
Vol.:(0123456789)1 3

Intelligent Service Robotics (2020) 13:289–297
https://doi.org/10.1007/s11370-020-00313-y

ORIGINAL RESEARCH

Reinforcement learning path planning algorithm based on obstacle
area expansion strategy

Haiyang Chen1 · Yebiao Ji1 · Longhui Niu1

Received: 23 August 2019 / Accepted: 13 January 2020 / Published online: 3 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We improve the traditional Q(�)-learning algorithm by adding the obstacle area expansion strategy. The new algorithm is
named OAE-Q(�)-learning and applied to the path planning in the complex environment. The contributions of OAE-Q(�
)-learning are as follows: (1) It expands the concave obstacle area in the environment to avoid repeated invalid actions when
the agent falls into the obstacle area. (2) It removes the extended obstacle area, which reduces the learning state space and
accelerates the convergence speed of the algorithm. Extensive experimental results validate the effectiveness and feasibility
of OAE-Q(�)-learning on the path planning in complex environments.

Keywords Path planning · Reinforcement learning · Eligibility trace · Concave obstacle · Obstacle area expansion

Abbreviation
OAE-Q(�)-learning The algorithm of Q(�)-learning

based on obstacle area expansion
strategy

1 Introduction

The importance of robotic navigation technology has been
increasingly emphasized due to the rise of unmanned driving
[1]. Path planning is an important aspect of robot navigation
technology [2–4]. It is defined as finding a collision-free
path from the initial state to the target state according to
some evaluation criteria in an environment with obstacles.
Traditional path planning algorithms include artificial poten-
tial field method [5], genetic algorithm [6], ant colony opti-
mization algorithm [7], etc. These methods need to model
the environment in a certain space; therefore, there are some
limitations in the complex and changeable environment. The
reinforcement learning algorithm is a type of machine learn-
ing algorithm which has developed rapidly in recent years
and is widely used in path planning [8, 9]. Its advantage
is that it does not require accurate environmental models.
Robot path planning methods using reinforcement learning

algorithm include Q-learning [10], Sarsa [11], Q(�)-learn-
ing [12], Sarsa (�) [13], etc. However, the problem is that
the more complex the environment is, the larger the learn-
ing state space will be, which will lead to a long learning
time and slow convergence speed. In order to reduce the
dimension of state space, many scholars have carried out a
lot of research on this problem. Literature [14] proposed a
method of abstracting state-action space, which reduces the
dimension of the state space by utilizing the characteristics
of the robot and the environment to generate a new state-
action space. Literature [15] reduced the dimension of state
space by the method of function approximation. It combined
the reinforcement learning algorithm with the neural net-
works. Both methods of dimension reduction in the state
space would cause errors because of the use of approxima-
tion algorithm.

This paper aims at the problem of huge state space of
reinforcement learning in path planning under complex and
unknown environment. Taking into account the concave
obstacle areas in the environment, this paper introduces
the idea named obstacle area expansion. Firstly, the con-
cave obstacle areas are explored to avoid the agent falling
into the concave obstacle area and causing a lot of invalid
actions. Secondly, the concave obstacle areas are expanded
and removed to reduce the state space dimension of the
subsequent reinforcement learning. Combining the obsta-
cle area expansion strategy with the Q(�)-learning algo-
rithm, we will propose an improved OAE-Q(�)-learning
path planning method. The simulation results show that this

 * Yebiao Ji
 jfj1968@163.com

1 School of Electronic Information, Xi’an Polytechnic
University, Xi’an 710000, People’s Republic of China

http://orcid.org/0000-0001-9711-0174
http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-020-00313-y&domain=pdf

290 Intelligent Service Robotics (2020) 13:289–297

1 3

method achieves path planning in an unknown environment
of mobile robot and improves the convergence speed and
learning efficiency of path planning.

2 Q(�)‑learning algorithm

An agent is rewarded by interacting with the environment,
when using reinforcement learning algorithm for path plan-
ning in an unknown environment. The path with the high-
est reward is the optimal path. On the basis of the classical
Q-learning, Q(�)-learning combines the idea of instanta-
neous differential multi-step return [16], so the traditional
single step update method is extended to multi-step update,
which improves the update speed of the algorithm. The eli-
gibility trace E(s, a) records the motion path of the agent.
Adding it to the update of Q value can reflect the update
strength of Q value in different states. Therefore, the Q(�
)-learning algorithm combines the value function Q(s, a)
with the eligibility trace E(s, a).

The traditional Q-learning updates its value function as
follows:

(1)Q(s, a) ← Q(s, a) + �[r + � max
a
�
Q(s

�

, a
�

) − Q(s, a)]

In the updating rule, Q(s, a) is the Q value corresponding
to action a in state s ; Q(s� , a�

) is the Q value corresponding to
action a′ in state s′ ; r is the reward value when the environ-
ment changes from state s to state s′ ; � and � are the learning
rate and the discount factor, respectively.

After joining eligibility trace E(s, a) , the updating for-
mula of Q(�)-learning iteration is given by

In this rule, E(s, a) is the eligibility trace. The initial value
of the eligibility trace is 0. When the agent passes through a
certain state, the eligibility trace value of that state needs to
be increased by 1 at the moment. When performing subse-
quent actions, the eligibility trace E(s, a) decreases accord-
ing to the following rule:

In this rule, � is the eligibility trace attenuation fac-
tor. Each time an agent performs an action, the eligibility
trace value at state s decreases once according to the above
formula.

The flow of the algorithm:

(2)

Q(s, a) ← Q(s, a) + �[r + � max
a
�
Q(s

�

, a
�

) − Q(s, a)]E(s, a)

(3)E(s, a) ← ��E(s, a)

291Intelligent Service Robotics (2020) 13:289–297

1 3

3 Path planning based on OAE‑Q(�
)‑learning algorithm

This section introduces the idea of OAE-Q(�)-learning
algorithm. Firstly, we use the grid method to build the
environmental model. Secondly, we introduce the specific
implementation of the obstacle area expansion strategy.
Finally, we combine the reinforcement learning algorithm
with the obstacle area expansion strategy to illustrate the
path planning method of OAE-Q(�)-learning algorithm.

3.1 The idea of algorithm

The obstacle’s state cannot be reached, when an agent uses
reinforcement learning to plan a path in a complex and
unknown environment. After exploring the obstacle for
the first time, the subsequent learning need not plan this
state anymore. Hence, every time the obstacle is explored,
it can be removed from the environment model. Accord-
ing to this idea, the obstacle area expansion strategy was

proposed: for the concave obstacle area in the environ-
ment, mark its internal state as immovable state and
expand the obstacle area in the environment. The state
space of reinforcement learning is reduced by removing
the original obstacle state, and the extended immovable
state in the environment model.

3.2 Environmental model

The environmental model was established by the grid
method, as shown in Fig. 1. The black area around the fig-
ure is a wall with a thickness of 0.5. The outer boundaries
of the upper, lower, left and right walls are represented by
y = ymax , y = 0 , x = 0 and x = xmax , respectively.

The size of the grid is a small square with the side length
of 1. The size of the agent is one unit of the grid. Each state
is an element of the environmental matrix (EM). Obstacles
in the environment are randomly distributed. The white grid
represents the movable state of the agent, and the element
value of the corresponding EM is 0. The black grid repre-
sents the obstacles, and the corresponding element value of
EM is 1. The environment matrix EM can be expressed as
�� = {emij|emij = 0 .or 1, i, j ∈ N+}.

The size of the agent is the size of a grid, and the posi-
tion of the agent is represented by coordinates (x0, y0) . The
agent can take four possible actions: up, down, left and right.
The discrete matrix � = [0, 1; 0,−1; − 1, 0; 1, 0] is defined
to represent the changes in the environment after the four
actions are performed.

3.3 Obstacle area expansion strategy

The strategy of obstacle area expansion is proposed to deal
with the concave obstacle area in environment. The expan-
sion mode is transverse and vertical layer-by-layer expan-
sion. Figure 2 is a comparison of the pre-expansion and post-
expansion of the concave obstacle area. (To simplify the

Fig. 1 Environmental model established by grid method: The green
grid represents the location of the agent; the white grids represent the
movable area; the black grids represent obstacles; the red arrows rep-
resent the directions of the agent’s movement (color figure online)

Fig. 2 Contrast of obstacle area
before and after expansion:
The white grids represent the
movable areas; the black grids
represent obstacles; the gray
grids represent expansible areas

Y

0 X

Y

0 X

(a) Obstacle area before expansion (b) Obstacle area after expansion

292 Intelligent Service Robotics (2020) 13:289–297

1 3

environment model, the thickness of the wall is not shown
here.) The black grids in the figure represent the concave
obstacle area existing on the original environment, while
the gray grids represent the expanded obstacle area. All the
gray grids will be marked as inf, and these grids’ values
are changed from 0 to 1 in the environment matrix. Use the
changed environment matrix to update the map environment
before the learning of each episode. Therefore, the grids
marked as inf in the previous episode will not be explored
and planned by agents in the next learning.

The following definitions are given for the implementa-
tion of obstacle area expansion strategy.

Definition 1 Transversely, the relationship between the
agent and the obstacle is Rx(x, y) . Rx(x, y) > 0 denotes that
the transverse adjacent grid of agent at (x,y) has obstacles.

Definition 2 Vertically, the relationship between the agent
and the obstacle is Ry(x, y) . Ry(x, y) > 0 denotes that the ver-
tical adjacent grid of agent at (x,y) has obstacles.

Definition 3 Transversely and vertically, the relationship
between the agent and the obstacle is Rxy(x, y) . Rxy(x, y) > 0
denotes that the transverse and vertical adjacent grids of
agent at (x,y) have obstacles.

The implementation process of obstacle area expansion
strategy is as follows:

Step 1 Confirm the existence of concave obstacle area. If
Rxy(x, y) > 0 , the current grid is marked as sus1. The agent
begins to search transversely and judges the values of Ry(x, y)
and Rxy(x, y) . When both Rxy(x, y) > 0 and Ry(x, y) > 0 are
satisfied, the grid at (x,y) is marked as sus2 and the opening
direction of concave obstacle area is vertical. Then, the grids
between sus1 and sus2 are marked as susd. If Ry(x, y) < 0
occurs, the agent goes back to sus1 and begins to search
transversely and judges the values of Rx(x, y) and Rxy(x, y) .
When both Rxy(x, y) > 0 and Ry(x, y) > 0 are satisfied, the
grid at (x,y) is marked as sus2 and the opening direction of
concave obstacle area is transverse. Then, the grids between
sus1 and sus2 are marked as susd. If Rx(x, y) < 0 occurs, the
area is not a concave obstacle area and cannot be expanded.
In this situation, the procedure goes to step 6.

Step 2 Confirm the depth of concave obstacle area. The
agent searches vertically from sus2 and judges the values
of Rx(x, y) and Rxy(x, y) . When Rxy(x, y) < 0 , the grid in
the previous moment of (x,y) is marked as sus3. Or when
Rxy(x, y) > 0 , the grid at (x,y) is marked as sus3. Then, the
agent goes back to sus1 and begins to search vertically.
Also, it judges the values of Rx(x, y) and Rxy(x, y) . When
Rx(x, y) < 0 , the grid in the previous moment of (x,y) is
marked as sus4. Or when Rxy(x, y) > 0 , the grid at (x,y) is
marked as sus4. (If the opening direction of concave obstacle

area is transverse, the agent searches transversely from sus2
and sus1. Also, it judges the values of Ry(x, y) and Rxy(x, y).)

Step 3 Reduce the depth of concave obstacle area by
expanding it from the bottom layer to the outside layer. The
grids marked as susd are regarded as a layer unit and expand
one layer in turn toward the opening of the concave obstacle
area. If there is no obstacle in this layer, the grid marked as
susd of the previous layer is converted to inf, and the grids
of this layer are marked as susd. Then, the procedure repeats
step 3. If there are obstacles in this layer, the marker of susd
from the previous layer is canceled, and the procedure goes
to step 4. If there is a starting point or an end point in the
interior of this layer, the marker of susd in the previous layer
is converted to marker inf, and the procedure goes to step 4.

Step 4 Reduce the width of concave obstacle area by
expanding the side of concave area. The grids between sus1
to sus4 and sus2 to sus3 are marked as susw and regarded as a
layer unit. The grids expand one layer in turn to the interior
of concave obstacle area. If there is no obstacle in this layer,
the grid marked as susw of the previous layer is converted to
inf, and the grids of this layer are marked as susw. Then, the
procedure repeats step 4. If there are obstacles in this layer,
the marker of susw from the previous layer is canceled, and
the procedure goes to step 5. If there is a starting point or an
end point in the interior of this layer, the marker of susw in
the previous layer is converted to marker inf, and the proce-
dure goes to step 5.

Step 5 Judge whether there are obstacles at the top of the
expanded obstacle area. It judges the value of Ry(x, y) which
is marked as inf in the top layer. If the value of Ry(x, y) on
a grid satisfies Ry(x, y) > 0 , it cancels the marker of three
adjacent inf grids centered on (x,y). (If the opening direction
of concave obstacle area is transverse, it judges the values
of Rx(x, y)).

Step 6 Confirm the grids which can be expanded. The
grids marked as inf on the environment are expandable
grids.

Figure 3 shows the process of the expansion strategy of
the obstacle area. Firstly, as shown in Fig. 3a, we mark sus1
and start searching sus2 transversely or vertically to confirm
the existence of concave obstacle area. Secondly, as shown
in Fig. 3b, we start searching for the height of the obstacle
area to find sus3 and sus4. Next, as shown in Fig. 3c, we
begin to expand from the bottom layer to the outside layer by
layer. The expansion layer could be expanded to sus3 or sus4,
if there was no obstacle, starting point or end point inside the
concave obstacle area. Otherwise, as shown in Fig. 3d, e, the
expansion layer could only be expanded to the previous layer
of the obstacle layer. Then, we begin to expand layer by layer
on both sides, as shown in Fig. 3f–h, to reduce the width of
obstacle area. Finally, as shown in Fig. 3i, j, the expandable
area has been determined by determining whether there are
obstacles outside the top of the obstacle area.

293Intelligent Service Robotics (2020) 13:289–297

1 3

3.4 Path planning strategy

According to the principle of reinforcement learning and
the idea of expanding obstacle areas, path planning subject
to unknown environment is carried out. The planning steps
are as follows:

Step 1 Initialize the data and start looping from the start-
ing point to the end point.

Step 2 Update the environment according to the marked
inf state.
Step 3 The agent is ready to start from the starting point.
Step 4 Obtain the Q values of the four adjacent states of
the current state. Find the action corresponding to the
maximum Q value through the greedy strategy and record
the original state.
Step 5 Obtain the next states and the reward value. There
are three cases of reward value. Case 1: The reward value

Fig. 3 The process of obstacle
area expansion: The white grids
represent the movable areas; the
black grids represent obstacles;
the yellow grids represent sus-
pected expandable grids in the
concave obstacle area; the blue
grids represent the four edge
points in the concave obstacle
area; the gray grids represent
expandable grids of the concave
obstacle area; the red grids
represent the top layer of the
concave obstacle area (color
figure online)

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)

294 Intelligent Service Robotics (2020) 13:289–297

1 3

is − 1, when there is an obstacle in the next state. Mark
the obstacle state as inf and judge the value of Rxy(x, y) .
If Rxy(x, y) > 0 , the agent implements the obstacle area
expansion strategy. Otherwise, the agent continues to
move in the environment. Case 2: The reward value is
0 and the agent enters the next state, when there is no
obstacle in the next state. Case 3: The reward value is 1,
when the next state is the end point. At last, the Q value
is updated according to Eq. (2).
Step 6 Enter step 7 if the current position is the end point;
otherwise, enter step 4.
Step 7 Enter step 8 if the current number of learning epi-
sodes meets the set number of learning episodes; other-
wise, enter step 2.
Step 8 End the path-finding process.

The agent first judged its relationship with obstacle
when it encountered obstacle. If only one side encoun-
tered obstacle, that is Rx(x, y) > 0 or Ry(x, y) > 0 , it would
mark the obstacle state as inf and then continue to search
for the end point. If both sides encountered obstacles, that
is Rxy(x, y) > 0 , it would interrupt the search and begin to
expand the obstacle area. These expansible obstacle states
were marked as inf, and the agent did not explore these
states again in the learning of this episode. The environ-
ment was updated before the next episode, and all states
marked as inf were no longer iterated for Q value and
planned path.

4 Experimental

The experimental environment is a grid world size of
15 * 15, so set xmax = 16 , ymax = 16 . As shown in Fig. 4,
the orange grid is the starting point of the agent and the
yellow is the end point. The black area is the obstacle.

Fig. 4 Experimental environment: The white grids represent the mov-
able areas; the black grids represent obstacles; the orange grid rep-
resents the starting point; the yellow grid represents the end point
(color figure online)

Table 1 Effect table of learning rate

Learning rate
(�)

Number of conver-
gence episodes

Program execu-
tion time

Average
path length

0.1 420 169 46.36
0.3 238 89 42.28
0.5 186 68 40.92
0.7 115 55 40.81
0.8 96 49 40.92
0.9 67 47 40.71
0.95 76 48 41.44

Table 2 Effect table of discount factor

Discount fac-
tor (�)

Number of conver-
gence episodes

Program execu-
tion time

Average
path length

0.5 68 51 41.63
0.7 75 49 41.44
0.8 67 47 40.71
0.9 75 48 40.96
0.95 85 48 40.91

Table 3 Effect table of exploration factor

Exploration
factor (�)

Number of conver-
gence episodes

Program execu-
tion time

Aver-
age path
length

0.5 – 73 –
0.7 118 56 50.05
0.8 78 52 44.34
0.9 67 47 40.71
0.95 70 49 41.02

Table 4 Effect table of eligibility trace attenuation factor

Eligibility trace
attenuation factor (�)

Number of con-
vergence episodes

Program
execution
time

Aver-
age path
length

0.7 77 49 41.42
0.8 74 48 42.44
0.9 67 47 40.71

295Intelligent Service Robotics (2020) 13:289–297

1 3

Obstacles and end point in the environment are static. The
environment (that is, the location of obstacles, boundaries
and targets) is unknown for the agent. It has four actions
to choose from: up, down, left and right.

The effects of learning rate, exploration factor, discount
factor and eligibility trace attenuation factor on the perfor-
mance of the algorithm are compared by simulations. We
test the algorithm in three aspects: number of convergence
episodes, program execution time and average path length.
Tables 1, 2, 3 and 4 show the test results.

From the above table data, it can be seen that the learn-
ing rate and the exploration factor have a greater impact on
the performance of the reinforcement learning algorithm,
while the discount factor and eligibility trace attenuation
factor have a smaller impact on the performance of the
algorithm. In this experiment, we choose � = 0.8 , � = 0.9

and � = 0.9 . The learning rate A was chosen as 0.1 and 0.9,
respectively. The number of learning episode is 500, and
the reward function is designed as follows:

Fig. 5 Comparison of algorithm convergence:The red line represents
the convergence speed of Q(�)-learning algorithm, and the blue line
represents the convergence speed of OAE-Q(�)-learning algorithm
(color figure online)

Fig. 6 Path planning results: The white grids represent the movable
areas; the black grids represent obstacles; the yellow grid represents
the end point; the orange grids represent the path planned by the
agent (color figure online)

Fig. 7 Map environment after obstacle area expansion: The white
grids represent the movable areas; the black grids represent obstacles;
the orange grid represents the starting point; the yellow grid repre-
sents the end point; the red grids represent the expanded area (color
figure online)

296 Intelligent Service Robotics (2020) 13:289–297

1 3

5 Results and discussion

The convergence rates of Q(�) and OAE-Q(�)-learning algo-
rithms are compared under the above-mentioned experimen-
tal environment. Figure 5 is the comparison of the conver-
gence rates of the two algorithms, Fig. 5 a is the convergence
curve when the learning rate is 0.9, and Fig. 5 b is the con-
vergence curve when the learning rate is 0.1. Figure 6 is the
optimal path planned by OAE-Q(�)-learning algorithm, and
Fig. 7 is the environment after the expansion of the obstacle
area.

As can be seen from Fig. 5, the OAE-Q(�)-learning
algorithm with the obstacle area expansion strategy has a
faster convergence rate than the traditional Q(�)-learning
algorithm. The agent has more exploration steps in the early
stage, and the convergence curve will still be disturbed in the
late learning stage when using the Q(�)-learning algorithm
in the path planning. The OAE-Q(�)-learning algorithm
basically converges after the 40th episode and the 250th
episode, and the path steps are stable between the 35th and
the 38th steps. The agent has little knowledge of the envi-
ronment in the early stage of learning; therefore, the tradi-
tional algorithm would make the agent spend a lot of steps
to escape from the concave obstacle area after they fell into
it. Moreover, it was possible for agents to fall into it in the
subsequent learning. The addition of obstacle area expansion
strategy not only provides a way for the agent to get out of
the concave obstacle area, but also avoids the situation that
the agent enters the obstacle area for the second time. Fig-
ure 6 shows the path planned by the agent in the 500th epi-
sode. Figure 7 shows the map environment after the end of
learning, and the red area is the expanded concave obstacle
area. It can be seen that the original enhanced learning state
space is significantly reduced after removing the obstacle
area, which ensures the improvement of learning efficiency.

6 Conclusion

This paper presents a new method for path planning in com-
plex environments. We expand the concave obstacle area
in the environment in order to solve the huge problem of
reinforcement learning state space. This method not only
avoids the predicament that the agent falls into the concave
obstacle area and wanders repeatedly while exploring the
environment, but also reduces the dimension of the state

(4)r =

⎧
⎪
⎨
⎪
⎩

1, Reach the target

−1, Encountering obstacles or boundarier

0, Other circumstances

space in reinforcement learning after removing the expanded
obstacle area. Experiment shows that the optimal path is
planned with less learning times than the traditional method.
The proposed algorithm has great advantages for terrain with
more concave obstacle areas.

Acknowledgements The research of this paper is supported by the
National Natural Science Foundation of China.

Funding The authors are partially supported by NSFC (61573285).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Galceran E, Cunningham AG, Eustice RM et al (2017) Multipol-
icy decision-making for autonomous driving via change point-
based behavior prediction: theory and experiment. Auton Robots
41(6):1367–1382

 2. Li Y, Li D, Maple C et al (2013) K-order surrounding road-
maps path planner for robot path planning. J Intell Robot Syst
75(3–4):493–516

 3. Chen Y, Cheng L, Wu H et al (2015) Knowledge-driven path
planning for mobile robots: relative state tree. Soft Comput
19(3):763–773

 4. Hebecker T, Buchholz R, Ortmeier F (2015) Model-based local
path planning for UAVs. J Intell Rob Syst 78(1):127–142

 5. Chen YB, Luo GC, Mei YS et al (2016) UAV path planning using
artificial potential field method updated by optimal control theory.
Int J Syst Sci 47(6):14

 6. Lee D, Shim DH (2018) A mini-drone development, genetic vec-
tor field-based multi-agent path planning, and flight tests. Int J
Aeronaut Space Sci 19(3):785–797

 7. Yue L, Chen H (2019) Unmanned vehicle path planning using a
novel ant colony algorithm. EURASIP J Wirel Commun Netw
2019(1):136

 8. Zhang B, Mao Z, Liu W et al (2015) Geometric reinforce-
ment learning for path planning of UAVs. J Intell Rob Syst
77(2):391–409

 9. Jiang J, Xin J (2019) Path planning of a mobile robot in a
free-space environment using Q -learning. Progr Artif Intell
8(1):133–142

 10. Haghzad Klidbary S, Bagheri Shouraki S, Sheikhpour Kourabba-
slou S (2017) Path planning of modular robots on various terrains
using Q-learning versus optimization algorithms[J]. Intel Serv
Robot 10(2):121–136

 11. Pakizeh E, Pedram MM, Palhang M (2015) Multi-criteria expert-
ness based cooperative method for SARSA and eligibility trace
algorithms. Appl Intell 43(3):487–498

 12. Kim B, Pineau J (2016) Socially adaptive path planning in human
environments using inverse reinforcement learning. Int J Social
Robot 8(1):51–66

 13. Martinez-Gil F, Lozano M, Fernández F (2014) MARL-Ped: a
multi-agent reinforcement learning based framework to simulate
pedestrian groups. Simul Model Pract Theory 47:259–275

 14. Ito K, Takeuchi Y (2016) Reinforcement learning in dynamic
environment: abstraction of state-action space utilizing properties
of the robot body and environment]. Artif Life Robot 21(1):11–17

297Intelligent Service Robotics (2020) 13:289–297

1 3

 15. Yasini S, Naghibi Sitani MB, Kirampor A (2016) Reinforcement
learning and neural networks for multi-agent nonzero-sum games
of nonlinear constrained-input systems. Int J Mach Learn Cyber-
net 7(6):967–980

 16. Yu T, Wang HZ, Zhou B et al (2015) Multi-agent correlated
equilibrium Q(λ) learning for coordinated smart generation

control of interconnected power grids. IEEE Trans Power Syst
30(4):1669–1679

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Reinforcement learning path planning algorithm based on obstacle area expansion strategy
	Abstract
	1 Introduction
	2 Q()-learning algorithm
	3 Path planning based on OAE-Q()-learning algorithm
	3.1 The idea of algorithm
	3.2 Environmental model
	3.3 Obstacle area expansion strategy
	3.4 Path planning strategy

	4 Experimental
	5 Results and discussion
	6 Conclusion
	Acknowledgements
	References

