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Abstract
In this study, the goal is to efficiently and actively search for a target object in a previously unknown large-scale environment.
To this end, we develop a probabilistic environment model that can utilize spatial commonsense knowledge and environment-
specific spatial relations. The model evaluates the merit of exploring each possible viewpoint in the environment to find the
target object. Then, the path planning method incorporates the estimated value of these viewpoints and the time cost between
them to generate an efficient search path that minimizes the total search time. We also describe a search space reduction
method that improves the feasibility of the proposed approach in large-scale environments. To validate the approach, we
compare the search times of the proposed method to those of human participants, a coverage-based search and a random
search in simulation experiments. The results show that the proposed method can generate search paths with similar search
times to those of human participants, while clearly outperforming the coverage-based and random search methods. We also
demonstrate the applicability of the approach in real-world experiments in which the robot could find the target object without
a single failure case in 70 trials.

Keywords Active object search · Mobile robot · Probabilistic environment model

1 Introduction

Service robots perform everyday tasks such as fetch-and-
carry tasks and mobile manipulation, which often involve
physical interaction with various objects. For the robots to
accomplish these tasks, they must first know where all the
objects relevant to the given task are; however, it is unlikely
that all task-related objects will already be within the robot’s
sensory range when the task is requested.
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One way around this issue is to build an environment
model that registers the locations of all objects in advance,
and let the robot update object locations in the model when
it detects changes [1,2]. However, this approach is imprac-
tical for dynamic environments, such as offices and homes,
because the model can easily become fragile with frequent
or simultaneous object movement by people in the environ-
ment. In addition, this method is not applicable when the
robot must perform tasks in novel environments. Therefore,
it is crucial for service robots to have the ability to actively
search for objects required to complete their tasks.

The goal of active object search is to generate a sequence
of sensing actions to localize a target object within the robot’s
field of view while minimizing the expected travel cost, here
defined as total search time. Sensing actions can be defined
in accordance with the robot’s degree of freedom and its sen-
sors. For example, a set of sensing actions can consist of
navigation actions that change the robot’s camera position,
and in a broader sense, it can also include the choice of the
object recognition algorithm for analyzing the input image
and the various sensor parameters: pan-tilt angles, focus,
focal length, etc.
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The most significant obstacle in active object search prob-
lems is that the search space for the target object grows
exponentially with the number of possible sensing actions
and the size of environment. Therefore, to efficiently locate
an object in a large environment, we must devise a method
to reduce or prioritize the search space, and then develop an
adequate path planning method.

There has been increasing interest in active object search
problems. In [3], Shubina and Tsotsos presented a two-step
search strategy for exhaustive exploration in an unknown
environment. Ma et al. [4] proposed a similar greedy search
strategy, utilizing global and local search methods. The main
drawback of such exhaustive search approaches is that they
are not scalable to large environments because of the expo-
nential growth of the search space, and they can also easily
suffer from uncertainty in object recognition.

To this end, many researchers have investigated the use
of spatial relations or semantic knowledge to prioritize the
search space. Kollar and Roy [5] proposed a co-occurrence-
based model to predict an object’s location and perform a
breadth-first search to plan a path to find the target object.
Samadi et al. [6] investigated using the Web to localize
objects by assuming that an object and its typical location are
frequently found together in documents. Kunze et al. [7,8]
described an approach based on qualitative spatial relations
fromsymbolic representations andGaussianmixturemodels,
respectively. Zhang et al. [9,10] used answer set program-
ming to represent domain knowledge for an object search and
hierarchical partially observable Markov decision processes
(POMDP) for sensing action selection. Veiga et al. [11] pre-
sented a framework for active object search that integrates a
semantic map for knowledge representation and a POMDP
for decisionmaking. In [12], the authors investigated the rela-
tion between time and an object’s position, and described a
temporal persistence modeling algorithm to model and pre-
dict object locations based on sparse temporal observations.
Kunze et al. [13] formulated the active object search problem
as an orienteering problem with history-dependent rewards
and proposed a stochastic viewplanningmethod tomaximize
the expected reward.

The above-mentioned approaches have shown that by
prioritizing the search area, a robot can find objects more
efficiently compared to the exhaustive searchmethods. How-
ever, all of these previous approaches have the disadvantage
of requiring a pre-built map of the search environment. One
of the limitations of suchmethods is that they are not applica-
ble to previously unknown environments. One might argue
that a robot can explore the environment and build a map
before they start to search object. However, such amap build-
ing process requires exploration of the entire environment,
which could be quite time-consuming, and it does not make
sense that the robot could not find the object while explor-
ing and building a map. Therefore, the ability for a robot to

search a target object without a priori map can be crucial in
such environments.

Inmore recent studies, Zhu et al. [14] proposed adeep rein-
forcement learning-based framework for the object search
without pre-built map. They used deep network to map an
observed image and a target image directly to the robot
action. Although they showed the approach can be general-
ized to new targets and scenes, it requiredmillions of training
images. Also, the evaluation was done in a small-scale envi-
ronment (a single room). Hanheide et al. [15] presented a
framework to plan robot tasks in unknown environments,
and it was evaluated in five tasks including object search.
They used three-layered knowledge schema to represent task
relevant instance, default, and diagnostic knowledge, and
assumptive planning architecture composed with two plan-
ners: a classical planner and a decision theoretic planner
(POMDP). The main difference between ours and Hanheide
et al. is that we directly modeled the probability that each
viewpoint contains the target object, while Hanheide et al.
modeled the probability that each room contains the target
and performed an exhaustive coverage-based search using
POMDP after arriving in the room. In addition, we consid-
ered the mutual information (information gain) as well as
the probability of a possible location of an object for path
planning to find the target.

In this paper, we propose an effective approach for active
object search in unknown large-scale environments. This
approach uses a probabilistic graphical model to represent
commonsense knowledge based on object–object, object–
room, and room–room co-occurrences to overcome the
limitations of exhaustive search-based approaches. As a way
to deal with object search in unknown environment, the
model is built incrementally as the robot searches for the
target and obtains new input data. The contributions of this
work are fourfold:

– We propose a search space reduction method that makes
it feasible to solve object search problems in large-scale
environments with a reasonable computational cost by
decreasing the number of candidate viewpoints.

– We present a probabilistic environment model for object
search that evaluates viewpoints in the environment by
utilizing spatial commonsense knowledge and
environment-specific spatial relations.

– We adopt an ant colony optimization (ACO) algorithm
for path planning to minimize the total search cost while
incorporating priority information about viewpoints.

– We evaluate the validity of the proposed approach in both
simulation and real-world experiments.

The rest of this paper is organized as follows. In Sect.
2, we provide an overview of the proposed approach. Sec-
tion 3 presents a method to reduce the number of viewpoints
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that have to be considered. Section 4 describes the details
of the probabilistic environment model and value estimation
of each viewpoint. In Sect. 5, we show how to generate a
path that minimize the total cost of the object search pro-
cess. Finally, we present experimental results and draw final
conclusion in Sects. 6 and 7, respectively.

2 Approach overview

In this study, we assume that the robot has object recognition
and simultaneous localization and mapping (SLAM) capa-
bilities, and is equipped with the necessary sensors, such as
RGB-D sensors and odometers. Under these assumptions,
the goal is to produce an efficient and optimized path for
finding a target object in unknown large-scale environments.

We first gather new sensor data from the robot’s current
view and build a partial grid map based on the new and previ-
ously gathered data. If there is no pre-gathered data, the map
is built based only on the current sensor data. Then, the map
is used to extract key positions and the connectivity informa-
tion between them to reduce the search space. Throughout
this paper, the term “node” is used to refer to these key posi-
tions, and how these key positions are extracted is described
in the next section.

These nodes and their connectivity information is used to
specify the global structure of a probabilistic environment
model. Each node correspond to each local structure of the
model which is designed to represent object–object, object–
room, and room–room relation in category level.More details
about the local structure can be found in Sect. 4. The connec-
tivity information between nodes is used to relate the local
structures. If two nodes are connected, corresponding two
local structures are connected by undirected edges represent-
ing symmetric relations. While the global model structure is
built based on current search environment, themodel parame-
ters are pre-trained from the training data.We used thismodel
to estimate the value of viewpoints in the nodes based on
obtained object recognition results, while the robot is search-
ing for the target.

With the estimated values, a path planner generates the
path that minimizes the expected time cost for the object
search. Finally, as the robot follows the generated path, the
process is repeated as new sensor data become available.
Figure 1 illustrates an overview of the proposed object search
process.

3 Reducing the search space

To deal with an active object search problem in a large-scale
environment, a method to reduce the search space is imper-
ative for reducing computational costs and search times. To

this end, we use several morphological image processing
algorithms to obtain a nodemap that represents key positions
of the candidate viewpoints and the connections between
them. The search space reduction steps are described in Fig.
2.

First, since the occupancy grid map obtained from the
SLAMprocess does not consider the robot’s dimensions, it is
inflated by the robot’s radius to obtain an obstacle-free space
the robot can occupy (Fig. 2a, b). Then, the inflated map is
skeletonized by adding occupied points on the boundaries of
the free space, but not allowing the space to be split (Fig.
2b, c). Finally, the node map is created by extracting end and
branch points from the skeletonmap,while addingwaypoints
between connected nodes if they are too far away from each
other (Fig. 2c, d).

Due to space limitations, detailed algorithms have been
omitted from this paper. Interested readers may refer to [16,
17] for further detail.

4 Estimating the value of viewpoints

In this work, we define the value of a viewpoint as the sum
of the probability of the existence Et,vi of target object t in a
scene from viewpoint vi and the average amount of informa-
tion about the existence Et,v of the target object in a scene
fromviewpoint v that can be obtained by an observationOc,vi
of an object of category c from viewpoint vi :

Value(vi ) = p(Et,vi = true) +
∑

v∈V

∑

c∈C

I (Et,v; Oc,vi )

NV NC
, (1)

where V andC represent a set of all viewpoints on the current
nodemap and a set of all object categories in the environment,
and NV and NC are the number of viewpoints and the number
of all categories of objects, respectively. Here, the amount of
information I (Et,v; Oc,vi ) is defined as mutual information
(MI):

I (Et,v; Oc,vi )

=
∑

et,v∈Et,v

∑

oc,vi ∈Oc,vi

p(et,v, oc,vi ) log

(
p(et,v, oc,vi )

p(et,v)p(oc,vi )

)
.

(2)

Using the MI [18], we can measure the amount of uncer-
tainty in the existence Et,v of target object t at viewpoint
v that can be reduced by observation Oc,vi of an object of
category c from viewpoint vi . For example, if a robot finds
toothpaste while looking for a toothbrush, the average MI
is increased, because the probability of finding the tooth-
brush at viewpoints near the place where the toothpaste was
found increases, whereas the probability of other viewpoints
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Fig. 1 Pipeline of the proposed active object search process

Fig. 2 Node extraction steps for search space reduction using morphological image processing

123



Intelligent Service Robotics (2019) 12:371–380 375

Fig. 3 Structure of the probabilistic environment model. The vertices
represent random variables: viewpoint random variables Vi , object exis-
tence variables Ec,vi , and observation variables Oc,vi . Shaded vertices
indicate that the values of these variables can be directly obtained
from the observation, while unshaded vertices are hidden and can only
be inferred based on the observations. The variables are grouped by
rounded rectangles to describe the relationships between the node map
andmodel’s global structure. The edges represent relationships between
random variables, where directed edges represent causal relations, and
undirected edges represent symmetric relations. The term “symmet-
ric relation” is used to refer to a relationship that is not causal. More
formally, P(Vi , Vj ) = P(Vj , Vi ), where P(Ec,vi |Vi ) �= P(Vi |Ec,vi ).
Therefore, the relation of two viewpoints’ category is symmetric, while
the relation between existence variable and viewpoint variables is not
symmetric

decreases and uncertainty about the location of the tooth-
brush is reduced. The average MI is also increased if the
robot finds a pillow or coffeemaker, which reduces the prob-
ability of finding a toothbrush near the location where these
objects are found. As shown in this example, it is reasonable
to add the average MI as well as the probability of finding
the target object in a calculation of viewpoint value because
the total cost of the search can be greatly reduced by letting
a robot observe viewpoints that are likely to contain objects
strongly related to the target object.

To calculate a viewpoint’s value, probability distributions
P(Et,vi ) and P(Et,v, Oc,v) are necessary. To this end, we
apply the chain graph model, which is a generalized prob-
abilistic graphical model [19] that can represent both the
causal relations of a Bayesian network and symmetric rela-
tions of a Markov random field.

To build a chain graph model for active object search,
we utilize commonsense spatial knowledge that is not
environment-specific. First, each node in the nodemap is dis-
cretized into eight viewpoints—one at every 45 degrees. The
number of viewpoints per node can affect the computation
time. The smaller the number, the better. Theminimum num-
ber is, however, bounded according to the camera’s angle of
view. In our case, it was 45 degrees, andwe used 8 viewpoints
per node. Viewpoint random variables Vi in the model repre-
sent the category of the scene from corresponding viewpoints
(kitchen, bedroom, study, etc.), and each has a causal relation
with the NC binary random variables Ec,v . These existence
variables represent whether an object of category c exists in
viewpoint v. We also add an additional binary random vari-
able, observation variable Oc,v , for each existence variable
to account for false positive and negative results from imper-
fect object recognition. Finally, a global chain graph structure
(including the number of nodes and the connectivity between
them) is defined by utilizing the node map built in Sect. 3,
which contains environment-specific spatial relations. Each
group of variables corresponding each node in the node map
is connected to each others, if there is direct path between
the nodes. Figure 3 shows the structure of the chain graph
model corresponding to the node map in Fig. 2d.

The 3D simulation environments in Fig. 5 are used to
obtain the model parameters P(Vi ), P(Vi , Vj ), P(Ec,vi |Vi ),
and P(Oc,vi |Ec,vi ). We collect 300 pairs of training images
from each environment by randomly positioning the robot in
the environment and moving it to adjacent viewpoints. Then,
the training images are labeled to obtain the parameters, by
counting the occurrences and co-occurrences of each label.

In the experiments in Sect. 6, aMarkov chainMonte Carlo
methodwith a Suwa–Todo sampler [20] is used to infer prob-
ability distributions P(Et,vi ) and P(Et,v, Oc,v) and estimate
a viewpoint’s value. We compared two sampling methods,
Suwa–Todo and Gibbs sampling, and Suwa–Todo sampler
converged more rapidly than the Gibbs sampler.

5 Path planning for object search

In this section, we describe a path planning method that
incorporates viewpoint values using an ACO algorithm [21].
ACO is a probabilistic approach to obtaining a near-optimal
solution at relatively low computational cost; for that rea-
son, it has been applied to a wide range of computationally
expensive problems, such as the traveling salesman, job-shop
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scheduling, and vehicle routing problems. In this study, we
adopted the max–min ant system [22] variant of the ACO
algorithm because its structure is relatively simple to imple-
ment.

An artificial ant in the proposed approach builds a can-
didate object search path by iteratively and stochastically
selecting a next viewpoint based on the attractiveness ηvi ,v j

of reachable viewpoints from the current viewpoint while
exploiting pheromone information τvi ,v j accumulated on
edges between viewpoints from previous ants. More for-
mally, the probability pvi ,v j of selecting a next viewpoint
v j from a set of adjacent viewpoints Vadj from current view-
point vi is

pvi ,v j = (τα
vi ,v j

)(η
β
vi ,v j )

∑
vk∈Vadj(τα

vi ,vk
)(η

β
vi ,vk )

, (3)

where parameters α and β determine the influence of τvi ,v j

and ηvi ,v j . We defined the attractiveness ηvi ,v j of a transition
between viewpoints vi and v j as

ηvi ,v j = Value(v j )

Time(vi , v j )
, (4)

where the time cost Time(vi , v j ) between viewpoints is cal-
culated from the node map based on the linear and angular
velocities of the robot. For example, if the angle difference
and distance between two viewpoints are 45 degrees and 2
meters, respectively, the time cost of the robotwith an angular
velocity of 45 degrees/second and a linear velocity of 1m/s
is 3 s.

When every set of ants for an iteration has built a search
path, the pheromone trails τvi ,v j are updated by

τvi ,v j ←
[
(1 − ρ) · τvi ,v j + Δτ bestvi ,v j

]τmax

τmin

, (5)

where ρ is the pheromone evaporation coefficient; τmax and
τmin are, respectively, the upper and lower bounds of the
pheromone trails; and Δτ bestvi ,v j

is the amount of pheromone
deposited by the iteration. The amount of newly deposited
pheromone Δτ bestvi ,v j

is proportional to the quality of the best
path in an iteration, where the quality of the path Q(path) is
defined as

Q(path = (v1, v2, . . . vn)) =
∑

v j∈path Value(v j )
∑

(vi ,v j )∈path Time(vi , v j )
.

(6)

As artificial ants repeatedly generate candidate paths and
update pheromone trails, more pheromones are deposited
between viewpoints of higher-quality search paths. That is,

the pheromone reflects the colony’s accumulated experience
while exploring. Since ants prefer to follow paths with more
pheromone, the algorithm converges to a high-quality search
path that visits viewpoints with higher values in less time
than the other candidate paths.

6 Experiments

In this section, we show that the proposed approach can
effectively search for a target object in an unknown large-
scale environment. It is generally very difficult to compare
performances of different object search approaches for
several reasons. First, different object search algorithms
were developed targeting different environments (previously
known/unknown, large/small, home/office, etc.), and there-
fore, it is hard to say which algorithm is the state of the
art. Also, there is no open dataset for fair comparisons
between different object search algorithms. Therefore, we
evaluate the performance of the proposed approach in simu-
lation environments in comparisonwith human performance,
coverage-based search, and random search as a baseline. We
also evaluate it in a real environment to show the valid-
ity of the approach. For each trial in both experiments, the
robot’s probabilistic environment model and grid map were
re-initialized before the search began to make sure the robot
has no prior information about the environment.

6.1 Simulation experiment

We conducted extensive simulation experiments to quanti-
tatively verify that the proposed object search approach can
generate low-cost paths to find a target object in unknown
large-scale environments. Simulation experiments took place
in 60 different environments that are generated from five dif-
ferent house structures by changing the locations of objects
in each structure. The size of 5 environments was about
13.5 m × 9 m, and the size of one environment was about
22 m × 14.5 m. The houses consisted of 7 room categories:
kitchen, dining room, living room, dressing room, bedroom,
study, and bathroom.

The simulated mobile robot was equipped with two RGB-
D sensors: one, for object recognition, mounted on the head
of the robot and one for localization and mapping, mounted
on the base of the robot. The robot also used odometer data
from the simulator, to which we added zero-mean Gaussian
noisewith a standard deviation of 5 cm for additional realism.

For object recognition in the simulation experiments, we
used the logical camera module provided in the simulator
by adding false negative and positive rates of 5% and 1%,
respectively. For localization and mapping, we used real-
time appearance-based mapping (RTAB-Map), which is an
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Table 1 Comparison of average search times in simulation environ-
ments

Human Proposed Coverage Random

Avg. time (s) 17.2194 19.9864 180.8731 764.4873

SD 15.2943 16.4699 248.7436 4018.2940

Table 2 Comparison of average searched area in simulation environ-
ments

Human Proposed Coverage Random

Avg. area (m2) 26.7581 28.6844 315.9765 1365.6848

SD 25.0107 26.3758 467.9845 6654.6784

open-source algorithm using an RGB-D graph-based SLAM
approach [23].

To evaluate the proposed method, we compared the
method to two baseline methods: a coverage-based search
method based on [3] and a random search method. The
random search method randomly selects a sensing action:
turning left, turning right, or moving forward. We also com-
pared the proposed method to human participants by letting
10 participants perform the object search tasks in the sim-
ulation environments using a first-person view and a grid
map constructedwhile navigating.A total of 600 independent
trials were performed for each approach. In each trial, the ini-
tial robot location and target object were randomly selected
from the robot’s free space in the environment and from
97 objects from 40 categories in the environment, respec-
tively.

We recorded the total search time and searched area in
each trial; Table 1 shows the average and standard devia-
tion of the search times. As expected, humans found the
target objects themost quickly.However, the difference in the
average search time between the human participants and the
proposed approach was only 2.7 s; the proposed method per-
formed much better than the coverage-based search method
and random search method. We also note that some of the
differences in time between the human participants and the
robot is caused by humans using the experiences about
house structure from previous runs. Although we shuffled
the environments to ensure the same structure cannot come
out repeatedly, humans could easily use the previous expe-
riences, while the robot always had no prior information
about the environments. Table 2 shows the average and
standard deviation of the searched area. It also shows the
proposed approach is superior to the two baseline meth-
ods. We also note that two baselines searched the area
that exceeds the total area of the given environment in
some trials because of the uncertainty in object recogni-
tion.
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Fig. 4 Frequency histograms of the simulation experiment results
from human participants, the proposed approach, and a random search
method

Figure 4 shows frequency histograms of the search time
for all three cases. The distribution of the search time his-
togramof the proposed approachwas similar to that of human
participants, and clearly outperformed two baselines. The
random search method also found target objects within 15s
for 25% of the search trials. However, the search time was
highly dependent on the initial location of the robot and the
location of the target object. That is, if the robot and target
were in the same room, the robot could easily find the tar-
get using random search; however, in the worst case when
the target was not in the same room, the search took about 5
hours. The performance of the coverage-based method was
also highly dependent on the initial robot and target location,
but its variance and maximum search time was much lower
than those of random search.

To compare the search paths produced by the proposed
method and human participants, we also conducted addi-
tional experiments by setting the same initial robot locations
and target objects. Figure 5 shows the paths created by
the proposed approach in these additional experiments, and
a video recording is available online at https://youtu.be/
Cj5JvOaAw1s. Note that throughout this experiment, the
robot turns more frequently than the human participants, and
is also more likely to enter a room to observe objects. These
phenomena are believed result from the absence of a place
recognizer. In the current system, the robot must observe
objects to infer the category of a scene, but participants could
more quickly classify a scene by observing its furniture or
floor tiles.
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Fig. 5 Example search paths generated by the proposed approach from different object search trials. The green circles correspond to the robot’s
initial locations, and the blue circles correspond to its final locations. The red circles indicate the locations of target objects (color figure online)

Fig. 6 Robot and environment used in the robot experiments

6.2 Robot experiment

We also conducted real robot experiments to verify the valid-
ity of the proposed approach in a real environment. The

experiments were performed in a 4.1m×5.5m test bed and
real environment of about 92m2. We used a Pioneer mobile
robot with two RGB-D sensors, as shown in Fig. 6.
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We used the same SLAM algorithm, RTAB-Map, as in
previous experiments and chose an object recognizer that
uses deep learning and a convolutional neural network (CNN)
[24]. The object recognizer is pre-trained using the CIFAR-
10 dataset, which has 50,000 training images; we fine-tuned
the CNN model using 900 labeled images of 60 different
target objects to increase its reliability.

Throughout the experiments, the robot successfully found
the target objects in all 40 trials in test bed environment and
all 30 trials in real environment without prior information
about the environment. The average search time was 23.35 s
and 62.68 s in the test bed and real environment, respectively,
where the angular and linear velocities of the robotwere set to
20degrees/second and 0.15m/s. The computational time per
iteration of each module was 0.05 s for object recognition,
0.02 s for SLAM, 0.05 s for inference on the environment
model, and 0.38 s for ant colony optimization for search path
planning, on average.

A video of all 40 trials in the test bed environment can be
found at https://youtu.be/rpLZzmGaXW0.

7 Conclusions and future work

In conclusion, we have proposed an efficient approach to
active object search in unknown large-scale environments.
The proposed approach utilizes commonsense spatial knowl-
edge and environment-specific spatial relations based on the
probabilistic environment model. We have also presented
a search space reduction method that uses morphological
image processing and an ACO-based path planning method
that incorporates the value of viewpoints while minimizing
the total search time.What sets our approach aside frommost
previous works is that we use no prior environment-specific
information.

We have demonstrated the promising performance of our
active object search approach in unknown large-scale envi-
ronments with a large series of simulation experiments, and
show that the approach can generate low-cost search paths
that are only 2.7 s longer than those produced by human par-
ticipants. In comparison with a random and coverage-based
search, the proposed approach can provide significantly
lower-cost paths.Wehave also shown the feasibility of apply-
ing the approach to a real-world environment in real robot
experiments.

In future work, we plan to apply an incremental parameter
learning method to the probabilistic environment model, so
that the robot can find target objects more quickly in famil-
iar environments. In addition, we also would like to extend
the proposed approach by incorporating a place recognition
algorithm that gives direct observations to viewpoint random
variables to further improve the performance of the approach.
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