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Abstract
Path planning of cable-driven parallel robots (CDPRs) is a challenging task due to cables which may cause various collisions.
In this paper, three steps are suggested to perform path finding of CDPRs in cluttered environments. First, a way to visualize
the cable collision of CDPRs is suggested to consider actual workspace of CDPRs. Second, a path finding algorithm based
on rapidly exploring random trees (RRT) is presented to find a path free of various collisions of CDPRs including cable
collisions and wrench feasible workspace. While conventional RRT algorithms are mainly focused on mazy environments,
the modified RRT algorithm proposed here directly connects a sampled node and the tree to find a path faster in a non-mazy,
but cluttered environment. Goal-biased sampling algorithm is also modified and employed to decrease computational cost. To
deal with complicated collision detection of cables in the RRT, Gilbert–Johnson–Keerthi algorithm was employed. Finally,
post-processing algorithm for any waypoint-based path is suggested to get a shorter and less winding path. A numerical study
was carried out to suggest choosing proper meta parameters for the post-processing algorithm. The suggested algorithms
were evaluated with 1000 times of simulations, and they were equally carried out for RRT* to compare. According to the
results, the suggested algorithm found a shorter path with less computation time compared to RRT* and the post-processing
algorithms made the already found path shorter.

Keywords Cable-driven parallel robot · Path planning · Cable collision · RRT

1 Introduction

Cable-driven parallel robots (CDPRs) are the ones actuated
by winches parallelly connected to their end-effectors by
cables. CDPRs have several advantages originated in a cable
actuation. First, they have a vast variable workspace that
makes it possible to utilize them in various environments.
Additionally, CDPRs can manipulate heavy and large pay-
loads with respect to their cost. That is because, unlike other
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link-based manipulators, actuators of a CDPR are generally
fixed on the frame, not on a moving manipulator itself [1].
It reduces mass and inertia of manipulators, and allows the
manipulator to handle relatively heavier things. For this rea-
son, recently many researchers have had their research focus
on CDPRs to employ their advantageous properties [2–5].

For using cable actuation in CDPRs, there are not only
the advantages but also problems come from it. One issue
focused in this paper is a problem of cable interferences
in path planning of a CDPR in cluttered environments.
Path planning is a classic issue in robotics, but still many
researches on it are actively under way [6–9]. Because suit-
able path planning is needed for robots as they have different
characteristics, which deeply affect the path planning. CDPR
is one of the challenging platforms to plan a path because
of cables. The cables of a CDPR are easily interfere with
obstacles, end-effector, or themselves because they are hang-
ing across the workspace. Cable interferences might cause
an instantaneous tension drift on the cables, which would
distort the entire trajectory of the end-effector. Consequently,
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consideration of cable interferences is essential for path plan-
ning of CDPRs in cluttered environments.

Accordingly, researchers have studied for algorithms to
detect interference of cables for CDPRs [10–12]. In [11],
Blanchet et al. presented a detecting algorithm for cable
interferences with environments and self-interferences. They
considered cable volume and used a catenary model to
consider cable sagging for more realistic collision detec-
tion algorithm. Nguyen et al. suggested several algorithms
to detect cable collisions for general spatial CDPRs [10].
In this research, the authors studied about two cases of
interferences: collisions between cables and cables, and inter-
ferences between cables and the end-effector.Wang et al. [12]
presented cable collision-free area by clustering obstacles.

To operate CDPRs in cluttered environments, path plan-
ning is another important issue, because cable interference
detection algorithms are not possible to prevent collisions.
But there are not enough researches on path planning of
CDPRs in cluttered environments. Lahour et al. proposed
a path planning algorithm for CDPRs which has two behav-
ior modes according to distances between end-effector and
obstacles [13]. The authors used dual mode strategy based on
a uniform grid to achieve the proposed obstacle avoiding path
planning. It can find a path to goal if it exists. But the two core
methodologies of it, which are dual mode and base of grid,
have disadvantages. First, the suggested algorithm switches
its mode from depth-first mode to width-first mode when the
path meets obstacles. As a result, it generates paths which
turn around obstacles. Those paths are clearly ineffective.
Uniform grid-based approach also contributes to generation
of ineffective path. Generally, grid-based path planning algo-
rithm is fast enough to deal with real-time operation. But
uniform grid-based path planning algorithm is a conserva-
tive obstacle avoiding algorithm because they have wasted
space due to the grid size. Thus, there needs non-uniformly
sampled grid-based path planning algorithm which will find
more effective path.

Therefore, rapidly exploring random trees (RRT), which
is a representative sampling-based path planning algorithm,
is dealt with in this paper for more general and effective path
planning of CDPRs in cluttered environments. RRT is a ran-
dom sampling-based path planning algorithm suggested in
[14]. It is possible to perform a path planning which consid-
ers complicated constraints and dynamics of a system with
RRT [15]. Besides, it can be easily modified and applied
to numerous system such as drones [16–18], mobile robots
[19–21], autonomous vehicles [22,23], etc. This adaptability
of RRT comes from properties of sampling-based planning
(SBP). SBP randomly samples all possible configurations in
C-space, and it guarantees that SBP finds an existing path if a
number of sampling points is large enough. This characteris-
tic is referred to as probabilistic completeness [15]. It is one
of the essential properties of RRT, and any RRT-based plan-

ning algorithms should have it to assure that the algorithm is
able to find a solution path if it exists. Recently, there exist
several researches to reduce computation time by limiting
sampling region [24,25].

In order to use RRT practically, a fast collision detection
algorithm is necessary on account of needs for numerous
sampling and collision checks in the sampling-based algo-
rithms. There have been countless researches on collision
detection algorithm for various usages [26–29]. Bergen [27],
Klosowski et al. [28], and Gottschalk et al. [29] are very fast
collision detection algorithms used for real-time collision
detection, while they are less strict. These algorithms could
not be considered for path planning of CDPRs because the
workspace is much more complex and confined than what it
looks like due to cables in the path planning of CDPR. An
practical workspace, which considers cable collisions, can be
visualized as suggested in Fig. 1 by perspective projection of
cables’ outlet points against the obstacles.

Therefore, fast and more accurate collision detection
method is needed in using RRT for CDPRs. In this paper,
Gilbert–Johnson–Keerthi (GJK) algorithm presented in [30]
is used to detect various collisions. The algorithm is a kind of
real-time collision detection algorithm based on Minkowski
differentiation. One of the most advantageous properties of
the algorithm is that it can strictly detect collisions between
any shapes of convex polytopes [31]. Furthermore, it can cal-
culate the minimum distance between two polytopes. These
properties are appropriate to be used for path planning of
CDPRs with RRT.

There already exists a research that presented about RRT-
based path planning of CDPRs [32], but the research is only
considering about a planar CDPR, and collisions between
obstacles and cables are not considered. Considerations on
the collision and spatial path planning are imperative in
practical path planning of CDPRs. Hence, in this paper,
we suggest a methodology to plan a path of CDPRs in

Fig. 1 a A CDPR with 3 random obstacles. b Visualization of obstacle
shadow which is an virtual obstacles for cable anchored points on the
end-effector
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cluttered environments by using RRT and GJK algorithm.
Interferences between cables, end-effector, and obstacles are
considered to avoid undesirable collisions.

This paper is organized with 5 sections. The remaining
sections are described as following. Problem definition and
background knowledge are introduced in Sect. 2. In Sect. 3,
we introduce our methodology to apply RRT for path plan-
ning ofCDPRs in cluttered environmentswith considerations
on various cable interferences, collisions, and wrench feasi-
ble workspace. To verify the suggestion, simulation and the
result are presented in Sect. 4. Finally, the study is concluded
in the last section.

2 Background

2.1 Considerations in path planning of CDPRs

Most of the problems in path planning of CDPRs are caused
by cables because they are crossing the workspace by con-
necting end-effector and the fixed frame. Moreover, they
only can hold positive tensions and have other nonlinearities
such as sagging, hysteresis, and creep. Hence, path plan-
ning of CDPRs is a challenging task, especially in cluttered
environments. In this paper,we present amethodology to per-
form a practical path planning for CDPRs based on sampling
approach to consider these various issues of it.

Followings are some assumptions and considerations for
the system and the algorithm suggested in this paper.

1. The cable is assumed to be a straight line for simplifica-
tion of collision detection. It means that there is no cable
sagging caused by any reason.

2. Outlets of cables, which generally mean the last pulleys
of winches, are assumed to be fixed points. Outlet bias
caused by cable-wrapping on pulleys is not considered.
It also means that the last pulleys cannot be reconfigured.

3. Shapes of the end-effector and obstacles are assumed
to be convex polyhedra. Concave polyhedron shape of
the end-effector and obstacles can also be considered by
separating them into a group of convex polyhedra. This
means that the algorithm suggested in this paper can be
applied to the almost whole shape of CDPRs by approx-
imating them into polyhedra. That is possible with GJK
algorithm suggested in [30,33].

Figure 2 shows the depicted CDPR model assumed in this
paper.

2.2 RRT* algorithm

Rapidly exploring random trees star (RRT*) [34] is a well-
known path finding algorithm based on the classic RRT [14].

Fig. 2 In the model of the payload and the environment used in this
paper, the end-effector is assumed to be a polyhedron supported by l
number of straight cables from a fixed outlet Bi to an attaching point
on the end-effector Ai . Outlet pulleys are fixed on the inertia frame and
cannot be reconfigured. There exist m number of polyhedron-shaped
obstacles Oj

RRT randomly searches all over the workspace, so it finds
a winding path which is generally irrelevant to the optimal
path. By this reason, RRT* investigates nodes nearby a new
node and rewiring them by their costs. The pseudocode of
the algorithm is shown in Algorithm 1.

Algorithm 1: RRT*
1 T ← xinit ;
2 for i=1,...,k do
3 xrand ←RandomSample();
4 xnearest ←Nearest(T , xrand);
5 xnew ← Steer(xrand, xnearest);
6 f lag ← CollisionFree(xnearest, xnew);
7 if flag then
8 Xnear ← Near(T, xnew);
9 xparent ← FindParent(Xnear+, xnearest , xnew);

10 T ← Append(T , xparent, xnew);
11 T ← Rewire(T , xparent, Xnear, xnew);
12 end
13 end
14 return T

First, the algorithm randomly samples a state xrand in a
configuration space. Then, it finds the nearest node xnearest in
the tree T which will be a branch point for a new node. The
algorithm finds a control input u that makes a state steer and
drive toward the node xrand from the nearest node within a
unit time. For adding the new node to the tree, the new node
is checked whether it collides with any obstacles during the
steering process or not. If it does not, the algorithm computes
costs and rewires every node nearby the new nodes.

As noted in the introduction, the algorithm is always
possible to find a path to the goal if there exist enough
number of sampling. The property is called ‘probabilistic
completeness.’ Thanks to the property, the algorithm can be
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used to find a path in any cluttered or mazy environments.
Furthermore, the algorithm is possible to consider various
limitations and constraints with line 6 in Algorithm 1. For
classic robots, such as serial manipulators andmobile robots,
the step of the line only checks collisions of the robots them-
selves. But for CDPRs, it can consider various collisions
and constraints such as cable collisions and wrench feasi-
ble workspace (WFW). Following subsections and sections
describe considerations on those collisions and constraints.

2.3 GJK algorithm

Collisiondetection is oneof themost important tasks inRRT*
because it is the process that guarantees the generation of a
collision-free path. Moreover, it greatly affects computation
timeof path planning algorithm. In this paper, randomconvex
polyhedra-shaped obstacles and end-effector are assumed to
consider more practical path planning. Therefore, fast and
general collision detection algorithm is needed. GJK algo-
rithm is a classic real-time collision detection algorithm for
convex polytopes. At first, it is introduced as an algorithm
for the shortest Euclidean distance computation algorithm
between convex polytope set [30], but it is more famous as
collision detection algorithm for convex polytopes. Nowa-
days, improved version of the algorithm [33,35] is widely
used in many areas such as robotics, physics engine, and
other geometric simulations. One limitation of the algorithm
is a prerequisite that it can only be applied to convex poly-
topes. For this reason, concave obstacles and end-effector
must be approximated as a convex polytope or decomposed
into convex polytope subset.

Algorithm 2: GJK algorithm

1 k,W0 ← Initialize();
2 for i=1,...,k do
3 wi ← minNorm (CH(Wi−1));
4 if wi == O then
5 return true;
6 else
7 Wi ← newSimplex(Wi−1, wi );
8 vi ← sA�B(−wi ) = sA(−wi ) − sB(wi );
9 if wi == vi then

10 return false;
11 end
12 end
13 end

Fundamental pseudocode of the algorithm is shown in
Algorithm 2 [35]. Wi is a simplex set which is the simplest
convex polytope having d + 1 points in d dimension space.
The function ‘minNorm’ finds a point which has the minimal
norm in the given input space. ‘CH’ gives a convex hull set
of the given points. ‘newSimplex’ gives a simplex points

set which contains the given point and subset of the given
simplex. sa(b) is called ‘support function’ which gives the
extreme point along the b direction in a. a � b denotes the
Minkowski difference which is defined as {x − y|x ∈ a, y ∈
b}. A and B are the target polytopes for collision check.

The algorithm iterates a sub-algorithm which makes a
simplex in Minkowski difference try to contain the origin.
Because, if theMinkowski difference contains the origin, the
polytopes that make the difference collide with each other.
Nowadays, the algorithm isworkingwith aVoronoi diagram-
based scheme to optimize the speed [35]. Hence, it is fast
enough to check collisions in real time. This fast collision
detection algorithm is proper to be used for RRT which must
be iterated many times.

Furthermore, GJK algorithm is possible to detect colli-
sion between polytopes in different dimensions without any
modification. This improves reusability and productivity of
codes.

3 Considerations on limitations

Limitations in path planning of CDPRs must be considered
in ‘CollisionFree’ function in Algorithm 1. In that function,
feasibility of a path is checked including not only external
collisions but also internal interference and getting out of
WFW. The following subsections account for this.

3.1 External collision detection

External collision in this paper denotes collisions between
obstacles and a part of CDPR such as cables and end-effector.
The external collision is a fundamental consideration in most
path planning problems. In RRT algorithm, collision detec-
tion must work during a robot’s step driving to a randomly
sampled node. To detect a collision of a moving object, a
swept volume obtained by sweeping the object along the
moving trajectory is needed. If the swept volume is convex,
its collision can be easily detected by applying GJK algo-
rithm. But general moving trajectories are splines. Swept
volume of it is generally concave and would not be separated
into convex polytopes. Therefore, a linear driving scheme is
used inRRTpath planning for a simplification of the collision
detecting problem. The convex swept volume with linear tra-
jectory can be obtained by getting convex hull of points of the
object at an initial point and a goal point. If the swept volume
does not collide with any obstacles, collision-free movement
of the object is guaranteed. Rotation of the end-effector is
not considered for the same reason. Those exclusions can be
considered with conservative assumptions, but it is not dealt
with in this paper.

The difference between path planning of CDPR and that
of other robots is the existence of cables. Not only colli-
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Fig. 3 a Ri denotes a region that a point Ai in Fig. 2 cannot pass
through. The region is called ‘obstacle shadow’ in this paper. bObstacle
shadows for an obstacle in a fully constrained CDPR. The red polyhe-
dron is the obstacle, and blue polyhedra are the obstacle shadows (color
figure online)

sions between obstacles and end-effector, but also collisions
between obstacles and cables must be considered in path
planning of CDPR. To simplify the problem, cables are
assumed to be straight and have no sagging. The pointswhere
cables are anchored on the end-effector are defined as Ai and
the points where cables are connected to the fixed frame are
defined as Bi in Fig. 2. With an assumption that cables do
not sag, i th cable collides with an obstacle if Ai is behind
the obstacle in the view of Bi . From this, cables–obstacles
collision area can be depicted as like in Fig. 3a. By using this
concept, cables–obstacles collision volume can be visual-
ized as obstacles. Figure 3b depicts these volumes for a fully
constrained CDPR. One difference between the volume and
obstacle is that the i th volume only can affect specific point
Ai , while obstacles affect the whole end-effector volume.

During a steering step of RRT, moving Ai and fixed Bi
perform a triangular polygon in the space. To avoid cables
interference, collisions between the triangular polygon and
obstacles must be checked. GJK algorithm can detect colli-
sions between polyhedron and polygon without modifying
the algorithm.

3.2 Self-interferences

Basically, self-interference occurs due to cables which drive
CDPRs. There may exist collisions between cables and
cables, and cables and end-effector. Nguyen and Goutte-
farde [10] and Makino and Harada [36] calculated distances
between cables to find self-interferences of cables, but this
method is not proper to plan a path and there can exist numer-
ical errors.

The advantage of GJK algorithm is that it is possible
to react any kind of collisions described above. As told
in the external collision detection part, GJK algorithm can
detect collisions between polytopes of a different dimen-
sion. Hence, it can also detect interferences between cables
and cables, and cables and end-effector. An end of a cable is
assumed to be fixed on the pulley; then, linear step driving

of end-effector makes the other end move linearly. So the
cable performs a triangle during the linear step driving of the
end-effector. Collision detection between the triangles, and
the triangles and end-effector sweeping volume using GJK
algorithm allows preventing the self-interferences during the
path planning of RRT.

3.3 Consideration of wrench feasible workspace

CDPRs have limitations due to cable properties because it is
driven by cables. The most critical property that affects the
CDPRs is the property that cables are possible to sustain only
positive tension. Cables cannot exert reaction force against
any negative tensions, namely compression. Hence, a con-
figuration possible to generate negative tensile force must be
avoided. Therefore, it is needed to express some wrench as
a combination of positive tensile forces of cables. A config-
uration set which is possible to do it is defined as ‘Wrench
Feasible Workspace (WFW)’ introduced in [37].

If a wrench set which can be generated by combinations of
tensile forces is possible to contain a required wrench set, a
configuration of the end-effector at that time is called ‘wrench
feasible’ [37,38]. The wrench set is called ‘available net
wrench set,’ and the required wrench set is called ‘required
net wrench set.’ Available net wrench set is determined by
configuration of the end-effector and minimum and maxi-
mum tensile force needed. Figure 4 describes a randomly
configured CDPR (a) and force part of available net wrench
set (b). Tensile forces are exerted along the cables, and they
have minimum and maximum limit because of cable prop-
erties. By combining minimum and maximum tensile forces
along the cables, raw available netwrench set can be acquired
whose force part of it is expressed as a red convex polyhedron
in Fig. 4b. In general, required force can be considered as a
sphere at the force domain. Therefore, an inscribed sphere
of the raw available net force set can be considered as effec-
tive available net force set. If the radius of the required force
sphere is smaller than that of the effective available net force
set, the configuration is force feasible. A moment feasibility

Fig. 4 a Random configuration of a CDPR. b Available force set
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is possible to considered similarly. Finally, consideration of
both feasibilities represents the wrench feasibility.

Then, a grid map of wrench feasibility against the config-
uration space can be obtained. Investigating position of the
end-effector whether it is inside of the grid map or not is
performed during the pathfinding algorithm. This will lead
the generated path to stay in the wrench feasible workspace.

4 Modified RRT for CDPRs

The RRT* algorithm has several disadvantages to applying
for CDPRs. First, a found path is too winding to track. It
means that there exist a relatively large number of waypoints
and they cause impact which generates oscillation on the
end-effector. The oscillation can be avoided by generating
smooth path or using input shaping introduced in [39]. A
large number of waypoints have disadvantages in both cases.
Furthermore, those winding paths have a large cost. Second,
the fundamental RRT has relatively large calculation cost. It
cannot reach the goal even with simple cases. This problem
is caused because the fundamental RRT is developed for an
uninformed pathfinding. But for path planning of CDPR in
cluttered environments, the assumption of the uninformed
situation is not necessary.

Two solutions are suggested in this study to solve the prob-
lems. Goal biasing [40] and direct connection to a randomly
sampledpoint are thefirst solution, andpost-processingof the
generated path is suggested as the second solution. Modified
goal-biased sampling is employed to reduce exploration time.
Conventional goal-biased sampling algorithm or other tries
to improve sampling like [40] samples based on a probabil-
ity. It increases problem complexity by adding meta-variable
of sampling probability. This is originated from step extend
of conventional RRT. In this paper, direct connection to a
sampled point is used instead of the conventional method.
That method makes goal-biased sampling be deterministic.
Hence, the concept of the goal-biased sampling is naturally
merged with RRT. Algorithm 3 is presenting these process.

The algorithm is initialized and performs a goal sampling
on demand. After every changes in tree T , next random sam-
ple is fixed on the goal point. For a not mazy environment,
it dramatically decreases the number of iteration for the first
reach to the goal. Then, ‘FeasibleCheapest’ finds the feasible
and cheapest node on the Tree T . Path cost to find a cheap
node is calculated as the sum of length from the root of the
tree to a node and distance from the node to xrand. Funda-
mental feasibility check is completely same with contents of
Sect. 3, but there are some additional conditions for modified
goal-biased sample. If xcheap is equal to xgoal and path goal
is already connected, xcheap must be cheaper than the exist-
ing parent of xgoal. Otherwise, only conventional feasibility
check is carried out to ensure the feasibility of xrand. If there

Algorithm 3: Modified RRT algorithm

1 T ← xinit ;
2 chkGoal ← true;
3 for i=1,...,k do
4 if chkGoal then
5 xrand ← xgoal;
6 chkGoal ← f alse;
7 else
8 xrand ← RandomSample();
9 end

10 xcheap ←FeasibleCheapest(T , xrand);
11 if Exist(xcheap) then
12 T ← Append(T , xcheap, xrand);
13 if xrand == xgoal then
14 Return T
15 else
16 chkGoal ← true;
17 end
18 end
19 end
20 return T

exist the feasible and cheapest node xcheap, the algorithm
connects it to xrand and directly adds xrand into the tree. This
direct connection generates less winding paths and decreases
searching time especially in simple cases. Additionally, if
xrand is equal to xgoal, the algorithm returns the tree T as the
first-reached path. Unlike other RRT-based algorithms, the
suggested algorithm only uses first-reached paths and does
not perform further searching for a better paths because of a
post-processing algorithm explained next.

The suggested modified RRT algorithm generates less
winding path than conventional RRT algorithms. Still, result-
ing paths are expected to have relatively large cost. Hence,
a post-processing algorithm is suggested to reduce the cost
of resulting paths. The suggesting post-processing algorithm
significantly reduces entire path cost, while it is a sim-
ple idea. Furthermore, it can be applied to any other path
planning algorithm that consists of waypoints. The post-
processing consists of two steps: a backward rewinding and
forward rewinding. Algorithms 4 and 5 describe each steps of
them.

There exist three for loops that are nested in the algorithms.
The first for loop sweeps a reference node. The remaining
nodes are explored by the second for loops. Then, ‘Calcu-
lateStepVector’ finds a step vector from the explored node
to the next node of it in direction toward the reference node.
This progress makes each rewinding algorithm try to con-
nect the furthest waypoints if feasible, and the feasibility is
checked with ‘FeasibleToRewind.’ Again, the word ‘feasi-
ble’ is described in Sect. 3. The algorithms choose a reference
waypoint from the last or first, then choose backward or for-
ward waypoints. The pair point xstep is a step forward or
backward among the waypoints. The backward and forward
rewinding algorithms are not individual but are sequential
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Fig. 5 Graphical expression of the proposed post-processing algorithm

algorithms. Effect of the sequence is analyzed in Sect. 5.2.
Figure 5 delineates backward and forward rewinding algo-
rithm. These algorithms can be conducted multiple times for
more low-cost path, but cost-reducing effect compared to
computational time radically decreases by repetition. This is
also suggested in Sect. 5.2.

Algorithm 4: Backward Rewinding

1 for i=n,...,2 do
2 for j=1,...,i-2 do
3 step,m ← CalculateStepVector(xj, xj+1);
4 for k=0,...,m do
5 xstep ← xj + k ∗ step;
6 if FeasibleToRewind(xi, xstep) then
7 Rewind(xi, xstep);
8 i←j+2;
9 j←1;

10 Break;
11 end
12 end
13 end
14 end

Algorithm 5: Forward Rewinding

1 for i=0,...,k-2 do
2 for j=k,...,i+2 do
3 step,m ← CalculateStepVector(xj, xj−1);
4 for k=0,...,m do
5 xstep ← xj + k ∗ step;
6 if FeasibleToRewind(xi, xstep) then
7 Rewind(xi, xstep);
8 k←UpdateWaypointNumber();
9 j←k;

10 Break;
11 end
12 end
13 end
14 end

Table 1 Fundamental simulation parameters

Description Spec.

Workspace dimension 2 m × 2 m × 2 m

End-effector dimension 0.15 m × 0.15 m × 0.05 m

Initial position [0.3, 1, 0.3]

Goal position [1.7, 1, 1.7]

Step distance 0.1 m

Obstacles height 0.5–1.5 m

Obstacles width 0.1–0.3 m

5 Simulation

In this section, several simulations are carried out to prove
suggested path planning algorithms. They are conductedwith
commercial software MATLAB 2017b R© on the operating
system of 64-bitWindows 10 Pro. Intel R© i5-4690@3.5GHz
CPU and 12GB DDR3 RAM is used for the computations.
Fundamental simulation parameters are presented in Table 1.
Prism-shaped obstacles are randomly generated all over the
workspace. But those which collide with the initial and goal
points are repeatedly regenerated until they do not collide
with the points. Wrench feasible workspace, which is easily
changed by the properties of cables and the end-effector,
and the required wrench set, is ignored in this simulation
for a convenience although it was considered in Sect. 3.3.
An identical step distance was used for both RRT and the
post-processing algorithms.

5.1 Path planning result

Figure 6 shows results of comparable path planning meth-
ods. Every path shown in the Figure does not collide with
the obstacle in the workspace. RRT* and the suggested
modified RRT algorithms are compared. Application of the
post-processing algorithm is also compared.According to the
results, suggestedmodificationmakes the resulting path have
less number of waypoints. Furthermore, the post-processing
algorithm makes both path planning algorithm result have
less number of waypoints and shorter path. Further evalua-
tion is presented at following subsections.

5.2 Post-processing

In this subsection, numerical studies on the suggested post-
processing is performed. The study is progressed with
parameters presented on Table 1. A simulation was carried
out with 1000 times of iterations and obstacles are regener-
ated per each iteration. The simulation generates path using
the modified RRT and then apply the post-processing algo-
rithm for the generated path with step distance sweeping.
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Fig. 6 Path planning result a RRT*. b Modified RRT. c RRT*+post-
processing. dModified RRT+post-processing

Fig. 7 Step distance sweeping result a average reduced path cost, b
average computation time cost

The sweeping step distance starts from 0.01 (m) and end
over 0.5 (m) with 0.01 (m) of step. Average results out of
whole 1000 iterations are presented in Fig. 7. Figure 7a is a
plot of average reduced path cost in percentage against step
distance, and (b) is a plot of average computation time cost
against step distance. Reducing step distance generates more
effective path, while its computation time cost increases dra-
matically according to the results. Hence, step distance must
be compromised between computation time and path cost by
users.

In Fig. 8, analysis on sequence between backward and
forward rewinding algorithms and their iterative property
are depicted. Ten repeated iterations of post-processing were
conducted with backward-first and forward-first method for

Fig. 8 Comparative simulation result between backward–forward and
forward–backward post-processing; the box–whisker plot shows distri-
bution of the first iteration for each method

1000 times. Same waypoints are used for backward-first
and forward-first post-processing algorithms. There aver-
agely exist 0.66 %p of gap in their average cost reducing.
And iterative use of the post-processing algorithm might
reduce the path cost, but it is hard to expect huge path
cost reduction. In conclusion, however, the sequence of two
algorithms are still important because there are some out-
liers according to the result. Still there is no algorithmic
pre-discrimination for the sequence so it is recommended
to perform both methods and compare to chose a better
one.

5.3 Batch evaluation

Batch evaluation is carried out to rate suggested algorithms
numerically. Two kinds of environments illustrated in Fig.
9 are used to evaluate the suggested and conventional algo-
rithms. Obstacles in the environments obstruct the way to
goalmuch according to their shadows. Four algorithms noted
in Fig. 6 are repeatedly conducted 1000 times per each. Batch
evaluation results are presented in Table 2. Algorithms stop
to find a path at their first reach to the goal.

According to the result, computing time of the modi-
fied RRT was only 0.87% of RRT*’s in the one-obstacle
environment and28.62%ofRRT* in the three-obstacles envi-
ronment. Its path cost was 19.88% shorter than RRT* in the
one-obstacle environment and 13.40% shorter than RRT* in
the three-obstacles environment. In the one-obstacle envi-
ronment, the post-processing algorithm took 0.069 seconds
for RRT* and 0.035 s for the modified RRT. In the three-
obstacles environment, the post-processing algorithm took
0.241 seconds for RRT* and 0.126 s for the modified RRT
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Fig. 9 a A one-obstacle environment. b Augmented obstacles due to
the cables for the obstacle in (a). c A three-obstacle environment. d
Augmented obstacles due to the cables for the obstacles in (c)

according to the calculation. It decreases average path cost
by 35.31% for RRT* and 17.11% for modified RRT in the
one-obstacle environment and 34.20% for RRT* and 18.44%
for modified RRT in the three-obstacles environment. Note
that standard deviations of computation time are extremely
high due to randomness of RRT.

Furthermore, two-sample t tests were performed to sig-
nify difference between the data. According to p values of
the group from A to R, results of the suggested algorithm are
significantly different with conventional algorithms in spite
of their large standard deviations originated from some out-
liers which can be observed in Figure 8. In contrast to this, the
path calculation results without the post-processing are iden-
tical for group A, B, K and J. This is because their process
is completely same except for the post-processing, and the
pos-processing computing times and costs are noted apart.
Especially note that calculation times in the group B might
be looked different when their average value and standard
deviations are the only focusing elements.

Computing time of RRT* does not change a lot according
to the t test group A, B, K, and J even though the envi-
ronment is extremely cluttered because of omnidirectional
search of it. On the other hand, computing time of the pro-
posed algorithm was strongly dependent on environmental
complexity. Despite the dependency, computing time of the
modified RRTwas obviously shorter than that of RRT*. Path
cost was minimal with RRT* and the post-processing in both
cases. It is considered that relatively smaller step length of
the RRT* may affect the post-processing. Ta
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6 Conclusion

In this research, a methodology to find a path of CDPRs in
cluttered environments without collision is suggested based
on a modified RRT algorithm. A way to consider exter-
nal and internal collision due to cables and wrench feasible
workspace during path planning is suggested. Every collision
was detected with GJK algorithm which is a fast multi-
dimensional collision checking algorithm. Furthermore, a
modified RRT and a post-processing algorithms were pre-
sented to find a less winding path for CDPRs. Suggested
algorithms are evaluated with simulations. According to the
result, the suggested algorithms found a pathwithout any col-
lision and the modified RRT algorithm found a shorter path
with smaller computing time compared to RRT*. Also, the
post-processing algorithm decreased path cost up to 35.25%
in a simple environment. For the more complex environ-
ment, the post-processing algorithm decreased path cost up
to 33.94%, while it only consumed 0.24 s of computing time
out of 12.93 s to find the path.
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