algorithm (Algorithm 2) is based on the principle of
novelty detection and driven by GMMs trained on the gradi-
ent distribution of each input image. The complexity of these
GMMs is chosen such that they approximate a description of
the currently visible floor but handle staining and spillage as
outliers.

Algorithm 2: GMM based dirt detection

1. Convert incoming RGB frame to Lab color space;
2. Calculate the absolute value of gradient for channels;
3. Split the image into blocks (of, e.g., 16 by 16 pixel);
4. Discard blocks which intersect with objects;
5. Compute mean and standard deviation for gradient in each block:
6. Train GMMs for each channel given mean and standard deviation of
blocks as inputs;

7. Predict Log-likelihood for each block based on GMM;
8. Mix (sum) Log-likelihood of all channels;
9. Labeling of pixel based on thresholding.

There are some limitations attributed to this approach.
Specular highlights of various light sources will appear novel
and therefore be misinterpreted as dirt. Shadows of objects
and people can be mistaken as dirt since they often appear
to be isolated in a smaller portion of the image and there-
fore appear novel. Most of these effects are corrected in a
dirt-mapping phase where observations are median filtered.
Specular highlights, for example, change its position during
the robot’s movement, while shadows of persons often shift
quickly. In those cases, the filter will discard these measure-
ments and only conserve static artifacts like dirt.

6 Environment reasoning and learning

Since the potential mission areas of the robot are sub-
ject to changes, such as introduction and removal of dirt
sources, we enable reasoning about the environment via a
spatial–temporal map. It takes four inputs including robot
localization, trajectories of human beings, the cleannessmea-
sure and remaining dirt spots, and outputs the statistics of
human trajectories and the dirt expectation distribution in the
form of a heatmap. This representation is intended to answer
questions (what, when, where, and how) such asWhat would
be the best time for FLOBOT to clean, and where? Should a

Fig. 9 Left: human trajectories heatmap generated with the L-CAS 3D
Point Cloud People Dataset. Warmer colors indicate higher frequen-
cies of pedestrian occupancy. The map is normalized between 0 and
1. Right: dirt heatmap generated with the TUW dataset. The circles
indicate different dirt spots (false alarms included)

given pollution be dry cleaned to avoid a slipping hazard, or
is it necessary to apply a cleaning agent?

Answering these questionswill needheuristics/algorithms
that vary between different mission areas and customers.
While, for example, a warehouse with trained personnel
might not care asmuch about slipping hazards, awet cleaning
mission during business times could be problematic in super-
markets. Our solution enables future user studies/experience
to formulate and implement the necessary behaviors. In
the following, we outline how human trajectories and the
dirt heatmap representations are generated and discuss their
expressiveness for future research and the robot’s operation.

The human trajectories (i.e., sets of 2D coordinate) are
generated with the system as presented in Sect. 4. Based on
the accumulated trajectories, a heatmap is generated to ana-
lyze the (context-related) characteristics of human activities.
For FLOBOT, it is actually an effective way to reflect the
likelihood of human presence at a given site. In particular,
the trajectories are first discretized into a grid map with a
cell size of 0.2 m ×0.2 m. Then, the heatmap (see Fig. 9) is
generated: the higher the number of trajectories passing by
a cell, the brighter the color, i.e., the higher the likelihood in
the range [0,1].

Based onFig. 9 (left), the following temporal–spatial anal-
ysis can be conducted. The L-CAS data were recorded in a
university atrium during lunch time (i.e., from 12 AM to 1
PM). Zones 1 and 2 are both corridors with same width, but
people were preferring to pass from zone 2, because there is
a food shop over there. Zones 3 and 4 are the liveliest places,
as they are the entrance to the dining and food areas, respec-
tively.Consequently, an indicative decision that the FLOBOT
can make would be “it is better to clean zone 1 during lunch
time.” For path planning optimization, different maps for dif-
ferent times of the day could be further generated according
to user needs.

Dirt detection, as described in Sect. 5, is done by fitting
a GMM to describe the pattern of the perceived floor. Given
a picture and a floor mask, the GMM is capable of deliv-
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Fig. 10 Three public places where the dataset recording was preformed. The upper part represents occupancy grid maps generated from the
Velodyne data, where the colored parts represent the footprints of FLOBOT (color figure online)

Table 3 Data statistics of the FLOBOT perception dataset

Date Time (GMT+2) Place (Europe) Number of frames

2018-04-19 11:41–11:49 (8:24s) Carugate (supermarket) 5042 Velodyne 2174 Xtion (floor)

2018-05-31 16:35–16:39 (3:44s) Carugate (supermarket) 2248 Velodyne/6729 Xtion (forward)

2018-06-12 17:10–17:13 (3:27s) Lyon (warehouse) 2073 Velodyne/6204 Xtion (forward) 14,580 Xtion (floor)

2018-06-13 16:11–16:17 (5:05s) Lyon (airport) 3059 Velodyne/9158 Xtion (forward)

2018-06-13 16:20–16:23 (2:26s) Lyon (airport) 1460 Velodyne/4366 Xtion (forward)

2018-06-13 16:37–16:42 (4:28s) Lyon (airport) 2688 Velodyne/8047 Xtion (forward)

ering an estimate of where dirt might reside in this picture.
These estimates are passed through a temporal median filter
to reduce false positives and finally projected onto the map
as an additional layer of information. We specifically opted
to store only the state of the floor as it is first perceived during
a single mission to generate a status report of the area prior
to cleaning.

7 Evaluation

7.1 FLOBOT perception dataset

The dataset recording was performed in three public places
including an airport,warehouse and supermarket (seeFig. 10):
one in Italy and two in France. Specifically, the Velodyne 3D
lidar and the forward-facing depth camera6 data were col-

6 Please note that FLOBOTwasnot allowed to record anyRGBdata that
can identify human identity information in the public places according

lected for human detection and tracking purposes, while the
floor-facing Xtion RGB-D camera data were collected for
dirt and object detection purpose. All sensory data, together
with the robot pose in the world reference frame (i.e., ROS tf-
tree rising up to “world”), were synchronized at the software
level (i.e., time stamped by ROS) and recorded into sev-
eral ROS rosbags, according to their purpose and recording
time. The dataset is publicly available at http://lcas.github.
io/FLOBOT/, and the relevant data statistics are shown in
Table 3.

7.1.1 Human detection and tracking

Our dataset contains challenges in human detection and
tracking, in particular caused by the scene-related human
representation with the 3D lidar point clouds. As shown in

to the EUGeneral Data Protection Regulation (GDPR). Therefore, only
depth information is allowed to be collected for the forward-facing
Xtion PRO LIVE RGB-D camera.
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Fig. 11 Scene-related human presentation in the FLOBOT dataset. The
top half is 3D lidar data, while the lower part is the depth camera data

Fig. 11, passengers at the airport are typically carrying lug-
gage, warehouse staff usually carry goods, and shoppers in
the supermarket are normally pushing trolleys. Besides these
scene-related activities, staff from the research team also
acted as pedestrians moving around the robot, for the pur-
pose of module evaluation.

7.1.2 Dirt detection

For evaluation purposes, we constructed pollution scenarios
with materials found on site. For example, in the supermar-
ket, we contaminated the mission area with expired products
such as milk, juice, and cookies (which are well spread over
the place), while a can of coke was used as a source of pollu-
tion in the airport. Both scenarios are featured in tracks with
pollution being annotated as polygons. Annotations were
performed with our Python-based annotation tool.7 Given
rosbags as input, it enables us to label planar regions with
polygons. To reduce labor, the tool can propagate the labels
(i.e., polygons) between frames according to the localization
system running on the robot, via the tf-tree between frames.
To overcome any inaccuracies in the trajectory, miscalibra-
tion, and other issues, our tool also provides the option to
move the position of a mask between keyframes. Moreover,
to keep the dataset and its usage as simple as possible we
provide the captured frames in a PNG format as well as the
masks for dirt, floor8 and when applicable, the mask for the
projected laser markings. Some frames taken from our dirt
dataset can be seen in Fig. 12. Ultimately, this dataset is, by
its size and diversity, not sufficient to train CNNs, but rather
intended to serve as a validation dataset for the task at hand.

7.2 Results

Togetherwith the newdataset, we also open-source the afore-
mentioned human detection and tracking9 and dirt and object

7 https://github.com/SimonTheVillain/flobotAnnotator.
8 Based on our plane estimation.
9 https://github.com/LCAS/FLOBOT.

Fig. 12 Some frames taken from our dirt dataset. The top row shows the
raw frames, and the bottom row shows the masked dirt in yellow. The
two columns on the left depict frames captured in a supermarket, while
the rightmost column is captured during a mission in a open space in
an airport. During this mission, the proactive safety module was active.
Since its red laser markings would interfere with dirt detection, it is
masked out in that processing step. The dataset provides masks for dirt,
floor, and said laser markings

detection10 systems. Some key modules were tested on the
dataset to serve as baselines for further research. We show
experiments outside the laboratory, i.e., on a real prototype
in real environments such as airport, warehouse, and super-
market. Below we give the relevant details.

7.2.1 Human detection and tracking

We provide a pre-trained SVM model for 3D lidar-based
human detection and tracking to the community, which is
publicly available together with the released system. It is
a binary SVM-based classifier (i.e., human or non-human)
trainedwith 968 positive (i.e., human) examples and 968 neg-
ative (i.e., background) examples from the L-CAS dataset.11

[42] The positives are manually annotated, while the nega-
tives are randomly selected from point clusters that are not
human. Technically, theLIBSVM[8] is used for trainingwith
the aforementioned seven features (c.f. Table 2), while all
the feature values are scaled within the interval [−1, 1]. The
SVMmodel uses a Gaussian radial basis function (RBF) ker-
nel [9] and outputs probabilities associated with the labels. In
order to find the optimal training (best fitting) parameters, a
fivefold cross-validation is used for parameter tuning, espe-
cially for the cost of constraints violation and γ in kernel
function.

The evaluation of our clustering algorithm, as well as
human classifiers (trained either in offline or in online man-
ner) for the same environment, can be found in our previous
work [42–44], while that of our tracking system can be
found in [4,26]. In this paper, we are more interested in
the generalization ability of our system, as data for differ-

10 https://rgit.acin.tuwien.ac.at/root/flobot.
11 File name: LCAS_20160523_1239_1256_labels.zip.
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Fig. 13 Evaluation of the generalization ability of the offline-trained
human classifier. Test sets are built according to the traditional training-
test 7 : 3 ratio, i.e., 415 randomly selected examples for each scene of
the FLOBOT dataset. The classification performance is evaluated using
precision, recall, average precision (AP), and F-measure

ent environments are available. Experimental results (see
Fig. 13) show that the generalization ability of the offline-
trained classifier is extremely limited, i.e., training with data
collected in a university atrium (the L-CAS dataset), while
evaluating with data collected in an airport, a warehouse, and
a supermarket (the FLOBOTdataset). This is mainly because
not only the features of negative examples (i.e., background)
are not similar, but also the differences of positive examples
(i.e., human). A typical example is that the dress code of a
worker in the warehouse results in a significant difference of
the point cloud intensity (the most representative feature for
human classification) from the normal clothes.

However, our human-like volumetric model proposed in
[42] exhibits interesting results, as shown in Table 4. The
model serving as prepossessing of the human classification
is formulated as follows:

Human Candidate = {Ci |0.2 ≤ wi ≤ 1.0,

0.2 ≤ di ≤ 1.0,

0.5 ≤ hi ≤ 2.0}
(2)

Table 4 Detection results on the FLOBOT dataset (airport, warehouse,
and supermarket) and L-CAS dataset (university)

Accuracy Precision Recall F1-measure

Airport 0.89 0.38 0.84 0.52

Warehouse 0.94 0.48 0.92 0.63

Supermarket 0.90 0.31 0.85 0.45

University 0.88 0.33 0.88 0.48

wherewi , di , and hi represent, respectively, the width, depth,
and height (in meters) of the cluster volume. Together with
our clustering algorithm, which divides the 3D space into
nested circular regions centered at the sensor (like wave
fronts propagating from a point source), additionally sep-
arating different objects and leading to the very promising
results in Table 4.

We randomly extract some frames from each scene data
and fully annotate them toobtain 415positive sample labels12

for each scene (label distribution as shown in Fig. 14) and
use them as the test set. For the evaluation, we calculate the
Intersection over Union (IoU) of two 3D bounding boxes,
i.e., between the manually annotated ground truth and the
human candidates, and the IoU threshold is set to 0.5. It can
be seen from Table 4 that (1) overall, the accuracy of the
detector is high because the proportion of negative samples
in all scenes is large; (2) the precision is low as many nega-
tive examples have a human-like volume and are incorrectly
detected as false positives; (3) high recall with low precision
actually shows an important trade-off wemade for FLOBOT,
i.e., since the robot is for professional users, it is expected
to not miss any humans but can have false positives within a
reasonable range; (4) the best results are shown in the ware-
house scenario, while the worst are in the supermarket. The
former has a relatively simple environment and a small num-
ber (five) of people, while the latter is quite complicated and
has a large number of shoppers. This also shows that the per-
formance of the detector is limited by the complexity of the
environment.

7.2.2 Dirt detection

The environments the robot was operated in offered differ-
ent types of floor and lighting conditions. Some of these are
challenging due to broken tiles, worn through coating, stains
of paint, markings, drain gates and similar. Even with a per-
fect novelty detection, these situations would not be solved,
which reinforces our strong belief that learning-based meth-
ods are the key to reliably operate in such applications.

12 The labels are available on the dataset website, annotated by
using our open source annotation tool https://github.com/yzrobot/
cloud_annotation_tool/tree/devel.
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Fig. 14 Human label distribution statistics of our test set. Best viewed
in color. The university and supermarket data contain the most human
labels per frame due to its large scene and its nature as a place of
human gathering. The warehouse data have the fewest human labels per
frame, due to its small scene and being open only to staff. The airport
data contain a moderate number of human labels per frame because we
selected a non-busy area to avoid passenger inconvenience

Fig. 15 Scenarios challenging the novelty detection. Dirt is marked
red, whereas blue are pixels that are not considered. The floor tiles are
just prominent enough not to be fitted into the GMM and considered
as dirt (left). The same applies to shadows (middle). The other extreme
occurs when the GMM generalizes too much and thus also incorporates
dirt into its floor model (right) (color figure online)

The ACIN dataset used in [13] only poorly reflects the
challenges found in supermarkets. Even though the proposed
algorithm proves to be powerful on the said dataset, applying
it on the data collected on site immediately exposes its defi-
ciencies (see Fig. 15). Prominent gaps between tiles, specular
highlights, sharp shadows, and dirt with similar color as the
floor all pose a challenge to novelty detection. This is some-
thing that needs to be addressed in a modern dataset. In our
new airport13 and supermarket14 data, we created scenarios
with spillages of goods available on site. Arguably, these are
still imposed situations but the circumstances and used prod-
ucts make it more challenging and life-like than the reference
datasets.

To provide a baseline of the dirt-detection itself, we
decided to directly evaluate the algorithmwithout themedian
filter our pipeline uses downstream. Figure 16 shows a gen-
uine indication of the core algorithm’s capabilities. While
the algorithm performs reasonably on the ACIN dataset, it

13 File name: lyon_annotated.zip.
14 File name: carugate_annotated.zip.

Fig. 16 The algorithm presented in [13] performs favorably on old,
lab-grown datasets (up). The data collected on site in a supermarket as
well as an airport paints a different picture (down) as the same algorithm
disappoints

fails on the other datasets. Taking the IPA dataset [7] as a
comparison, we see data created in similar environments but
with different post processing. We argue that the annotations
are narrower to the actual dirt, which makes it hard for our
algorithm to perform favorably when calculating IoU. For
the datasets captured by FLOBOT, the annotations are even
tighter by utilizing filled polygons instead of rectangles.

8 Conclusions

In this paper, we presented a robot perception system for
an autonomous floor scrubber, including in particular the
human detection and tracking module, the dirt and object
detection module, and the combined use of the two within
the environment learning and reasoning module. The human
detection and tracking module has been developed to enable
safer robot navigation among humans by robustly and accu-
rately tracking multiple people in real time. The algorithm
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as stated in [13] for dirt spot detection is state-of-the-art.
But even then, its results are solely to be interpreted by the
operator on the tablet. We have shown that areas of pollu-
tion are clearly visible in this representation with very few
false positives surpassing filtering and ending up in the map.
Our claim is that, given this information, cleaning missions
can be planned more efficiently. We hope that, with increas-
ing reliability of dirt detection algorithms, it will be possible
for cleaning robots to make decisions more in line with the
expectations of human operators.

The new dataset we collected is a valid addition to the
existing ones [7,13,42,43]. It provides out-of-lab data includ-
ing airport, warehouse, and supermarket environments, in
which people usually have different clothes, belongings, and
gaits in different public places, providing significant chal-
lenges for human detection and tracking. It also adds two
newfloor types and offers a variety of dirt and spillages,while
offering increased difficulty due to specular reflections, shad-
owing and more prominent tile-gaps. Deep learning-based
methods hold great potential for these tasks but will need
vastly more training data than collected here. Extensive data
collection together with artificial renderings will be needed
to bridge this gap.

8.1 Future research

Despite these encouraging results, there are several aspects
which could be improved. First, using our proposed online
learning method [42,43] or data-driven (deep) neural net-
works [1,49] can make up for the lack of generalization
ability of the laboratory-trained SVM-based human clas-
sifier. Second, the GMM [13] utilized to detect dirt lacks
reliability and the ability to discern between dirt types. A
modern CNN-based approach similar to [18] would allow
for more reliable pixel-wise classification of pollution-types.
Third, the depth data used to detect small object are noisy
and dependent on light and surface conditions. Replacing our
heuristic [33] with a learning-based algorithm could improve
detection by considering RGB data.

The results are first steps toward future autonomous ser-
vice robots that work more independently and continue
learning. It could be envisioned that the robot keeps collect-
ing samples where decisions are unclear, to let a user make
a few clicks to improve the adaptation to a specific environ-
ment. This would allow the cleaning machine to optimize its
operation over time in a given environment, improving pro-
ductivity, and upskilling of cleaning professionals. We also
anticipate the adoption of similar methods in many other
applications of service robots in human environments.
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