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Abstract
This paper presents a geometrical path planningmethod, and it can help unmanned aerial vehicle to find a collision-free path in
two-dimensional and three-dimensional (2D and 3D) complex environment quickly. First, a list of tree is designed to describe
obstacles, and it is used to query the obstacles which block the line from starting point to finishing point (blocking obstacle).
Specially, the list also stores the edge information of blocking obstacle. For the obstacles with short distance, a reasonable
way to fly over is studied. Then, a shortest path planning method based on geometrical computation is proposed according to
different shapes of obstacles. The obstacles are convex and divided into two cases of 2D and 3D. 2D environment includes
rectangular obstacle, trapezoidal obstacle, triangular obstacle, circular obstacle and elliptic obstacle. In 3D, it includes cuboid,
sphere and ellipsoid. To compare with other methods, the simulation is made in different environments. In 2D environment
with circular obstacles, the method is similar to the artificial potential field. In 2D environment with rectangular obstacles, the
performance of the proposed method is better than A-star. Compared with genetic algorithm, the proposed method gives a
better result in 3D environment with cuboid obstacles. In 3D environment with hybrid obstacles, it is similar to interfered fluid
dynamical system. Through comprehensive comparison and analysis, the conclusion is that the method has good adaptability
and does not require grid modeling. It can find a shorter path in 2D/3D complex environment within a short time, so it has
the ability of real-time path planning.
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1 Introduction

After several years of studies, many researchers have pro-
posed a number of representative methods about path
planning. These methods can be roughly divided into the fol-
lowing categories: the methods based on graph, e.g., Voronoi
diagram [1] and probabilistic roadmap (PRM) [2], the meth-
ods based on heuristic search, e.g., A-star (A*) [3] andD-Star
[4], the methods based on random search, e.g., ant colony
(AC) [5], particle swarm optimization (PSO) [6] and genetic
algorithm (GA) [7], the methods based on potential field,
e.g., simulated annealing (SA) [8], stream function [9] and
boundary value problem (BVP) [10].

For unmanned aerial vehicle (UAV), path planning is an
important link between mission planning and basic control,
somore andmore researchers have realized that effective path
planning is a key method to improve the autonomy and intel-
ligence of UAV. From the view of mission planning, another
way of classification is two-dimensional/three-dimensional
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(2D/3D) path planning and offline/on-line path planning.
According to the top-down analysis, this classification is
more reasonable, because not every algorithm can solve all
the problems apparently.

On the other hand, the realization of algorithm cannot be
separated from data, otherwise the optimality and real time
is simply out of the question. The data of path planning are
terrain, and differentmodelingmethods of terrain completely
determine the applicable path planning algorithm. So starting
from the geometric modeling of terrain and designing a path
planning method for it is feasible? This is the work of this
paper.

According to different modeling methods of terrain, the
existing path planning method can be discussed as follows.

The graph-based approach is more suitable for global path
planning, so they can find an optimum solution in some
way. However, the theoretical optimum is hard to reach. For
instance, in Voronoi diagram, different definition of threat
may lead to a different optimal path [11]. The influence of
human factors makes there is no uniform standard to find
optimal path in Voronoi diagram. But the advantage of the
method is it has clear theory and can compute the com-
plexity (its complexity is n log n and n is the number of
threat). The random sampling frequency of PRM method
is also determined by human factors [12]. The complexity
of PRM depends on the difficulty of searching path but it
almost has no relationship with map and dimension. In other
words, these methods have their own advantages, but their
optimal paths are doubtful. Visibility graph was proposed to
find a collision avoidance path in polyhedral environment,
and it is closely related to the optimization approach [13].
The remaining problem is the quantization of configuration
into intervals, andhigher resolutionof quantizationwill result
in more cost of computation. Line of sight is also a graph-
based approach which is similar to visibility graph [14]. Both
of them are always used in pursuit-evasion games [15], and
the reason is that they work on the strategic level but not the
practical trajectory.

The grid-based method is studied frequently, and there
are a lot of research results. A-star is one of the well-known
algorithms in this class, and now many researchers have
focused on the improvement in heuristic function to reduce
time consumption [16]. However, it has the problem of com-
bination explosion because of gird and data structure. D-Star
is improved by A-star. It can make dynamic path planning,
but the shortest path is still influenced by the density of grid
[17]. In addition, AC needs grid to compute the matrix of
pheromone concentration [18] and GA needs grid to make
genetic operation [19]. Both of the methods rely on infinite
iterations to approach a theoretical optimum. Another prob-
lem is that the lack of clear mathematical derivation makes
it is hard to give an accurate analysis of complexity.

Compared to grid-based method and potential field meth-
ods, the map used in potential field methods do not require
complex modeling process and they are often efficient. So
they are suitable for real-time path planning. Common poten-
tial field methods use force to find shortest path, but they
must endure local optimum [20]. Learning from the concept
of fluid dynamic, stream function establishes a potential field
which can avoid local minima [21], and it is also extended to
three-dimensional space [22]. Due to the restriction of fluid
dynamic, stream function has stagnation point which will
lead to the termination of planning. BVP also uses harmonic
field, and it does not have local minima too, but it need grid
model. Hence, the optimal path of BVP is also influenced by
the density of grid.

Terrainmodeling is a process of describing obstacles in the
environment, andobstacles canbe replacedby abstract geom-
etry. Therefore, the environment full of geometries drives the
idea of findingpath byusinggeometric computation.Accord-
ing to the geometric characteristics of different obstacles,
a method of finding shortest path is studied in this paper.
Specially, the method is also improved for unmanned aerial
vehicle (UAV). The proposed method can handle most of
convex obstacles and can be used in 2D and 3D environ-
ment. In simulation, the method shows a good performance
in real-time planning and its path is always the shorter one
compared with others.

2 Description of environment

2.1 General idea

The general idea is that first describe obstacles as different
types of convex polyhedrons which is composed of points,
lines and surfaces, and then design a shortest path for each
obstacle according to different types, andfinally connect each
path together as the entire path. Hence, the description of
environment is the first step.

The information about obstacles is stored in a list. Cal-
culate the line between starting and finishing point, and the
obstacle which is the nearest one to starting point is taken
as the head of the list. Next, calculate the sub-goal of the
obstacle and take it as a new starting point to continue above
process until the path reaches finishing point. Figure 1, for
instance, is a 2D environment. There are three rectangular
obstacles O1, O2 and O3. The starting and finishing point
is S and F , respectively. Superscript is used to indicate the
vertex of obstacles, so the rectangular obstacle O1 has four
vertices which are O1

1 , O
2
1 , O

3
1 and O4

1 . It should be noticed
that the environment shown in Fig. 1 only has rectangular
obstacles. For the obstacles without vertices such as circles,
the list is still constructed in the same way, but the sub-goals
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Fig. 1 Find an optimal path in 2D environment

are different and the situation will be described in Sect. 3.
Finally, solid line is the optimal path in Fig. 1.

The modeling method draws on the experience of line of
sight (LOS) and has the feature of shortest path. The process
of finding optimal path can be described as follows: Query all
obstacles which block the line between starting and finishing
point and find the obstacle which is nearest to starting point.
Then, choose a sub-goal from the edges of the obstacle and
take the sub-goal as a new starting point to continue above
steps until the path reaches finishing point. For robot obstacle
avoidance, thismethod can be used in path planning of known
and unknown map or dynamic path planning of tracking a
moving target.

2.2 Improvement based on UAV constraints

The path should be improved for UAV to fly. Due to the
limitation of UAV turning radius, UAV may not be able to
enter a narrow path between two adjacent obstacles. Hence,
every corner of the path needs to be examined. If UAV cannot
fly over the corner, the corner should be improved. Here,

horizontal and vertical turning radius of UAV is set to be R1

and R2, respectively.
For the 2Dcase in Fig. 2a, coordinate system is established

as shown. UAV moves along the y axis and prepares to enter
a narrow tunnel. Suppose the width of tunnel is D and the
distance between current flight direction and obstacle is W .
As shown in Fig. 2a, B is the nearest point from UAV to the
tunnel and A is the center point of the entrance, so the coor-
dinate of B and A is (−W , 0) and (−W , D/2), respectively.
From Fig. 2a, a perfect position for UAV to enter the tunnel
is point A. But because of the constraint of turning radius,
UAV needs to determine a turning point in advance.

In case ofW > R1, suppose the turning point is (0,−R1).
At this time, UAV can enter the tunnel from anywhere of AB.
In case of W < R1, two situations should be discussed. If
W < R1 and D > R1, the turning point is (0,−R1 + D/2).
At this time, UAV can enter the tunnel, but it needs some time
to adjust flight direction to centerline in tunnel. If W < R1

and D < R1, it is dangerous for UAV to make turning in
2D. At this time, UAV will enter the tunnel from vertical
which is shown in Fig. 2b. According to the coordinate sys-
tem in Fig. 2b, UAV climbs with maximum vertical overload
at (0,−R2, 0) first. After reaching (R2, 0, 0), UAV adjusts
flight direction to−x axis by using maximum horizontal and
vertical overload. In this way, UAV can enter the narrow tun-
nel.

3 Sub-goal of 2D obstacle

3.1 Convex obstacles with vertices in 2D

Rectangular obstacle is a representative convex obstacle with
vertices. In this section, the sub-goal of rectangular obstacle
is first introduced. Then, trapezoidal obstacle and triangular
obstacle are analyzed.

Fig. 2 Improvement based on
UAV constraints. a Enter a
narrow tunnel in 2D, b enter a
narrow tunnel in 3D
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Fig. 3 Sub-goal of rectangular
obstacle in 2D. a Sub-goal is
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3.1.1 Rectangular obstacle in 2D

According to Fig. 3, the process of finding the sub-goal of
rectangular obstacle in 2D is described as follows:

The starting and finishing point is S and F , respectively.
Suppose the line between starting and finishing point is SF
and find the obstacle O1 which is nearest to S as shown in
Fig. 3. Then, find the crossover point P between SF and
O1
1O

2
1 . Here, O

1
1O

2
1 is the edge of O1 and it is nearest to

S. Solve min
{∥∥O1

1 P
∥∥ ,

∥∥PO2
1

∥∥}
. The sub-goal is point O2

1
which is nearest to P on O1

1O
2
1 . The circumstance is shown

in Fig. 3a, and the path is SO2
1 F . Another circumstance is

shown in Fig. 3b. After determining the sub-goal O2
1 , find the

lineO2
1 F betweenO2

1 and F . Confirm thatwhetherO2
1 F and

O4
1O

3
1 have crossover point Q. Here, O4

1O
3
1 is the edge of O1

and it is nearest to F . If they have crossover point, the path is
SO2

1O
3
1 F , or else is SO

2
1 F . The third circumstance is shown

in Fig. 3c. The method of solving min
{∥∥O1

1 P
∥∥ ,

∥∥PO2
1

∥∥}

should not be used here. Although O1
1 is near to P , O2

1 is
more suitable to be sub-goal obviously.

Therefore, calculating diagonal line of O1 is more secure.
The method is to calculate two diagonal lines O1

1O
3
1 and

O2
1O

4
1 first and then confirm thatwhether both of the diagonal

lines have crossover point with SF . If both of them intersect
SF , the sub-goal is chosen as it is shown inFig. 3a. If only one
of them such as O2

1O
4
1 intersect SF , the sub-goal is chosen

as it is shown in Fig. 3c and the path is SO2
1 F . The above

process is organized into pseudo-code as Algorithm 3.1.
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Fig. 4 Sub-goals of trapezoidal obstacle and triangular obstacle in 2D. a
Sub-goal of trapezoidal obstacle in 2D, b sub-goal of triangular obstacle
in 2D

3.1.2 Trapezoidal obstacle and triangular obstacle in 2D

In 2D, the case of trapezoidal obstacle and triangular obstacle
is similar and they can be abstracted as the same problem.
Consider the sub-goals in Fig. 4. Figure 4a, b is a trapezoidal
obstacle and triangular obstacle, respectively.

To calculate the sub-goal of trapezoidal obstacle and trian-
gular obstacle in 2D, an important step is to determine which
edge first intersects SF . According to Fig. 4a, b, O1

1O
2
1 is the

first edge which intersects SF . Then, the sub-goal must be
eitherO1

1 orO
2
1 . Thus, the problemof Fig. 4 can be abstracted

as Fig. 5.
Here, O1

1 , O
2
1 , S and F have the samemeanings as they are

in Fig. 4. In Fig. 5, S, F and O1
1 can locate a ellipse. Specially,

the foci of ellipse are S and F . Suppose O2
1 is in the ellipse

as it is shown in Fig. 5. Construct a perpendicular from O2
1 to

line SF . On the perpendicular, there is a point P whichmakes
SO2

1 and SP are the two equal sides of isosceles triangle
SO2

1 P . Then, Eq. (1) can be got in quadrilateral SO2
1 FP .
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Fig. 5 Abstraction of trapezoidal obstacle and triangular obstacle
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Fig. 6 Sub-goal of 2Dcircular obstacle and elliptic obstacle. a Sub-goal
of 2D circular obstacle, b sub-goal of 2D elliptic obstacle

‖SP‖+ ‖PF‖ =
∥∥∥SO2

1

∥∥∥+
∥∥∥O2

1 F
∥∥∥ (1)

Take S as an end point and make a half line SP which will
intersect the ellipse at point Q. After that, there are two fol-
lowing theorem.

Theorem 3.1 The sum of the distances from a point on ellipse
to two foci is greater than that from a point in ellipse to two
foci.

Proof In triangle QPF , because the sumof length of any two
sides is greater than that of the third side, ‖PQ‖+ ‖QF‖ >

‖PF‖. Add ‖SP‖ on both sides of the inequality, so
‖SP‖+ ‖PQ‖+ ‖QF‖ > ‖SP‖+ ‖PF‖. ‖SP‖ and ‖PQ‖
are on the same line, so ‖SP‖ + ‖PQ‖ = ‖SQ‖ and
‖SQ‖+ ‖QF‖ > ‖SP‖+ ‖PF‖. In Fig. 5, both of Q and
O1
1 are on ellipse and S and F are the foci of ellipse, so

‖SQ‖+ ‖QF‖ = ∥∥SO1
1

∥∥+
∥∥O1

1 F
∥∥ according to the prop-

erty of ellipse. Taking Eq. (1) into account, there is

∥∥∥SO1
1

∥∥∥+
∥∥∥O1

1 F
∥∥∥ >

∥∥∥SO2
1

∥∥∥+
∥∥∥O2

1 F
∥∥∥ (2)

Therefore, Theorem 3.1 always holds.
By similar approach, Theorem 3.2 is proposed. ��

Theorem 3.2 The sum of the distances from a point outside
ellipse to two foci is greater than that from a point on ellipse
to two foci.

Because both of trapezoidal obstacle and triangular obsta-
cle can be abstracted into a problem of ellipse, Theorems 3.1
and 3.2 can be used to find a sub-goal for them.

So O2
1 in Fig. 4 is more suitable to be a sub-goal of O1.

Then, it needs to confirm that whether O2
1 F still intersects

with O1. If O2
1 F and O1 have intersection Q, the next sub-

goal is the other endpoint O3
1 of the segment where O2

1 is
located.

Besides the method described in Sects. 3.1.1 and 3.1.2,
calculating the distance between two points can also be a
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solution of finding sub-goal. It is because sub-goal must be
one of the vertices in 2D. However, the proposed method
does not need to calculate the square root repeatedly, and it
has a better systematic as the algorithm below which makes
it is suitable for implementation in computer.

3.2 Convex obstacles without vertex in 2D

3.2.1 Circular obstacle and elliptic obstacle in 2D

The sub-goal of 2D circular obstacle and elliptic obstacle can
be obtained by the tangent line of them.

As shown in Fig. 6, S and F are starting and fin-
ishing point, respectively. The intersections of tangent
line are P and Q. Compare the length of path and find
min {‖SQ‖ + ‖QF‖ , ‖SP‖ + ‖PF‖}. So the intersection
on shortest path is a sub-goal.

Because of symmetry, the shortest path may be a stream-
line by the method of artificial potential field (APF) [23] or
stream function [24].

It should be noted that both of APF and SF are harmonic
field methods. The differences between them are APF may
generate local minima but SF does not which is proved by
Ref. [25]. However, SFmay have stagnation point which will
lead to the failure of planning.

4 Sub-goal of 3D obstacle

4.1 Convex obstacles with vertices in 3D

In 3D, cuboid is themost representative obstacle. The general
procedure is similar to that of 2D. Find the 3D obstacle which
first intersects the line between starting and finishing point.
Then, calculate the sub-goal of the 3D obstacle. If the line
between sub-goal and finishing point still intersects the 3D
obstacle, calculate another sub-goal until the line no longer
intersect the obstacle.

In Fig. 7, starting and finishing point is S and F , respec-
tively. O1 is the obstacle which first intersects line SF . Find
the face which first intersects SF and the intersection is point
P . Then, calculate the vertical line from point P to the edges
of the face except bottom edge. Denote the edge which is
nearest to point P as AB. Here, point A is the foot point
from P to AB and B is an arbitrary point on the edge.

Theorem 4.1 Suppose that SF and AB are two non-
intersecting lines in three-dimensional space. Point P is
on SF, and point A is the foot point from P to AB.B is an
arbitrary point on AB. So ‖SB‖+ ‖BF‖ ≥ ‖SA‖+ ‖AF‖.

S

F

P1O

B

A

Fig. 7 Sub-goal of 3D cuboid obstacle

Proof Rotate plane SAB around AB until SAB and FAB are
in the same plane SFB. At this time, point S, A and F are on
the same line SF . In triangle SFB, there is ‖SB‖+ ‖BF‖ >

‖SF‖ = ‖SA‖+ ‖AF‖. Because B is an arbitrary point on
AB, therefore Theorem 4.1 always holds.

In the following, a general formula is given to calculate the
intersection P between line SF and plane O1. In 3D space,
assume that the equation of line SF is:

x − x1
x2 − x1

= y − y1
y2 − y1

= z − z1
z2 − z1

(3)

Here, (x1, y1, z1) is the coordinate of point S and (x2, y2, z2)
is the coordinate of point F . Use t as an intermediate variable
and Eq. (3) will be rewritten as

x − x1
x2 − x1

= y − y1
y2 − y1

= z − z1
z2 − z1

= t (4)

Reorganize Eq. (4), the equation of line SF is:

⎧
⎨

⎩

x = (x2 − x1)t + x1
y = (y2 − y1)t + y1
z = (z2 − z1)t + z1

(5)

Assume that the equation of plane O1 is:

AAx + BBy + CCz + DD = 0 (6)

where AA, BB, CC and DD are known coefficients. From
Eqs. (5) and (6), there is

t = −DD − AAx1 − BBy1 − CCz1
AA(x2 − x1) + BB(y2 − y1) + CC(z2 − z1)

(7)

Use t in Eq. (7) to replace the one in Eq. (5). Then, the
coordinate of intersection P can be got.
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The sub-goal of 3D cuboid obstacle can be calculated by
the pseudo-code in Algorithm 4.1. ��

Specially, Algorithm 4.1 is also suitable for trapezoidal
obstacles in 3D.

4.2 Convex obstacles without vertex in 3D

Here, convex obstacles without vertex in 3D mainly include
spherical obstacle and the ellipsoidal obstacle. The calcu-
lation of sub-goal can refer to geodesic contents, but the
algorithmwill be complicated. In this section, a path planning
methodbased on interferedfluid dynamic system (IFDS) [26]
is introduced. Themethod is proposed to solve the problemof
obstacle avoidance such as sphere, ellipsoid and cone in 3D.

IFDS imitates and formulates the phenomenon of fluid
flow by extracting and broadening the hydromechanical
properties. In the method, the initial fluid field is determined
first. Second, when there are static obstacles in planning
space, the influence of obstacles on the initial fluid is
expressed by a modulation matrix. Then, the streamlines of
disturbed fluid are taken as flight paths. The velocity of initial
fluid in IFDS is defined as follows:

u(p) = −
[
V0(x − xt )

d(P)

V0(y − yt )

d(P)

V0(z − zt )

d(P)

]T
(8)

Here, V0 is UAV cruising speed and d(P) is the distance
between UAV and target d(P) =√

(x − xt )2 + (y − yt )2 + (z − zt )2. All the streamlines in
the original fluid are the straight lines pointing to the target. If

there are some obstacles, the interfered fluid can be obtained
by the above procedures.

5 Simulation

5.1 Path planning in 2D

5.1.1 Compared with artificial potential field (APF) in the
environment of 2D circular obstacles

In this section, the method in Ref. [27] is compared with
geometrical path planning method. In Ref. [27], to overcome
the limitation of RRT* algorithm, artificial potential field
(APF) integrates into RRT*. The hybridmethodwill improve
the speed of convergence as well as reduce the consumption
of memory. RRT* is a kind of random search algorithm.
Since GA is a typical random search algorithm, the proposed
methodwill be comparedwithGA in next section. Thus, only
APF of Ref. [27] is used in this part.

Artificial potential fieldmethod do not need complex envi-
ronment model, and most of its terrains are circular which
is easy to calculate attractive and repulsive forces. A UAV,
denoted as x ∈ X , and the goal region Xgoal is assigned an
attractive potential Uatt, while obstacle regions are assigned
repulsive potentials Urep.The attractive potential and force
are formulated in Eqs. (9) and (10).

Uatt =
{
Kad2(x, xg) d(x, xg) > d∗

g

Ka

(
d∗
gd(x, xg) − (d∗

g )2
)

d(x, xg) ≤ d∗
g

(9)
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Fig. 8 Comparedwith artificial potential field (APF) in 2Denvironment

	Fatt =
{−2Kad(x, xg) d(x, xg) > d∗

g

−2d∗
g Ka

x−xg
d(x,xg)

d(x, xg) ≤ d∗
g

(10)

Here, d(x, xg) is distance function. The parameter d∗
g is the

radius of the circular boundary centered at the goal state
xg ∈ Xgoal, defining the quadratic range. The constants Ka

and Kr indicate the scaling factors that are used to scale the
magnitude of attractive and repulsive potential, respectively.
The repulsive potential and force are formulated in Eqs. (11)
and (12).

Urep =
{

1
2Kr

(
1

dmin
− 1

d∗
obs

)2
dmin ≤ d∗

obs

0 dmin > d∗
obs

(11)

	Frep =
{
Kr

(
1

d∗
obs

− 1
dmin

)
1

d2min

∂dmin
∂x dmin ≤ d∗

obs

0 dmin > d∗
obs

(12)

Here, the calculation of dmin and ∂dmin/∂x is
minx ′∈Xobs d(x, x ′) and (x − x ′)/d(x, x ′), respectively. The
algorithmofAPF is relatively simple, so it is suitable for real-
time path planning. The proposed method is compared with
APF in 2D environment, and the result is shown in Fig. 8.
The solid line represents the proposedmethod and dotted line
represents the APF method, respectively.

There are 29 circular obstacles with different sizes located
in the environment. The starting and finishing point is [0, 0]
and [34, 34], respectively. In Fig. 8, the paths of twomethods
are similar in initial stage, but they begin to separate as the
plan progresses. It is because that APF is driven by both
attractive and repulsive forces which make its path has a
better terrain following characteristics. The proposedmethod
uses several sub-goals to guide its search so its path consists
of several sub-paths.

The lengths of the two paths are similar: It is about 51 grid
units in geometrical path and 53 grid units in APF. APF is

Fig. 9 Compared with A-star method in 2D environment

usually used for real-time planning, and it costs 0.682 s in the
simulation. The proposed method costs 0.837 s. The reason
of that is geometrical path planning method is more complex
thanAPF. If environment becomes cluster and irregular espe-
cially in 3D, its performance will be better and this will be
illustrated by the following simulations. It should be noticed
that the proposed method costs more time than APF but it is
faster than most of path planning methods.

Compared with APF, the advantages of the proposed
method are that it is not limited by the shape of obstacles
and it is suitable for any convex polyhedron which will be
shown in the following simulations. Specially, it does not
need to endure local minima.

5.1.2 Compared with A-star method in the environment of
2D rectangular obstacles

In this section, the method in Ref. [16] is compared with geo-
metrical path planning method. In Ref. [16], to improve the
efficiency and accuracy of optimal path selection, the eval-
uation function and heuristic function are redesigned based
on A-star algorithm. A-star algorithm is a typical heuris-
tic method. To use these heuristic methods, the environment
should be modeled in grid. In order to simplify the work
of discretization, the map is full of rectangular obstacles. In
Fig. 9, the solid line represents the proposed method and the
line with point represents the A-star method, respectively.

There are 24 rectangular obstacles with different sizes
located in the environment. The starting and finishing point
is [1, 1] and [90, 90], respectively. In Fig. 8, the paths of
two methods are similar. It is because that both of A-star
and the proposed method use the idea of heuristic direction.
The main idea of A-star algorithm is a common evaluation
function in Eq. (13).

f (n) = g(n) + h(n) (13)
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h(n) =
√

(x1 − x2)2 + (y1 − y2)2 (14)

Here, f (n) is the evaluation function of grid n, represent-
ing the cost from starting grid to intermediate grid n to a
finishing grid, g(n) is the cost from starting grid to grid n,
h(n) is the cost evaluation of the optimal path from grid n to
finishing grid. h(n) is Euclidean distance between two grids
usually.

In geometrical path planning method, the key question is
to find sub-goal point. The design of sub-goal point is similar
to heuristic function. So the paths of twomethods are similar.
The differences between them are that A-star method may
reach the edge of obstacle and geometrical path planning
method always starts from the vertex. Therefore, the path of
the proposed method will be shorter than A-star method. In
addition, the proposed method is faster than A-star. In Fig. 9,
the lengths of the two paths are similar: It is about 131 grid
units in geometrical path and 134 grid units in A-star. About
simulation time, it costs 1.476 s in geometrical method and
1.837 s in A-star. The proposed method is faster.

The cost function of classical A-star method consists of
two parts. One is the past path-cost which is the distance from
starting node to current node. Another is the future path-cost
which is a heuristic estimation of the distance from current
node to goal. The more the heuristic information is, the less
the extending node will be, so many researchers modified
A-star method by reforming the heuristic function. Differ-
ent heuristic information has different weight which will be
determined by human. Therefore, the optimality of A-star is
not unique and influenced by human factors.

Another problem ofA-star is that its performance depends
on the grid resolution. High-resolution grid will find a better
path but it will result in more calculations.

Compared with A-star, the geometrical path planning
method does not need grid model and its optimal path is
unique. In other words, the proposed method is not limited
by resolution and without the intervention of human. It can
find the shortest path automatically.

5.2 Path planning in 3D

5.2.1 Compared with genetic algorithm (GA) in the
environment of 3D cuboid obstacles

In this section, the method in Ref. [28] is compared with
geometrical path planning method. GA is a typical random
search algorithm, so the method of Ref. [28] is introduced
in the simulation. In Ref. [28], an APF prepares a potential
map according to the initial positions of the nanoparticles
and positions of the obstacles. The cost function includes the
area under the critical force-time diagram, surface roughness
as well as path smoothness. Also, the dynamic application

Fig. 10 Compared with genetic algorithm in 3D environment

of crossover and mutation operators has been used to avoid
premature convergence. In order to compare the performance
of the twomethods in 3D, themethod of Ref. [28] is extended
to 3D environment.

To use GA, the environment also should be modeled in
grid. So there are 9 cuboid obstacles with different sizes
located in the 3D environment and the map can be dis-
cretized easily. The starting and finishing point is [1, 1, 0]
and [90, 90, 4], respectively. In Fig. 10, the solid line repre-
sents the proposedmethod and dotted line represents the GA,
respectively. In particular, the simulation result is displayed
in two angles of observation as Fig. 10a, b.

Figure 10 shows that the proposed method is better than
GA obviously. The path of this paper is shorter and smoother.
It should be noticed thatGAcanfind an optimal path in theory
but it always finds a suboptimal solution in a limited number
of iterations. So the path of GA in Fig. 10 is a solution near
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Fig. 11 Compared with IFDS in
3D environment

to the optimum but not optimum. If the iteration continues,
the path of GA may be better but the time cost will be huge.

To GA, the calculation in 3D is several times more than
that in 2D. For instance, a 20 × 20 2D environment with
50–100 populations needs nearly 200 iterations to reach con-
vergence. However, the map in Fig. 10 is a 100 × 100 × 5
3D environment. The time cost of GA is 100 s but the pro-
posed method only needs 0.912 s. In addition, the lengths of
the two paths are also significantly different. The length of
geometrical method is about 135 grid units, and the length
of GA is about 157 grid units. The path of GA is particularly
tortuous, so it is not suitable for UAV.

In optimality, the path of GA is similar to that of the
proposed method. Therefore, it can be said that the method
can find the optimal path with a shorter time. The proposed
method is based on an idea of geometrical shortest path, so it
does not need random search and will save a lot of time. The
more complex environment, the more obvious the advantage
of time cost.

5.2.2 Compared with interfered fluid dynamical system
(IFDS) in the environment of 3D hybrid obstacles

To test the performance in 3D environment with hybrid
obstacles, a cluster terrain is designed as Fig. 11. In the
environment, there are several cuboid obstacles, conical
obstacles, cylindrical obstacles and spherical obstacles. Spe-
cially, some of the obstacles overlap each other, so the
environment is more complex. The simulation result is dis-
played in two angles of observation as Fig. 11a, b. Figure 11a
is in top view and Fig. 11b is in side view. The solid line rep-
resents the proposed method and dotted line represents the
GA, respectively.

In this section, the method in Ref. [29] is compared with
geometrical path planning method. In Ref. [29], a 3D real-
time path planning method is proposed by combing the
improved Lyapunov guidance vector field (LGVF) and the
interfered fluid dynamical system (IFDS). The improved
LGVFmethod can guideUAVconverge gradually to the limit
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cycle in horizontal plan and the optimal height in vertical
plan. Then, IFDS method imitating the phenomenon of fluid
flow is utilized to plan the collision-free path.

In the obstacle avoidance of convex obstacles without ver-
tex in 3D, the proposed method learns from IFDS. So the
biggest difference between them is the connection of path. In
Fig. 11, IFDS also shows a well terrain following and terrain
avoidance characteristics which is similar as APF method.
It is because both of IFDS and APF use potential field to
calculate path.

In Fig. 11, the starting and finishing point is [10, 10, 0]
and [90, 90, 3], respectively. The solid line represents the
proposedmethod and dotted line represents the IFDS, respec-
tively. The path of proposed method is shorter than that of
IFDS. The reason is that the avoidance of obstacle in IFDS
is similar to the calculation of a flow around an obstacle
in fluid dynamics. Hence, the path of IFDS will bypass the
obstacle at the place which is a little ahead of it. After com-
bining geometrical path planning and IFDS, the path will
bypass the obstacle from the edge of it. The phenomenon
is shown in Fig. 11 and is particularly evident around the
cuboid obstacles in the middle of the environment. There-
fore, the proposed method has a shorter path and needs less
time. The time cost of proposed method is 3.271 s and that
is 6.854 s in IFDS. In Fig. 11, the lengths of the two paths
are similar: It is about 148 grid units in geometrical path and
151 grid units in IFDS.

In the simulation of Fig. 11, under the premise of not
destroying the optimality, global path planning consists of
several IFDS problems by the proposed method. Finally,
much of time in solving partial differential equations is saved.
So the performance of the proposed method is better than
IFDS.

6 Analysis and discussion

The geometrical path planningmethod is different frommost
of existing methods. It focuses on the shape of obstacles and
finally finds a collision-free path. Through the simulation
results, several characteristics of the method are summarized
as follows.

(1) The method does not need grid model, and it is suitable
for UAV.

(2) The path is an approximate optimal in a certain degree,
since the method is based on geometrical shortest path.
But it is not guaranteed that the path is global optimum
and it is a compromise between global optimality and
time cost.

(3) In 2D, the method can deal with a variety of shapes
of convex obstacles and does not need to endure local

minima, but it is slightly slower than artificial potential
field (APF).

(4) In 3D, the performance of proposed method is better
than most of 3D path planning methods in optimal path
and time cost.

(5) In this research and simulation, the proposed method is
based on the full understanding of configuration space,
but it can be easily extended to unknown environment
or dynamic planning. Because the method uses local
optimality to approximate global optimalitywhich is like
line of sight and receding horizon planning [30].

7 Conclusion

In order to fundamentally improve the computational effi-
ciency, a geometrical path planning method for UAV is
proposed. The method focuses on the shape of obstacles and
finally finds a collision-free path. The obstacles are organized
in a list of tree. The collision-free path is generated by query-
ing the blocking obstacles and connecting the sub-goals of
them.Next, the feasibility of path forUAV is discussed. Then,
the calculation of sub-goal is studied including rectangular
obstacle, trapezoidal obstacle, triangular obstacle, circular
obstacle and elliptic obstacle in 2D. In 3D, the obstacles are
cuboid, sphere and ellipsoid. The simulation results show
that the method can deal with a variety of shapes of convex
obstacles in a short time and its path has the shortest charac-
teristic. The method is suitable for real-time path planning in
2D and 3D environment. The future work will focus on the
improvement in sub-goal and extend the method into non-
convex polyhedron environment.
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