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Abstract
We improve the traditional Q(�)-learning algorithm by adding the obstacle area expansion strategy. The new algorithm is 
named OAE-Q(�)-learning and applied to the path planning in the complex environment. The contributions of OAE-Q(�
)-learning are as follows: (1) It expands the concave obstacle area in the environment to avoid repeated invalid actions when 
the agent falls into the obstacle area. (2) It removes the extended obstacle area, which reduces the learning state space and 
accelerates the convergence speed of the algorithm. Extensive experimental results validate the effectiveness and feasibility 
of OAE-Q(�)-learning on the path planning in complex environments.
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Abbreviation
OAE-Q(�)-learning	� The algorithm of Q(�)-learning 

based on obstacle area expansion 
strategy

1  Introduction

The importance of robotic navigation technology has been 
increasingly emphasized due to the rise of unmanned driving 
[1]. Path planning is an important aspect of robot navigation 
technology [2–4]. It is defined as finding a collision-free 
path from the initial state to the target state according to 
some evaluation criteria in an environment with obstacles. 
Traditional path planning algorithms include artificial poten-
tial field method [5], genetic algorithm [6], ant colony opti-
mization algorithm [7], etc. These methods need to model 
the environment in a certain space; therefore, there are some 
limitations in the complex and changeable environment. The 
reinforcement learning algorithm is a type of machine learn-
ing algorithm which has developed rapidly in recent years 
and is widely used in path planning [8, 9]. Its advantage 
is that it does not require accurate environmental models. 
Robot path planning methods using reinforcement learning 

algorithm include Q-learning [10], Sarsa [11], Q(�)-learn-
ing [12], Sarsa ( � ) [13], etc. However, the problem is that 
the more complex the environment is, the larger the learn-
ing state space will be, which will lead to a long learning 
time and slow convergence speed. In order to reduce the 
dimension of state space, many scholars have carried out a 
lot of research on this problem. Literature [14] proposed a 
method of abstracting state-action space, which reduces the 
dimension of the state space by utilizing the characteristics 
of the robot and the environment to generate a new state-
action space. Literature [15] reduced the dimension of state 
space by the method of function approximation. It combined 
the reinforcement learning algorithm with the neural net-
works. Both methods of dimension reduction in the state 
space would cause errors because of the use of approxima-
tion algorithm.

This paper aims at the problem of huge state space of 
reinforcement learning in path planning under complex and 
unknown environment. Taking into account the concave 
obstacle areas in the environment, this paper introduces 
the idea named obstacle area expansion. Firstly, the con-
cave obstacle areas are explored to avoid the agent falling 
into the concave obstacle area and causing a lot of invalid 
actions. Secondly, the concave obstacle areas are expanded 
and removed to reduce the state space dimension of the 
subsequent reinforcement learning. Combining the obsta-
cle area expansion strategy with the Q(�)-learning algo-
rithm, we will propose an improved OAE-Q(�)-learning 
path planning method. The simulation results show that this 
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method achieves path planning in an unknown environment 
of mobile robot and improves the convergence speed and 
learning efficiency of path planning.

2 � Q(�)‑learning algorithm

An agent is rewarded by interacting with the environment, 
when using reinforcement learning algorithm for path plan-
ning in an unknown environment. The path with the high-
est reward is the optimal path. On the basis of the classical 
Q-learning, Q(�)-learning combines the idea of instanta-
neous differential multi-step return [16], so the traditional 
single step update method is extended to multi-step update, 
which improves the update speed of the algorithm. The eli-
gibility trace E(s, a) records the motion path of the agent. 
Adding it to the update of Q value can reflect the update 
strength of Q value in different states. Therefore, the Q(�
)-learning algorithm combines the value function Q(s, a) 
with the eligibility trace E(s, a).

The traditional Q-learning updates its value function as 
follows:

(1)Q(s, a) ← Q(s, a) + �[r + � max
a
�
Q(s

�

, a
�

) − Q(s, a)]

In the updating rule, Q(s, a) is the Q value corresponding 
to action a in state s ; Q(s� , a�

) is the Q value corresponding to 
action a′ in state s′ ; r is the reward value when the environ-
ment changes from state s to state s′ ; � and � are the learning 
rate and the discount factor, respectively.

After joining eligibility trace E(s, a) , the updating for-
mula of Q(�)-learning iteration is given by

In this rule, E(s, a) is the eligibility trace. The initial value 
of the eligibility trace is 0. When the agent passes through a 
certain state, the eligibility trace value of that state needs to 
be increased by 1 at the moment. When performing subse-
quent actions, the eligibility trace E(s, a) decreases accord-
ing to the following rule:

In this rule, � is the eligibility trace attenuation fac-
tor. Each time an agent performs an action, the eligibility 
trace value at state s decreases once according to the above 
formula.

The flow of the algorithm:

(2)

Q(s, a) ← Q(s, a) + �[r + � max
a
�
Q(s

�

, a
�

) − Q(s, a)]E(s, a)

(3)E(s, a) ← ��E(s, a)



291Intelligent Service Robotics (2020) 13:289–297	

1 3

3 � Path planning based on OAE‑Q(�
)‑learning algorithm

This section introduces the idea of OAE-Q(�)-learning 
algorithm. Firstly, we use the grid method to build the 
environmental model. Secondly, we introduce the specific 
implementation of the obstacle area expansion strategy. 
Finally, we combine the reinforcement learning algorithm 
with the obstacle area expansion strategy to illustrate the 
path planning method of OAE-Q(�)-learning algorithm.

3.1 � The idea of algorithm

The obstacle’s state cannot be reached, when an agent uses 
reinforcement learning to plan a path in a complex and 
unknown environment. After exploring the obstacle for 
the first time, the subsequent learning need not plan this 
state anymore. Hence, every time the obstacle is explored, 
it can be removed from the environment model. Accord-
ing to this idea, the obstacle area expansion strategy was 

proposed: for the concave obstacle area in the environ-
ment, mark its internal state as immovable state and 
expand the obstacle area in the environment. The state 
space of reinforcement learning is reduced by removing 
the original obstacle state, and the extended immovable 
state in the environment model.

3.2 � Environmental model

The environmental model was established by the grid 
method, as shown in Fig. 1. The black area around the fig-
ure is a wall with a thickness of 0.5. The outer boundaries 
of the upper, lower, left and right walls are represented by 
y = ymax , y = 0 , x = 0 and x = xmax , respectively.

The size of the grid is a small square with the side length 
of 1. The size of the agent is one unit of the grid. Each state 
is an element of the environmental matrix (EM). Obstacles 
in the environment are randomly distributed. The white grid 
represents the movable state of the agent, and the element 
value of the corresponding EM is 0. The black grid repre-
sents the obstacles, and the corresponding element value of 
EM is 1. The environment matrix EM can be expressed as 
�� = {emij|emij = 0 .or 1, i, j ∈ N+}.

The size of the agent is the size of a grid, and the posi-
tion of the agent is represented by coordinates (x0, y0) . The 
agent can take four possible actions: up, down, left and right. 
The discrete matrix � = [0, 1; 0,−1; − 1, 0; 1, 0] is defined 
to represent the changes in the environment after the four 
actions are performed.

3.3 � Obstacle area expansion strategy

The strategy of obstacle area expansion is proposed to deal 
with the concave obstacle area in environment. The expan-
sion mode is transverse and vertical layer-by-layer expan-
sion. Figure 2 is a comparison of the pre-expansion and post-
expansion of the concave obstacle area. (To simplify the 

Fig. 1   Environmental model established by grid method: The green 
grid represents the location of the agent; the white grids represent the 
movable area; the black grids represent obstacles; the red arrows rep-
resent the directions of the agent’s movement (color figure online)

Fig. 2   Contrast of obstacle area 
before and after expansion: 
The white grids represent the 
movable areas; the black grids 
represent obstacles; the gray 
grids represent expansible areas

Y

0 X

Y

0 X

(a) Obstacle area before expansion (b) Obstacle area after expansion 
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environment model, the thickness of the wall is not shown 
here.) The black grids in the figure represent the concave 
obstacle area existing on the original environment, while 
the gray grids represent the expanded obstacle area. All the 
gray grids will be marked as inf, and these grids’ values 
are changed from 0 to 1 in the environment matrix. Use the 
changed environment matrix to update the map environment 
before the learning of each episode. Therefore, the grids 
marked as inf in the previous episode will not be explored 
and planned by agents in the next learning.

The following definitions are given for the implementa-
tion of obstacle area expansion strategy.

Definition 1  Transversely, the relationship between the 
agent and the obstacle is Rx(x, y) . Rx(x, y) > 0 denotes that 
the transverse adjacent grid of agent at (x,y) has obstacles.

Definition 2  Vertically, the relationship between the agent 
and the obstacle is Ry(x, y) . Ry(x, y) > 0 denotes that the ver-
tical adjacent grid of agent at (x,y) has obstacles.

Definition 3  Transversely and vertically, the relationship 
between the agent and the obstacle is Rxy(x, y) . Rxy(x, y) > 0 
denotes that the transverse and vertical adjacent grids of 
agent at (x,y) have obstacles.

The implementation process of obstacle area expansion 
strategy is as follows:

Step 1 Confirm the existence of concave obstacle area. If 
Rxy(x, y) > 0 , the current grid is marked as sus1. The agent 
begins to search transversely and judges the values of Ry(x, y) 
and Rxy(x, y) . When both Rxy(x, y) > 0 and Ry(x, y) > 0 are 
satisfied, the grid at (x,y) is marked as sus2 and the opening 
direction of concave obstacle area is vertical. Then, the grids 
between sus1 and sus2 are marked as susd. If Ry(x, y) < 0 
occurs, the agent goes back to sus1 and begins to search 
transversely and judges the values of Rx(x, y) and Rxy(x, y) . 
When both Rxy(x, y) > 0 and Ry(x, y) > 0 are satisfied, the 
grid at (x,y) is marked as sus2 and the opening direction of 
concave obstacle area is transverse. Then, the grids between 
sus1 and sus2 are marked as susd. If Rx(x, y) < 0 occurs, the 
area is not a concave obstacle area and cannot be expanded. 
In this situation, the procedure goes to step 6.

Step 2 Confirm the depth of concave obstacle area. The 
agent searches vertically from sus2 and judges the values 
of Rx(x, y) and Rxy(x, y) . When Rxy(x, y) < 0 , the grid in 
the previous moment of (x,y) is marked as sus3. Or when 
Rxy(x, y) > 0 , the grid at (x,y) is marked as sus3. Then, the 
agent goes back to sus1 and begins to search vertically. 
Also, it judges the values of Rx(x, y) and Rxy(x, y) . When 
Rx(x, y) < 0 , the grid in the previous moment of (x,y) is 
marked as sus4. Or when Rxy(x, y) > 0 , the grid at (x,y) is 
marked as sus4. (If the opening direction of concave obstacle 

area is transverse, the agent searches transversely from sus2 
and sus1. Also, it judges the values of Ry(x, y) and Rxy(x, y).)

Step 3 Reduce the depth of concave obstacle area by 
expanding it from the bottom layer to the outside layer. The 
grids marked as susd are regarded as a layer unit and expand 
one layer in turn toward the opening of the concave obstacle 
area. If there is no obstacle in this layer, the grid marked as 
susd of the previous layer is converted to inf, and the grids 
of this layer are marked as susd. Then, the procedure repeats 
step 3. If there are obstacles in this layer, the marker of susd 
from the previous layer is canceled, and the procedure goes 
to step 4. If there is a starting point or an end point in the 
interior of this layer, the marker of susd in the previous layer 
is converted to marker inf, and the procedure goes to step 4.

Step 4 Reduce the width of concave obstacle area by 
expanding the side of concave area. The grids between sus1 
to sus4 and sus2 to sus3 are marked as susw and regarded as a 
layer unit. The grids expand one layer in turn to the interior 
of concave obstacle area. If there is no obstacle in this layer, 
the grid marked as susw of the previous layer is converted to 
inf, and the grids of this layer are marked as susw. Then, the 
procedure repeats step 4. If there are obstacles in this layer, 
the marker of susw from the previous layer is canceled, and 
the procedure goes to step 5. If there is a starting point or an 
end point in the interior of this layer, the marker of susw in 
the previous layer is converted to marker inf, and the proce-
dure goes to step 5.

Step 5 Judge whether there are obstacles at the top of the 
expanded obstacle area. It judges the value of Ry(x, y) which 
is marked as inf in the top layer. If the value of Ry(x, y) on 
a grid satisfies Ry(x, y) > 0 , it cancels the marker of three 
adjacent inf grids centered on (x,y). (If the opening direction 
of concave obstacle area is transverse, it judges the values 
of Rx(x, y)).

Step 6 Confirm the grids which can be expanded. The 
grids marked as inf on the environment are expandable 
grids.

Figure 3 shows the process of the expansion strategy of 
the obstacle area. Firstly, as shown in Fig. 3a, we mark sus1 
and start searching sus2 transversely or vertically to confirm 
the existence of concave obstacle area. Secondly, as shown 
in Fig. 3b, we start searching for the height of the obstacle 
area to find sus3 and sus4. Next, as shown in Fig. 3c, we 
begin to expand from the bottom layer to the outside layer by 
layer. The expansion layer could be expanded to sus3 or sus4, 
if there was no obstacle, starting point or end point inside the 
concave obstacle area. Otherwise, as shown in Fig. 3d, e, the 
expansion layer could only be expanded to the previous layer 
of the obstacle layer. Then, we begin to expand layer by layer 
on both sides, as shown in Fig. 3f–h, to reduce the width of 
obstacle area. Finally, as shown in Fig. 3i, j, the expandable 
area has been determined by determining whether there are 
obstacles outside the top of the obstacle area.
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3.4 � Path planning strategy

According to the principle of reinforcement learning and 
the idea of expanding obstacle areas, path planning subject 
to unknown environment is carried out. The planning steps 
are as follows:

Step 1 Initialize the data and start looping from the start-
ing point to the end point.

Step 2 Update the environment according to the marked 
inf state.
Step 3 The agent is ready to start from the starting point.
Step 4 Obtain the Q values of the four adjacent states of 
the current state. Find the action corresponding to the 
maximum Q value through the greedy strategy and record 
the original state.
Step 5 Obtain the next states and the reward value. There 
are three cases of reward value. Case 1: The reward value 

Fig. 3   The process of obstacle 
area expansion: The white grids 
represent the movable areas; the 
black grids represent obstacles; 
the yellow grids represent sus-
pected expandable grids in the 
concave obstacle area; the blue 
grids represent the four edge 
points in the concave obstacle 
area; the gray grids represent 
expandable grids of the concave 
obstacle area; the red grids 
represent the top layer of the 
concave obstacle area (color 
figure online)

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)
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is − 1, when there is an obstacle in the next state. Mark 
the obstacle state as inf and judge the value of Rxy(x, y) . 
If Rxy(x, y) > 0 , the agent implements the obstacle area 
expansion strategy. Otherwise, the agent continues to 
move in the environment. Case 2: The reward value is 
0 and the agent enters the next state, when there is no 
obstacle in the next state. Case 3: The reward value is 1, 
when the next state is the end point. At last, the Q value 
is updated according to Eq. (2).
Step 6 Enter step 7 if the current position is the end point; 
otherwise, enter step 4.
Step 7 Enter step 8 if the current number of learning epi-
sodes meets the set number of learning episodes; other-
wise, enter step 2.
Step 8 End the path-finding process.

The agent first judged its relationship with obstacle 
when it encountered obstacle. If only one side encoun-
tered obstacle, that is Rx(x, y) > 0 or Ry(x, y) > 0 , it would 
mark the obstacle state as inf and then continue to search 
for the end point. If both sides encountered obstacles, that 
is Rxy(x, y) > 0 , it would interrupt the search and begin to 
expand the obstacle area. These expansible obstacle states 
were marked as inf, and the agent did not explore these 
states again in the learning of this episode. The environ-
ment was updated before the next episode, and all states 
marked as inf were no longer iterated for Q value and 
planned path.

4 � Experimental

The experimental environment is a grid world size of 
15 * 15, so set xmax = 16 , ymax = 16 . As shown in Fig. 4, 
the orange grid is the starting point of the agent and the 
yellow is the end point. The black area is the obstacle. 

Fig. 4   Experimental environment: The white grids represent the mov-
able areas; the black grids represent obstacles; the orange grid rep-
resents the starting point; the yellow grid represents the end point 
(color figure online)

Table 1   Effect table of learning rate

Learning rate 
( �)

Number of conver-
gence episodes

Program execu-
tion time

Average 
path length

0.1 420 169 46.36
0.3 238 89 42.28
0.5 186 68 40.92
0.7 115 55 40.81
0.8 96 49 40.92
0.9 67 47 40.71
0.95 76 48 41.44

Table 2   Effect table of discount factor

Discount fac-
tor ( �)

Number of conver-
gence episodes

Program execu-
tion time

Average 
path length

0.5 68 51 41.63
0.7 75 49 41.44
0.8 67 47 40.71
0.9 75 48 40.96
0.95 85 48 40.91

Table 3   Effect table of exploration factor

Exploration 
factor ( �)

Number of conver-
gence episodes

Program execu-
tion time

Aver-
age path 
length

0.5 – 73 –
0.7 118 56 50.05
0.8 78 52 44.34
0.9 67 47 40.71
0.95 70 49 41.02

Table 4   Effect table of eligibility trace attenuation factor

Eligibility trace 
attenuation factor ( �)

Number of con-
vergence episodes

Program 
execution 
time

Aver-
age path 
length

0.7 77 49 41.42
0.8 74 48 42.44
0.9 67 47 40.71
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Obstacles and end point in the environment are static. The 
environment (that is, the location of obstacles, boundaries 
and targets) is unknown for the agent. It has four actions 
to choose from: up, down, left and right.

The effects of learning rate, exploration factor, discount 
factor and eligibility trace attenuation factor on the perfor-
mance of the algorithm are compared by simulations. We 
test the algorithm in three aspects: number of convergence 
episodes, program execution time and average path length. 
Tables 1, 2, 3 and 4 show the test results.

From the above table data, it can be seen that the learn-
ing rate and the exploration factor have a greater impact on 
the performance of the reinforcement learning algorithm, 
while the discount factor and eligibility trace attenuation 
factor have a smaller impact on the performance of the 
algorithm. In this experiment, we choose � = 0.8 , � = 0.9 

and � = 0.9 . The learning rate A was chosen as 0.1 and 0.9, 
respectively. The number of learning episode is 500, and 
the reward function is designed as follows:

Fig. 5   Comparison of algorithm convergence:The red line represents 
the convergence speed of Q(�)-learning algorithm, and the blue line 
represents the convergence speed of OAE-Q(�)-learning algorithm 
(color figure online)

Fig. 6   Path planning results: The white grids represent the movable 
areas; the black grids represent obstacles; the yellow grid represents 
the end point; the orange grids represent the path planned by the 
agent (color figure online)

Fig. 7   Map environment after obstacle area expansion: The white 
grids represent the movable areas; the black grids represent obstacles; 
the orange grid represents the starting point; the yellow grid repre-
sents the end point; the red grids represent the expanded area (color 
figure online)
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5 � Results and discussion

The convergence rates of Q(� ) and OAE-Q(�)-learning algo-
rithms are compared under the above-mentioned experimen-
tal environment. Figure 5 is the comparison of the conver-
gence rates of the two algorithms, Fig. 5 a is the convergence 
curve when the learning rate is 0.9, and Fig. 5 b is the con-
vergence curve when the learning rate is 0.1. Figure 6 is the 
optimal path planned by OAE-Q(�)-learning algorithm, and 
Fig. 7 is the environment after the expansion of the obstacle 
area.

As can be seen from Fig.  5, the OAE-Q(�)-learning 
algorithm with the obstacle area expansion strategy has a 
faster convergence rate than the traditional Q(�)-learning 
algorithm. The agent has more exploration steps in the early 
stage, and the convergence curve will still be disturbed in the 
late learning stage when using the Q(�)-learning algorithm 
in the path planning. The OAE-Q(�)-learning algorithm 
basically converges after the 40th episode and the 250th 
episode, and the path steps are stable between the 35th and 
the 38th steps. The agent has little knowledge of the envi-
ronment in the early stage of learning; therefore, the tradi-
tional algorithm would make the agent spend a lot of steps 
to escape from the concave obstacle area after they fell into 
it. Moreover, it was possible for agents to fall into it in the 
subsequent learning. The addition of obstacle area expansion 
strategy not only provides a way for the agent to get out of 
the concave obstacle area, but also avoids the situation that 
the agent enters the obstacle area for the second time. Fig-
ure 6 shows the path planned by the agent in the 500th epi-
sode. Figure 7 shows the map environment after the end of 
learning, and the red area is the expanded concave obstacle 
area. It can be seen that the original enhanced learning state 
space is significantly reduced after removing the obstacle 
area, which ensures the improvement of learning efficiency.

6 � Conclusion

This paper presents a new method for path planning in com-
plex environments. We expand the concave obstacle area 
in the environment in order to solve the huge problem of 
reinforcement learning state space. This method not only 
avoids the predicament that the agent falls into the concave 
obstacle area and wanders repeatedly while exploring the 
environment, but also reduces the dimension of the state 

(4)r =

⎧
⎪
⎨
⎪
⎩

1, Reach the target

−1, Encountering obstacles or boundarier

0, Other circumstances

space in reinforcement learning after removing the expanded 
obstacle area. Experiment shows that the optimal path is 
planned with less learning times than the traditional method. 
The proposed algorithm has great advantages for terrain with 
more concave obstacle areas.
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