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Abstract
Human mastication is a complex and rhythmic biomechanical process which is regulated by a brain stem central pattern
generator (CPG). Masticatory patterns, frequency and amplitude of mastication are different from person to person and
significantly depend on food properties. The central nervous system controls the activity of muscles to produce smooth
transitions between different movements. Therefore, to rehab human mandibular system, there is a real need to use the
concept of CPG for development of a new methodology in jaw exercises and to help jaw movements recovery. This paper
proposes a novel method for real-time trajectory generation of a mastication rehab robot. The proposed method combines
several methods and concepts including kinematics, dynamics, trajectory generation and CPG. The purpose of this article is
to provide a methodology to enable physiotherapists to perform the human jaw rehabilitation. In this paper, the robotic setup
includes two Gough–Stewart platforms. The first platform is used as the rehab robot, while the second one is used to model
the human jaw system. Once the modeling is completed, the second robot will be replaced by an actual patient for the selected
physiotherapy. Gibbs–Appell’s formulation is used to obtain the dynamics equations of the rehab robot. Then, a method based
on the Fourier series is employed to tune parameters of the CPG. It is shown that changes in leg lengths, due to the online
changes of the mastication parameters, occur in a smooth and continuous manner. The key feature of the proposed method,
when applied to human mastication, is its ability to adapt to the environment and change the chewing pattern in real-time
parameters, such as amplitudes as well as jaw movements velocity during mastication.

Keywords Central pattern generators (CPG) · Nonlinear oscillators · Online trajectory generation · Rehab robot ·
Gibbs–Appell method

1 Introduction

The mastication system and its modeling have been investi-
gated frequently in the literature [1–16]. Movements of the
human limbs, such as the mandibular movements, are com-
plex and hard to describe [17–25]. The smoothness of the
movements is an important factor in modeling the human
limb’s actions [18]. Previous studies indicate that chewing
patterns change based on food properties such as plasticity
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and elasticity. Moreover, some other factors affect the chew-
ing patterns including size, hardness and physical properties
of foods [19–24], age [25], gender and number of teeth in
individuals that affect the number of chewing cycle, duration
of chewing sequence, chewing frequency, vertical and lat-
eral amplitudes, and the velocity of the mandible movements
[17]. Therefore, using a methodology to reproduce human
jaw trajectory is required. Nature solves this problem by
using the central nervous systems as the main control unit for
muscle activities. The basic locomotor patterns of most bio-
logical systems, such as chewing, are generated by the central
pattern generator (CPG). Variety of rhythmic motor patterns
such as walking, breathing, chewing, flying and swimming
are produced by neuronal circuits (called CPGs), which are
located in the spinal cord of vertebrates [26–29]. Recently,
the CPG-based trajectory generation approaches have gained
attention in the field of biologically inspired robotics. The
CPG has several advantages such as demonstrating limit
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cycle behavior [28]. It produces smooth trajectories even
when the control parameters are abruptly changed. In the
present study, these advantages are used in controlling a
rehab robot for the human jaw. One of the key features of
human movement is its ability to adapt to the environment
and change the movement parameters in real time robustly
and smoothly. Yang et al. [30] presented genetic algorithm
optimized Fourier series formulation (GAOFSF) method
for stable gait generation. Rigatos [31] proposed a new
method for robust synchronization of coupled neural oscilla-
tors byusing the derivative-free nonlinearKalmanfilter. They
used the standard Kalman filter recursion on the linearized
equivalent model of the coupled FitzHugh–Nagumo neural
oscillators. They showed the performance of the proposed
synchronization control loop for the model of the coupled
neural oscillators through simulation experiments. Jia et al.
[32] studied propulsion mechanism of undulation locomo-
tion by combining biological investigation, mathematical
simulation and experimental validation. They implemented
CPG-based control algorithm to coordinate the robot’smove-
ment in order to produce smooth undulation pattern. Kim
et al. [33] proposed a nonparametric estimation-based PSO
(NEPSO) to search for the parameters of CPG needed for
bipedal walking. In this article, a supervised learningmethod
called Fourier-based automated learning CPG (FAL-CPG) is
utilized to learn a periodic signal used for trajectory planning
of robotic systems. In our previous work [28], the effective-
ness of the FAL-CPG is shown by comparison with Gams et
al. scheme, [34] Nakanishi et al. scheme [35] and Dutra et al.
scheme [36].Moreover, we demonstrated the effectiveness of
the FAL-CPG and comparedwith harmonic trajectory, which
is an online trajectory generation method [29].

Occlusion, occlusal interferences, the severity of temporo-
mandibular disorders (TMD) or craniomandibular disorders
(CMD), trismus and edentulous maxilla appear to be associ-
ated with mastication [37,38]. Several studies regarding the
treatment of these problems are considered. Studies showed
that continuing and passive exercise therapy can result in
relieving the pains due to musculoskeletal reasons in jaw
movement [39–43]. Therefore, in the present medical field,
there have been several studies regarding devices and robots
to heal and treat patients with jaw disorder, including the
TheraBite System [43,44], the WY (Waseda-Yamanashi)
series of robots [45,46] and theDynasplint_ Trismus System,
DTS [47]. Generally, studies show that the ability of robots to
produce repetitive movements and to permit increased inten-
sity of rehabilitation makes them proper tools to implement
rehabilitation exercises [42,48]. TheraBite [43] and the DTS
[47] were designed to consist of mouthpieces inserted in
between the upper and lower teeth. Although TheraBite used
a screw to open the mouthpieces, DTS used the internal ten-
sioning system of the unit which is slowly adjusted to open
the patient’s mouth. In both of them, the mouthpiece can

be moved to the anterior or lateral positions in between the
maxilla and mandible for only opening exercise in sagittal
plane. Moreover, the Waseda-Yamanashi (WY) [45] series
of robots are used to open and close a patient’s lower jaw by
mimicking the doctors’ hand motion during a mouth open-
ing training session. Themost advanced version ofWYseries
was theWY-5 andWY-6. These parallel robots were actuated
by six linear motors through ball screw mechanisms. Here,
the maxilla is clamped to the robot’s base and the mandible
is the moving platform. The robot is controlled remotely by a
doctor in three DOFs for open/close, forward/backward and
right/left movements [12].

The rest of the manuscript is organized as follows: The
main idea of the bio-inspired approach is presented in Sect. 2.
Afterward, the rehab robot and the mandible model are
described in Sect. 3. Next, a recentmethod, proposed by [28],
is utilized to relate the finite Fourier series parameters with
CPG parameters in Sect. 4. The experimental setup to record
the four chewing patterns is discussed in Sect. 5. Finally,
effectiveness and applicability of the proposed approach for
the rehab robot are demonstrated through several examples
in Sect. 6.

2 The bio-inspired approach—main idea

In this section, the overall framework of the proposedmethod
is summarized and presented in Fig. 1. It should be noted that
the details of the elements shown in Fig. 1 will be explained
in upcoming sections of this paper. The overall method is
made of offline and online processes. As shown in Fig. 2,
in this paper, four main trajectories are recorded: (1) clench-
ing movement (CM), (2) right grinding movement (RGM),
(3) left grinding movements (LGM) and (4) general grind-
ing movements (GGM) that must be predefined in offline
section. These chewing patterns are recorded by a Simi Real-
ity Motion System (GmbH, Unterschleissheim, Germany).
These trajectories are defined as the trajectory of moving
platform of rehab robot (box 1, Fig. 1). The inverse kinemat-
ics of rehab robot is solved to obtain the required leg lengths
to pass through the corresponding trajectory (boxes 2 and
3, Fig. 1). Next, the Fourier analysis is applied to each of
the six leg lengths to find the main CPG parameters (box 4).
Using theFourier-based automatic learningCPG(FAL-CPG)
method [28], themainCPGparameters of the coupledoscilla-
tors were determined (box 5). CPG neurons were constructed
individually for CM, LGM, GGM and RGM. CPG parame-
terswere reduced to zeros to produce swallowingmotion. For
synergism, couplings between angles were made through the
first oscillator of each angle (box 6). For the online section, to
perform the desired trajectory, a proportional-derivative com-
puted torque controller (PD-CTC) is utilized. In the first step,
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Fig. 1 Overall framework of the proposed online trajectory generation method

Fig. 2 Illustration of chewing patterns

physiotherapist specified the information such as chewing
patterns, velocity and amplitude of mastication process (box
7). Then, CPG parameters were modified with respect to the
given information to produce the newdesired actuator lengths

(box 8). The controller applied an appropriate torque to the
chewing robot joints (boxes 9 and 10). MATLAB/Simulink
2012b was utilized as a basic platform to develop our pro-
posed algorithm and control the robot simultaneously.

3 Rehab robot and jawmodel

Generally, there are several robots that developed to mimic
the human mastication robot, for instance, WY series robots,
Wj series robots andBiteMaster II [12]. Among these robots,
onlyWY series of robotics are aimed at treating patients with
jaw disorders. But these robots have a limitation that they are
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Fig. 3 Architecture of the
virtual model

controlled in 3-DOF; therefore, replications of real human
mastication movements are not possible for these devices.
To remove this limitation, we proposed a rehab robot that
covers all workspace of human mandible.

Both the rehab robot and the jaw model were developed
using a Gough–Stewart approach. The Gough–Stewart plat-
form is a parallel manipulator, which consists of a mobile
platform and a stationary base, connected to each other by
six linear actuators. For the rehab robot, the six linear legs
were placed between a moving platform (with jaw model
on top of it) and the ground. As shown in Fig. 3, to repre-
sent the geometry of human mastication, we used a general
6-universal-prismatic-spherical (UPS) Stewart–Gough plat-
form [5,12]. The mobile and stationary platforms represent
the human mandible and skull, respectively, and the actua-
tors represent the jawmuscles [48]. In the jawmodel, each of
the major chewing muscles (masseter, temporalis and ptery-
goid) was modeled using a linear actuator. The jaw model
was developed merely to illustrate how the platform move-
ments affected the masticatory muscles in the human jaw.
This simulator generated the variations in leg lengths of both
the jaw model and rehab robot and hence reproduced the
movement of the robot platform as well as the masticatory
motion (Fig. 3). We supposed that the chin point, CP, is
adhered to moving platform of rehab robot.

3.1 Kinematics model

In this study, we employ the kinematics model that obtained
by [49,50]. For each leg, a vector loop equation can bewritten
as:

Bai + Bdi = BP + B
MR Mbi (i = 1, 2, . . . , 6) (1)

where BP and Bai are the position vectors specifying the base
of coordinate frame {M} and universal joints with respect to
thefixed coordinate system, respectively. Thevector Mbi rep-
resents the position of the spherical joint with respect to the
moving platform coordinate system (see Fig. 4). The magni-
tude of Bdi represents the actuated leg length. The orientation
of the moving platform {M} with respect to the fixed coor-
dinates {B} is referred to as the moving platform’s rotation
matrix B

MR . The detail of Jacobian matrix is described in
“Appendix A”.

3.2 Dynamics analysis

3.2.1 Gibbs–Appell method

In 1987, Gibbs presented Gibbs–Appell method firstly, and
then, Appell completed this method in 1989 [51–53]. This
method is similar to Lagrange method; however in Gibbs–
Appell method, the acceleration variables and in Lagrange
method, the velocity variables are used. Thus, in Gibbs–
Appell method, we obtain the acceleration energy of each
part. As compare to Lagrange method, since the implement-
ing the Gibbs–Appell requires acceleration of a system, the
calculations of complex partial derivatives were not required.
Additionally, the relatively higher volume of the symbolic
computation in the Lagrangian formulation increases the
total execution time for the dynamic procedure [50]. There-
fore, in this study the Gibbs–Appell method is employed to
obtain system dynamic equation.
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Fig. 4 a The physical model and b a closed-loop vector for i th leg of the 6-UPS parallel robot

Acceleration energy for each part is defined as:

Si = 1

2
maci · aci + 1

2
αi · δHci

δt
+ αi · (ωi × Hci) (2)

where Hci and aci represent the angular momentum of each
part about its center of gravity and linear acceleration of cen-
ter of gravity of each part, respectively. Angular momentum
of each part can be represented as:

Hci =
⎡
⎣

Ixx i −Ixy i −I xz i
−I xy i Iyy i −I yz i
−Ixz i −I yz i Izz i

⎤
⎦
⎡
⎣

ωx i

ωy i

ωz i

⎤
⎦ (3)

where ωx i , ωy i and ωz i are the angular velocity of i th links
about x , y and z axes, respectively. Next by taking time
derivative of Eq. (3), we have

∂Hci

∂t
=

⎡
⎣

Ixx i −Ixy i −I xz i
−I xy i Iyy i −I yz i
−Ixz i −I yz i Izz i

⎤
⎦
⎡
⎣

αx i

αy i

αz i

⎤
⎦ (4)

where αx i , αy i and αz i are the angular accelerations of i th
links about x , y and z axes, respectively. The general form
of Gibbs–Appell is defined as:

∂S

∂ ẍM
= �(xM ) (5)

where �(xM ) represents the generalized forces and S is the
Gibbs–Appell function. Here ẍM = [ẍ, ÿ, z̈, α̈, β̈, γ̈ ]. Since
this model has one moving platform, six cylinders and six

pistons, we have

S = SM +
6∑

i=1

S1i +
6∑

i=1

S2i (6)

where SM ,S1i and S2i are energy of moving platform, cylin-
der and piston, respectively. Now we plan to obtain these
accelerations energy, separately. It should be noted that,
according to Eq. (6), we must obtain energy equations in
terms of acceleration of moving platform. The detail of cal-
culation of energy of cylinder, S1i , energy of piston, S2i , and
energy of moving platform, SM , is described in “Appendices
B–D”. Therefore, based on Eq. (5), we have

∂SM
∂ ẍM

=
[

m3×3 0
0 I3×3

]
ẍM +

⎡
⎢⎢⎣

03×1(
IM,zz − IM,yy

)
β̇γ̇(

Ip,xx − IM,zz
)
α̇γ̇(

IM,yy − IM,xx
)
α̇β̇

⎤
⎥⎥⎦ (7)

∂S1i
∂ ẍM

= m1i

[
J j
V 1i,x · v̇1i

]

+
[
ω̇i ·

(
i [I ]1i · J j

ωi

)]
+ J j

ωi · K1i (8)

∂S2i
∂ ẍM

= m2i

[
J j
V 2i,x · v̇2i

]

+
[
ω̇i ·

(
i [I ]2i · J j

ωi

)]
+ J j

ωi · K2i (9)

where ẍM = [ẍ, ÿ, z̈, α̈, β̈, γ̈ ], m3×3 = diag (m, m, m) and
I3×3 = diag (IM,xx , IM,yy, IM,zz). Note that j present the
j th associated column and i represent the i th actuated leg of
rehab robot.
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3.2.2 Equation of motion and calculation Γ

The principle of virtual work [50,54] can be stated as

δqTτ + δxTMFp +
6∑
i

(
δixT1i

iF1i + δixT2i
iF2i

)
= 0 (10)

In Eq. (4), iF1i and iF2i are the resultants of the applied
and inertia forces and δixT1i and δixT2i are their corresponding
virtual displacement expressed in the limb frame. Based on
kinematics constraints, we can relate the virtual displacement
to the set of independent generalized virtual displacement.
Therefore, we have

δq = JpδxM (11)

δix1i = iJ1iδxM (12)

δix2i = iJ2iδxM (13)

By substituting Eqs. (11)–(13) into Eq. (10), we have

δxTM

[
JTp τ + Fp +

6∑
i=1

(
i JT1i

iF1i + i JT2i
iF2i

)]
= 0 (14)

Since δw = ∑n
j=1 � jδxTM , we have

� j = JTpτ + Fp +
6∑

i=1

(
iJT1i

iF1i + iJT2i
iF2i

)
(15)

where Fp,
iF1i and iF2i can be defined as

Fp =
[

f̂p
n̂p

]
=

[
fe + mpg

ne

]
(16)

iF1i =
[

f̂1i
n̂1i

]
=

[
m1i

iRB g
0

]
(17)

iF2i =
[

f̂2i
n̂2i

]
=

[
m2i

iRB g
0

]
(18)

where fe and ne are the external force and moment exerted
at mass center of moving platform. Additionally, g = [0, 0,
−9.81]. Substituting Eqs. (7–9) and (15) into Eq. (5) and
simplification, we yield

JTpτ + Fp +
(

6∑
i=1

(
iJT1i

iF1i

))
+

(
6∑

i=1

(
iJT2i

iF2i

))

=
⎡
⎣
(

∂SP

∂ ẍ p

)
+

⎛
⎝

6∑
i=1

⎛
⎝

6∑
j=1

∂S1i
∂ ẍ p, j

⎞
⎠
⎞
⎠

+
⎛
⎝

6∑
i=1

⎛
⎝

6∑
j=1

∂S2i
∂ ẍ p, j

⎞
⎠
⎞
⎠
⎤
⎦ (19)

Equation (19) describes the dynamic of rehab robot in task
space. However, to use these equations in studying con-
trol strategies, the calculation of equations in joint space is
needed. Generally, to transform between the joint space and
task space is not straightforward because of the complicated
velocity [50]. To overcome this problem, in this study, we
presented the concept of direct links Jacobian matrices are
used to invert the twist vector of all rigid bodies to velocity
vector of actuated joints. To do this, Eqs. (A.7) and (A.19)
can be rewritten as:

ẋM = J−T
p q̇ (20)

ẍM = J−T
p (q̈ − O (q, q̇)) (21)

By substituting Eqs. (20–21) into Eq. (19) and simplification,
we yield

f6×1 + JTpτ 6×1 + M (q)6×6q̈6×1 + C (q, q̇) q̇6×1 = 06×1

(22)

where M (q) is the 6 × 6 positive definite inertia matrix,
C (q, q̇) is the 6 × 1 matrix related to centrifugal and Cori-
olis terms, f6×1 are 6 × 1 matrices related to gravity vectors
of moving platform/robot legs and applied external wrench
exerted tomoving platform. τ is a 6×1matrix of input forces.
Moreover, q, q̇ and q̈ are the vector of length, velocity and
acceleration of actuators, respectively. These equations are
validated by SimMechanics software and our proposed vir-
tual works method [50]. Up to now, the dynamic equation of
the rehab robot is derived. In this paper, to control the rehab
robot, the computed torque control (CTC) is employed. In
this method, the inverse dynamics model is needed to calcu-
late the actuation forces resulted from a desired motion. In
this method, the control rule is defined as

τ = M (q) (q̈d + KPe + KD ė) + V (q, q̇) (23)

where e = qd − q and KP and KD are the controller
gains. The schematic control loop of PD-CTC is shown in
Fig. 5. In Fig. 5b, the block diagram corresponding to inte-
gration of mentioned kinematic, dynamic model and control
method is revealed. The implantation of computed torque
expressed byEq. (23) needs knowledge of thematricesM (q)

and V (q, q̇) as well as of the desired motion trajectory
qd(t), q̇d(t) and q̈d(t) and the recorded of the positions q(t)
and of the velocities q̇(t). To obtain M (q) and V (q, q̇) the
forward kinematics, Eq. (1), and inverse dynamics, Eq. (22),
are needed. As shown in Fig. 5a, the desired trajectory is
a modified path that is generated by CPG networks. Fig-
ure 5 shows the final experimental protocol designed to
examine the ability of the proposed methodology to con-
trol the rehab robot based on the combination of CPG model
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Fig. 5 Schematics controller loop of rehab robot

and PD-CTC methods. Firstly, physiotherapist indicated the
information chewing patterns. Then, CPG parameters were
modified with respect to the given information to produce
the new desired actuator lengths. Then controller applied an
appropriate torque to the rehab robot.

4 CPG scheme

For rehab and exoskeleton robots, an important question is
how to ensure smooth trajectory, while avoiding any interac-
tion forces between robot and human in case the patients do
correctly. Therefore, recently researchers attempt to find best
trajectory generation method to apply for their rehabilitation
robot [48,55,56]. In this paper, a supervised learningmethod,
called FAL-CPG, is utilized to learn a periodic signal used for
trajectory generation of robotic systems. Trajectory genera-
tion is involved in two steps. In the first step, a finite Fourier
series is fitted to the desired periodic signal. In the second
step, based on the Fourier series, the main parameters of the
coupled oscillators are determined [28].

4.1 CPG for a single leg

Consider the CPG model presented in Eq. (24). This equa-
tion is an amplitude-controlled phase oscillator, and we can
reproduce the Fourier series to obtain a desired joint angle

trajectory.

θ̇i = 2πvi

r̈i = ai
[ai
4

(Ri − ri ) − ṙi
]

(24)

where vi and Ri determine the intrinsic frequency and ampli-
tude of oscillator, respectively. Additionally, ai is a positive
constant parameter. Equation (24) determines the phase (θi )

and amplitude (ri ) of the i th oscillator. By solving Eq. (24),
output signal of the i th oscillator can be defined as

xi (t) = ri (t) cos (θi (t) − θ0i ) (25)

where θ0i is a constant phase lag. This equation shows that the
output signal extracted from the i th oscillator is harmonics.
Therefore, to obtain the output of oscillator, we can use finite
Fourier series. An essential step in using aCPGas a trajectory
generator is finding the parameters of the CPG to produce the
desired trajectory. For detailed information on this method,
please see [28]. In this study, a finite Fourier series with five
parameters is needed to satisfy the time constraints as,

li (t) = a0i + a1i cos (ωi t) + b1i cos
(
ωi t − π

2

)

+ a2i cos (2ωi t) + b2i cos
(
2ωi t − π

2

)
(26)
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Fig. 6 Overall structure for the five oscillators for each leg

where a0i · · · b2i and ωi are six unknown constants. By solv-
ing the inverse kinematics for each motion, six actuator’s
lengths can be determined for each motion. Therefore, each
leghasfiveoscillators that are coupledwith thefirst oscillator.
This coupling insures that all fiveoscillators are synchronized
with each other (Fig. 6).

The proposed FAL-CPG method is indicated in Fig. 7.
This figure shows the relation between kinematics problem
and FAL_ CPG methodology. First, the recorded chewing
patterns were defined as the trajectory of moving platform
of rehab robot. Then, the inverse kinematics of rehab robot,
Eq. 1, is solved to obtain the required leg lengths of the rehab
robot. Then, the FAL_ CPG is applied to each of the six leg
lengths to find the main CPG parameters. As it is obvious in
Fig. 7, the learning process is straightforward, and the error

of the learned signal depends on the accuracy of the Fourier
fit. In applications where the desired signal is complex or the
desired accuracy is high, the number of Fourier termsmay be
large. In this paper, the number of Fourier terms is k = 5. This
value was obtained after several trial and error simulations.

4.2 CPG network

As shown in Fig. 6, five oscillators are utilized to reproduce
the desired trajectory for each leg’s length. Therefore, 30
nonlinear oscillators are required to simulate the trajectory
of the moving platform of the robot. Figure 8 demonstrates
the overall architecture of the CPG network.

Additionally, note that couplings between lengths are done
through the first oscillator of each length. With the aid of
these couplings, synchronization is achieved and synergy is
formed within the leg lengths.

5 Recording jawmovement

To track the jaw motion, small reflective markers, ∼ 10 mm
in diameter, were adhered to specific facial locations (Fig. 9).
Forehead markers were used as reference points. Tracking
was performed using a Simi Reality Motion System (GmbH,
Unterschleissheim, Germany). Recorded data were prepro-
cessed prior to modeling using Simi Motion software. To
record jaw movement, three synchronized cameras are used.
The cameras output were digitized to 250 frames/s, and fre-

Fig. 7 Flowchart of the learning process
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Fig. 8 Overall architecture of the CPG network for the rehab robot

Fig. 9 Marker position on the subject’s face

quencies above 7 Hz were removed. Then, Simi Motion
system performs an automatic tracking of passive markers
placed on the subject for the 3D kinematics calculations
(e.g., jaw displacements) with a very high accuracy (Web-
site: www.simi.com) [57].

Our recording consisted of four sessions of (1) three
clenching movement (CM), (2) right grinding movement
(RGM), (3) left grinding movements (LGM) and (4) general
grinding movements (GGM). The recorded 3D mandibular
trajectory is shown in Fig. 10. This figure shows the time-
dependent trajectory of themandible in amastication process
of subject.

6 Results

To consider the effectiveness of using CPG as a trajectory
generationmethod, three examples are illustrated. Generally,
the human jawmovements are complex and hard to describe.
The smoothness of movements was effectively used for a
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Fig. 10 Recorded chewing trajectory

model of human limb actions [18]. To approach this move-
ment, CPG is used as themain controlling unit ofmovements.

6.1 Case study 1

In order to investigate the capability of CPGs to cope with
additive and multiplicative transient perturbation, a number
between 0 and 1 are randomly added to all states (r, ṙ, θ)
at time t = 3–3.1 s for link 1 and at time t = 5 to t =
5.1 for link 4 (Fig. 11a). As shown in Fig. 11c, the CPG
has stability against perturbation, and it is desirable to have
smooth continuity at the perturbation points (Fig. 11a, b).
In other words, Fig. 12c, d indicates that despite the sudden
changes in mastication parameters at 3 and 5s, variations
in leg lengths and velocity are smooth. This characteristic,
smooth transition stems from the limit cycle property of the
CPG. As shown in Fig. 11d, f, despite the sudden changes
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Fig. 11 Effectiveness of CPG in case study 1: a perturbation in legs 1
and 4 trajectories, b corresponding velocity patterns in legs 1 and 4, c
ability against perturbation for the central pattern generator (CPG) in

legs 1 and 4, d effect of CPG in velocity patterns in legs 1 and 4. e Force
of central pattern generator (CPG) trajectory for robot legs, f the zoom
box for force

in mastication parameters at 3 and 5s, variations in forces
are smooth. This characteristic, smooth transition in forces
stems from the limit cycle property of the CPG.

6.2 Case study 2

Properties of food such as hardness, plasticity, elasticity and
food size directly influence afferent input to central ner-
vous control system [18]. All of these factors may affect the
sequence of mastication. For instance, opening and closing
phase time and chewing cycle time were significantly longer
when food of increased size was chewed. Therefore, modu-
lation is another important property of a CPG. Modulation
is necessary when the desired pattern is needed to change to
another rhythmic pattern in an online manner. To examine

this property, both frequencies and amplitudes (vi and Ri ) of
all oscillators are multiplied by number 2 at 5 s of the simu-
lation time (Fig. 12a–f). Figure 12a′–f′ indicates that despite
the modulation, the signal is changed in a smooth manner
when the CPG is utilized. Therefore, CPG can be modulated
to adapt with a dynamic environment, and trajectories are
robust to perturbations. Moreover, by using jaw model, we
can observe the real-time-varying lengths of muscles during
the chewing pattern (Fig. 12a′′–f′′). This analysis provided in
this studywill allow researchers to characterize and study the
mastication process by specifying different chewing patterns
(e.g., muscle displacements) and to investigate the effect of
each chewing pattern in eachmuscle. Figure 13 illustrates the
path of reference point (the chin point (CP), placed on the
end effector of rehab robot) during chewing pattern on case
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Fig. 12 a–f Effect of
modulation in leg lengths,
(a′–f′) modulation of the leg
lengths with CPG, (a′′–f′′)
real-time-varying lengths of
muscles during the chewing
pattern with CPG

(a) Leg 1 (a') Leg 1 (a") Right Masseter muscle 

(b) Leg 2 (b') Leg 2 (b") Right Temporalis muscle

(c) Leg 3 (c') Leg 3 (c") Right Pterygoid muscle
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Fig. 13 Trajectory of chewing pattern

II. This figure confirms the CPG produces smooth trajecto-
ries even when the control parameters are abruptly changed,
and it is computationally efficient. Therefore, the physiother-
apists can change the velocity and amplitude of mastication
based on observation of jaw model’s outputs.

6.3 Case study 3

Mastication is a rhythmic behavior, along with respiration
and locomotion, inmammals.Many studies have investigated
and considered the steering and controlling mechanism for
chewing and swallowing. Nankali [58,59] showed that the
position of masticatory force and chewing pattern change

in eating time according to mouthful characteristic and size.
Therefore, the robust and smooth transitions between these
patterns are essential. In rehabilitation process, physiother-
apist often changes the motion patterns. Figure 14 indicates
that chewing patterns can be altered and implemented based
on the decision of the doctor.

In this case, we supposed that the doctor changes the each
motion in 4 s suddenly, and CM, LGM, RGM, GGM and
swallowing happened, respectively. Therefore, overall masti-
cation time is 20 s. As shown in Fig. 15a–f, despite the sudden
changes in mastication pattern, at 4-, 8-, 12- and 16-s, vari-
ations in leg lengths are smooth. This characteristic, smooth
transition in leg length stems from the limit cycle property
of the CPG (Fig. 15a′–f′). The corresponding variations of
the lengths of muscles during the chewing patterns are also
shown in Fig. 15 (a′′–f′′). As can be seen from 15 (a′′–f′′),
the muscle length changes in a smooth manner. Stretched
and suddenly contracts in muscle take place when the
range of motion of corresponding limbs is changed abruptly.
Therefore, Fig. 15a′′–f′′) shows that the proposed CPG can
able to avoid happening these danger phenomena in jaw
muscles.

Moreover, Fig. 16 indicates the trace path of end effector
of moving platform of rehab robot or CP on jaw model. As
can be seen, however, the trajectory is changed in mentioned
time suddenly, but CPGmanages to remove them and extract
a simple rhythm from the real trajectory which is complex
andpolluted.These smooth trajectories canbeused inhealing
the injured human mastication muscles.

Fig. 14 Transition between
chewing patterns
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Fig. 15 a–f Effect of CPG in smooth transitions of leg lengths, (a′–f ′) effect of CPG in velocity of leg, a′′–f ′′ real-time-varying lengths of muscles
during the chewing pattern with CPG
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Fig. 16 Time history of CP trajectory, a x-axis, b y-axis, c z-axis

The overall goal of this research was to develop a sim-
ple yet plausible methodology to generate a trajectory for
masticatory rehabilitation purposes based on a biological
concept of central pattern generator (CPG). Generally, stud-
ies showed that the ability of robots to producing repetitive
movements and permitting increased intensity of rehabili-
tation make them perfect tools to implement rehabilitation
exercises. On the other hand, errors even few in rehabilita-
tion of mandible system can cause irreparable harm to health
of the participant. But, as shown in this study, the CPG net-
works could generate smooth trajectories even in spite of
errors. Therefore, to rehab human mandibular system, there
is a real need to use the concept of CPG for development
of new methodology in jaw exercises and helps increase jaw
mobility and healing.

7 Conclusion

Human mastication is a rhythmic behavior with a complex
biomechanical process, which is hard to reproduce. During

chewingmovements, frequency and the amplitude ofmotions
change smoothly by humans.

The purpose of this study is to provide a methodology to
enable physiotherapists to perform human jaw rehabilitation.
In the jaw rehabilitation, there is often a need to work on a
certain group of jaw muscles. Therefore, a physiotherapist
needs to be able to reproduce smooth mastication patterns by
means of a robotic system. Two Gough–Stewart robots are
used in this study to build a rehab system. The first robot is
used as the rehab robot, and the second robot is used tomodel
the human jaw system. Once the modeling is completed, the
second robot will be replaced with an actual patient for the
selected physiotherapy.

To track and record chewing trajectories, six reflective
markers were bonded on facial locations and the 3D motions
for four chewing patterns were recorded. To do the phys-
iotherapy, it is assumed that the human mandible is fixed
to the rehab robot’s top moving platform. In other words,
the path motion of the mandible and the moving platform
are the same. Therefore, to reproduce the recorded human
jaw trajectory, the trajectory of the rehab robot’s top plat-
form is used as the input for the inverse kinematics of the
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rehab robot to obtain the rehab robot’s leg trajectories. The
calculated leg trajectories were used as the input for a CPG
model to produce smooth and robust rehab leg trajectories.
To do this, the CPG parameters are tuned using the FAL-
CPG approach. Next, to control the rehab robot, the dynamic
model of the rehab robot is developed using the Gibbs–
Appell method. Three case studies are presented with the
goal of demonstrating that 1) the robustness of the CPG to
transient perturbations, 2) speed and amplitude of chewing
can be changed in a smooth way in an online process, and
3) transition pattern between chewing patterns occurs in a
smooth way. As a result, a therapist can make online changes
to the mastication parameters (chewing pattern, amplitude
and velocity of chewing) in a smooth and continuous man-
ner. The proposed approach enables the tele-operator to
reproduce the required masticatory motion in the subject’s
jaw and can independently generate new trajectories for a
patient.

The main contributions of this paper are: (1) implement-
ing an online method where mastication trajectory for a
rehab robot is generated in real time by combining sev-
eral concepts, tools and methods such as direct and inverse
kinematics, Gibbs–Appell dynamics equations, finite Fourier
series, CPG and FAL-CPG methods. Specifically, this paper
contributes by (2) deriving the dynamic equations using the
Gibbs–Appell method for the Stewart robot. To the best of
authors’ knowledge, this has not been presented before, (3)
the concept of using Gough–Stewart robot as a rehab robot
and another Gough–Stewart to model the human jaw, (4)
allowing a therapist to produce a smooth transition for online
changes to the chewing pattern, (5) developing kinematics
model of the jaw to demonstrate the time-varying behaviors
of the muscle lengths of subjects in a rehabilitation pro-
cess.

For our future work, a real version of this robot will be
constructed and considered. This robot is controlled by a
doctor, during patients’ treatments. In other words, to use
this robot we need to be an experienced doctor. To remove
this limitation, we will plan to use the concepts of surface
electromyography signals (SEMG) to recognize chewing
patterns in our rehabilitation algorithm.

Appendix

A Jacobianmatrix

Obtaining Jacobian matrix is the critical step in deriving
equation of motion in robotics. By taking derivative of the
right-hand side of Eq. (1), the velocity of spherical joint, bi ,
can be obtained as:

vbi = vM + ωM × bi (A.1)

where vM and ωM are linear and angular velocities of mass
center of moving platform, respectively. Note that vbi =
BRi

ivbi . Equation (A.1) can be written as:

vbi = Jbi ẋM (A.2)

where ẋM is a 1× 6 vector that consist of linear and angular
velocity terms [49,50]. Therefore, Jbi can be defined as:

Jbi =
⎡
⎣
1 0 0 0 bi,z −bi,y
0 1 0 −bi,z 0 bi,x
0 0 1 bi,y −bi,x 0

⎤
⎦ (A.3)

By substituting Eq. (A.2) into ivbi = iRBvbi , we have

ivbi = iJbi ẋM (A.4)

where

iJbi = iRB Jbi ≡
⎡
⎣

iJbi,x
iJbi,y
iJbi,z

⎤
⎦ , iRB = BRT

i (A.5)

where iJbi,x , iJbi,y and iJbi,z are the row of the iJbi . Based
on the above matrices, we have

ḋi = iJbi,z ẋM (A.6)

where Eq. (A.6) calculates the linear velocity of piston with
respect to cylinder i th link. Since our model has six actuated
legs, then the assembled form of Eq. (A.6) can be stated as:

q̇ = Jp ẋM , Jp =

⎡
⎢⎢⎢⎣

1Jb1,z
2Jb2,z

...
6Jb6,z

⎤
⎥⎥⎥⎦ (A.7)

where q̇ is the velocity vector of actuated leg in their actuating
direction. Moreover, Jp is called the manipulator Jacobian
matrix [49]. Subsequently, we have [50]

iωi = 1

di

⎡
⎣

−iJbi,y
iJbi,x
01×6

⎤
⎦ ẋM (A.8)

iv1i = e1i
di

⎡
⎣

iJbi,x
iJbi,y
01×6

⎤
⎦ ẋM (A.9)

iv2i = 1

di

⎡
⎣

(di − e2i ) iJbi,x
(di − e2i ) iJbi,y

di iJbi,z

⎤
⎦ ẋM (A.10)
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By combining Eqs. (A.8), (A.9) and (A.10), we have

i ẋ1i = iJ1i ẋM (A.11)
i ẋ2i = iJ2i ẋM (A.12)

where

iJ1i = 1

di

⎡
⎢⎢⎢⎢⎢⎢⎣

e1i iJbi,x
e1i iJbi,y

01×6

−iJbi,y
iJbi,x
01×6

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.13)

and

iJ2i = 1

di

⎡
⎢⎢⎢⎢⎢⎢⎣

(di − e2i ) iJbi,x
(di − e2i ) iJbi,y

di iJbi,z
−iJbi,y
iJbi,x
01×6

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.14)

where iJ1i and iJ2i are known as the link Jacobian matrices.
Next, by taking time derivative of Eq. (A.6), the absolute
acceleration of point, bi , can be obtained as

v̇bi = v̇M + ω̇M × bi + ωM × (ωM × bi ) (A.15)

where v̇M and ω̇M are linear and angular acceleration ofmass
center of moving platform, respectively. Equation (A.15) can
be rewritten as:

v̇bi =
⎡
⎣
1 0 0 0 −bi,z −bi,y
0 1 0 −bi,z 0 bi,x
0 0 1 −bi,y bi,x 0

⎤
⎦
{

v̇p

ω̇p

}

+ωp × (
ωp × bi

)

= Jbi

{
v̇p

ω̇p

}
+ D1 (q, q̇) = Jbi ẍM + D1 (q, q̇) (A.16)

By multiplying both sides of Eq. (A.16) with BRi , we have

i v̇bi = iRB v̇bi = iRBJbi ẍM + iRBD1i (q, q̇)

= iJbi ẍM + iRBD1i (q, q̇) (A.17)

Equation (A.17) can be rewritten as:

i v̇bi = iJbi ẍM + iD2i (q, q̇) (A.18)

where iD2i (q, q̇) = iRBD1i (q, q̇). By considering the third
component of Eq. (A.18), we have the acceleration of link in
the zi direction,

q̈ = JpẍM + O (q, q̇) (A.19)

where

O (q, q̇) = i di
iω2

i = (iv2bi,x + iv2bi,y)/di (A.20)

On the other hand, based on [49]

i ω̇i = 1

di

⎡
⎣

−i v̇bi,y
i v̇bi,x
0

⎤
⎦ + 2

d2i

⎡
⎣

ivbi,y
ivbi,z

−ivbi,x
ivbi,z

0

⎤
⎦

︸ ︷︷ ︸
i D3i (q, q̇)

(A.21)

Substituting Eq. (A.18) in Eq. (A.21), we yield

i ω̇i = 1

di

⎡
⎣

−iJbi,y ẍM − D2i,y (q, q̇)
iJbi,x ẍM + D2i,x (q, q̇)

0

⎤
⎦ + iD3i (q, q̇)

= 1

di

⎡
⎣

−iJbi,y
iJbi,x
0

⎤
⎦ ẍM + 1

di

⎡
⎣

−D2i,y (q, q̇)

D2i,x (q, q̇)

0

⎤
⎦

+ iD3i (q, q̇)

= iJωi ẍM + iD4i (q, q̇) (A.22)

where

iJωi = 1

di

⎡
⎣

−iJbi,y
iJbi,x
0

⎤
⎦ (A.23)

iD4i (q, q̇) = 1

di

⎡
⎣

−iD2i,y (q, q̇)
iD2i,x (q, q̇)

0

⎤
⎦ + iD3i (q, q̇) (A.24)

Notice that ω̇i = BRi
i ω̇i . Based on [49,50], we have

i v̇1i = e1i
di

⎡
⎣

i v̇bi,x
i v̇bi,y
0

⎤
⎦ − e1

d2i

⎡
⎢⎣

2ivbi,x
ivbi,z

2ivbi,y
ivbi,z

iv2bi,x + iv2bi,y

⎤
⎥⎦

︸ ︷︷ ︸
i D5i (q, q̇)

(A.25)

Substituting Eq. (A.18) into Eq. (A.25), we yield

i v̇1i = e1i
di

⎡
⎣

iJbi,x ẍp + iD2i,x (q, q̇)
iJbi,y ẍp + iD2i,y (q, q̇)

0

⎤
⎦ + iD5i (q, q̇)

= e1i
di

⎡
⎣

iJbi,x
iJbi,y
0

⎤
⎦ẍM + e1i

di

⎡
⎣

iD2i,x (q, q̇)
iD2i,y (q, q̇)

0

⎤
⎦+ iD5i (q, q̇)

= iJV 1i ẍM + iD6i (q, q̇) (A.26)
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where

iJV 1i = e1i
di

⎡
⎣

iJbi,x
iJbi,y
0

⎤
⎦ (A.27)

iD6i (q, q̇) = e1i
di

⎡
⎣

iD2i,x (q, q̇)
iD2i,y (q, q̇)

0

⎤
⎦ + iD5i (q, q̇) (A.28)

Note that v̇1i = SRi
i v̇1i . Next, based on [49], we have

i v̇2i = 1

di

⎡
⎣

(di − e2i ) i v̇bi,x
(di − e2i ) i v̇bi,y

di i v̇bi,z

⎤
⎦

+ e2i
d2i

⎡
⎢⎣

2ivbi,x
ivbi,z

2ivbi,y
ivbi,z(

iv2bi,x + iv2bi,y

)

⎤
⎥⎦

︸ ︷︷ ︸
i D7(q, q̇)

(A.29)

Substituting Eq. (A.18) into Eq. (A.29), we yield

i v̇2i = 1

di

⎡
⎣

(di − e2i )
{
iJbi,x ẍM + iD2i,x (q, q̇)

}
(di − e2i )

{
iJbi,y ẍM + iD2i,y (q, q̇)

}
di

{
iJbi,z ẍM + iD2i,z (q, q̇)

}

⎤
⎦

+iD7 (q, q̇)

= 1

di

⎡
⎣

(di − e2i ) iJbi,x
(di − e2i ) iJbi,y

di iJbi,z

⎤
⎦ ẍM

+ 1

di

⎡
⎣

(di − e2i )iD2i,x (q, q̇)

(di − e2i )iD2i,y (q, q̇)

d iiD2i,z (q, q̇)

⎤
⎦ + D7 (q, q̇)

= iJV 2i ẍM +i D8i (q, q̇) (A.30)

where

iJV 2i = 1

di

⎡
⎣

(di − e2i ) iJbi,x
(di − e2i ) iJbi,y

di iJbi,z

⎤
⎦ (A.31)

iD8i (q, q̇) = 1

di

⎡
⎣

(di − e2i )iD2i,x (q, q̇)

(di − e2i )iD2i,y (q, q̇)

d iiD2i,z (q, q̇)

⎤
⎦

+iD7 (q, q̇) (A.32)

Note that v̇2i =B Ri
i v̇2i .

.

B Obtain energy of moving platform, SM

The Gibbs–Appell function is defined as

SM = 1

2
maM · aM + 1

2
αM · ∂HM

∂t
+ αM · (ωM × HM)

(B.1)

where aM,ωM,αM and HM are linear acceleration, angu-
lar velocity, angular acceleration and angular momentum of
mass center of moving platform, respectively. Additionally,
δHM
δt represents the changeof angularmomentum.Thesevari-

ables are defined as:

aM = ẍ i+ÿ j+z̈k (B.2)

αM = α̈ i + β̈ j + γ̈ k (B.3)

HM = IM .ωM

⎡
⎣
IM,xx 0 0
0 IM,yy 0
0 0 IM,zz

⎤
⎦
⎡
⎣

α̇

β̇

γ̇

⎤
⎦

= IM,xx α̇ i+IM,yy β̇ j+IM,zz γ̇ k (B.4)
∂HM

∂t
= IM,xx α̈i + IM,yy β̈ j + IM,zz γ̈ k (B.5)

By substituting Eqs. (B.2)–(B.5) into Eq. (B.1), we have

SM = 1

2
m

(
ẍ2 + ÿ2 + z̈2

)

+ 1

2

(
IM,xx α̈

2 + IM,yy β̈
2 + IM,zz γ̈

2
)

+ (
IM,zz − IM,yy

)
α̈β̇ γ̇ + (

IM,xx − IM,zz
)
β̈ α̇ γ̇

+ (
IM,yy − IM,xx

)
γ̈ α̇ β̇ (B.6)

C Obtain energy of cylinder, S1i

The Gibbs–Appell function of cylinder is defined as:

S1i = 1

2
m1i v̇1i · v̇1i + 1

2
ω̇i · ∂H1i

∂t
+ ω̇i · (ωi × H1i)

(C.1)

where v̇1i ,ωi , ω̇i and H1i are linear acceleration, angu-
lar velocity, angular acceleration and angular momentum
of mass center of i th cylinder, respectively. Terms used in
Eq. (C.1) can be obtained as:

1

2
m1i v̇1i · v̇1i = 1

2
m1i

[(
JV 1i,x ẍM + D6i,x (q, q̇)

)2

+ (
JV 1i,y ẍM + D6i,y (q, q̇)

)2

+ (
JV 1i,z ẍM + D6i,z (q, q̇)

)2] (C.2)
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where JV 1i = BRi
iJV 1i and D6i (q, q̇) = BRi

iD6i (q, q̇).

1

2
ω̇i · ∂H1i

∂t
= 1

2

[
I 2i11

(
Jωi,x ẍM + D4i,x (q, q̇)

)

+ I 2i22
(

Jωi,y ẍM + D4i,y (q, q̇)
)2

+ I 2i33
(
Jωi,z ẍM + D4i,z (q, q̇)

)2]
(C.3)

where Jωi = BRi
iJωi and D4i (q, q̇) = B Ri

iD4i (q, q̇).

ω̇i · (ωi × H1i) = K1i,x
(
Jωi,x ẍM + D4i,x (q, q̇)

)

+ K1i,y
(
Jωi,y ẍM + D4i,y (q, q̇)

)

+ K1i,z
(
Jωi,z ẍM + D4i,z (q, q̇)

)
(C.4)

where K1i = (ωi × H1ci).

D Obtain energy of piston, S2i

The Gibbs–Appell function of piston is defined as:

S2i = 1

2
m v̇2i · v̇2i + 1

2
ω̇i · ∂H2i

∂t
+ ω̇i · (ωi × H2i) (D.1)

where v̇2i ,ωi , ω̇i and H2i are linear acceleration, angu-
lar velocity, angular acceleration and angular momentum of
mass center of i th piston, respectively. Terms of Eq. (D.1)
can be obtained as:

1

2
m2i v̇2i · v̇2i = 1

2
m2i

[(
JV 2i,x ẍM + D8i,x (q, q̇)

)2

+ (
JV 2i,y ẍM + D8i,y (q, q̇)

)2

+ (
JV 2i,z ẍM + D8i,z (q, q̇)

)2] (D.2)

where JV 2i = BRi
iJV 2i and D8i (q, q̇) =B Ri

iD8i (q, q̇).

1

2
ω̇i · ∂H1i

∂t
= 1

2

[
I 1i11

(
Jωi,x ẍM + D4i,x (q, q̇)

)2

+ I 1i22
(
Jωi,y ẍM + D4i,y (q, q̇)

)2

+ I 1i33
(
Jωi,z ẍM + D4i,z (q, q̇)

)2]
(D.3)

where Jωi = BRi
iJωi and D4i (q, q̇) = B Ri

iD4i (q, q̇).

ω̇i · (ωi × H2i) = K2i,x
(
Jωi,x ẍM + D4i,x (q, q̇)

)

+ K2i,y
(
Jωi,y ẍM + D4i,y (q, q̇)

)

+ K2i,z
(
Jωi,z ẍM + D4i,z (q, q̇)

)
(D.4)

where K2i = (ωi × H2 i).
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