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Abstract
In the future, many teams of robots will navigate in home or office environments, similar to dense crowds operating currently
in different scenarios. The paper aims to route a large number of robots so as to avoid build-up of congestions, similar to the
problem of route planning of traffic systems. In this paper, first probabilistic roadmap approach is used to get a roadmap for
online motion planning of robots. A graph search-based technique is used for motion planning. In the literature, typically the
search algorithms consider only the static obstacles during this stage, which results in too many robots being scheduled on
popular/shorter routes. The algorithm used here therefore penalizes roadmap edges that lie in regions with large robot densities
so as to judiciously route the robots. This planning is done continuously to adapt the path to changing robotic densities. The
search returns a deliberative trajectory to act as a guide for the navigation of the robot. A point at a distant of the deliberative
path becomes the immediate goal of the reactive system. A ‘centre of area’-based reactive navigation technique is used to
reactively avoid robots and other dynamic obstacles. In order to avoid two robots blocking each other and causing a deadlock,
a deadlock avoidance scheme is designed that detects deadlocks, makes the robots wait for a random time and then allows
them to make a few random steps. Experimental results show efficient navigation of a large number of robots. Further, routing
results in effectively managing the robot densities so as to enable an efficient navigation.

Keywords Motion planning · Navigation · Swarm robotics · Multi-agent systems · Routing · Probabilistic roadmap

1 Introduction

The problem of motion planning for multiple mobile robots
[1,2] is tomake the robots go from their pre-defined source to
their pre-defined goals, such that none of the robots collides
with any obstacles, and no two robots collide with each other.
Let S = {Si } be the sources of the robots andG = {Gi } be the
goals of the robots. Let C free

static be the free configuration space
of the robots consideringonly the static obstacles andnoother
robot. Similarly let Cstatic be the total configuration space.
Cobs
static is the obstacle-prone configuration space, Cobs

static =
Cstatic\C free

static. The problem is to compute trajectories T =
{τi } of all robots, such that each robot starts from its source
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(Si ), ends at its goal (Gi ) and does not collide with any static
obstacle or other robots on the way.

The problem is usually solved by using a hybrid of delib-
erative and reactive planning [3,4]. The deliberative planner
is good for avoiding trap situations and caters to the needs
of optimality and completeness of the approach and how-
ever requires a large computation time. Reactive planning on
the other hand is very good to avoid dynamic and suddenly
appearing obstacles, while moving in real time and how-
ever often makes the robot trapped and does not guarantee
optimality and completeness. A hybrid of both techniques is
hence a good choice. Numerous schemes have been proposed
for using a mixture of deliberative and reactive planning.
A popular way is to make the deliberative planner give an
approximate path of the robot τ ′

i , in many occasions not con-
sidering the other robots and dynamic obstacles. The path so
produced is used as a guide by the reactive planner. A goal
gi is selected in τ ′

i , which the reactive planner aims to attain.
The goal gi is taken at a fixed distance from the current posi-
tion of the robot and is moved as the robot travels. Eventually
the robot reaches the goal Gi .
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In the deliberative hierarchy, one needs to constantly plan
(and re-plan in this case) the trajectory of every robot. A
good way of doing so is by using the probabilistic roadmap
(PRM) [5,6] approach which samples out the free config-
uration space by taking samples in C free

static which become
the vertices of a roadmap R〈V , E〉. The sampling strategy
decides the selection of samples, which become the vertices.
It is common to have more samples near obstacle boundaries
and in narrow corridors. The neighbouring vertices are con-
nected by an edge 〈vi , v j 〉, if a trajectory between vi and v j

can be found by using a local planning algorithm. A pop-
ular mechanism is to use straight line connections as the
local planning algorithm that is an edge 〈vi , v j 〉 is added if
λvi + (1 − λ)v j ∈ C free

static∀0 ≤ λ ≤ 1. Stronger edge con-
nection mechanisms are often used for connecting difficult
regions.

The use of deliberative planning is to avoid the robot
getting stuck at trap locations, by constantly guiding the
robot nearer to the trap-free deliberative path. However, the
mobile robots also act as dynamic obstacles to each other
and create trap situations even in simple maps. Since the
number of robots is assumed to be high, such deadlocks are
un-avoidable. Even two robots, desiring to go in opposing
directions, can cause a deadlock to each other. In the case of
humans, such deadlocks are resolved by communication and
common sense; a suitable algorithm is proposed in this work
to do the same for robots.

If the deliberative planning is done without considering
the other robots, it is evident that many robots will be sched-
uled in the same areas at the same time, increasing congestion
in the same areas. An inspiration is taken from the problem
of routing in transportation systems [7,8], wherein it is fun-
damentally known that if all the vehicles take the shortest
or the fastest route, the congestion at the popular roads will
be excessively large. Congestions cause none of the vehicles
to move for prolonged times, thus significantly increasing
the time of travel. A popular method is hence to avoid the
build-up of congestions. The studies in transportation sys-
tems cannot be used to solve the same problem in robot
motion planning, as the transportation is a discrete graph
of vertices and edges in which all vehicles travel outbound
or inbound; however, the robot motion planning problem is
continuous in nature wherein any robot can behave in any
manner. It may be argued that the roadmap of the PRM can
be interpreted as a discrete graph of the transportation sys-
tems. However, the physical motion of the robots is not and
should not be restricted to travelling on the roadmap edges
alone, thus wasting most of the part of the space unnecessar-
ily causing congestions.

The approach adopted here is biologically inspired.While
walking,we sometimes see a big crowdof people around, and
accordingly, we re-plan our way to avoid the high density of
people. Similarly, the proposed approach considers the cur-

rent density of robots while making the route of a robot.
Only the immediate density is considered. It is assumed that
all robots operate independently and without communica-
tion, and hence knowing the future densities is not possible.
Anticipation is very hard in case of such open-ended maps.

Since the densities change with time, it is important to
constantly re-plan the deliberative plan. Every re-plan is as
per the changed density map of the environment. For the
same reasons PRM is chosen as the choice of deliberative
algorithm, which has an offline roadmap construction phase
and an online query computation phase.

Themain contributions of thework are: (i) development of
a simulation framework for simulating the motion of a large
number of robots. (ii) Inspired from the problem of routing
in transportation systems, design of a routing strategy so as
to avoid excessive build-up of robots at a place. Unlike trans-
portation systems, the routing happens in continuous spaces
rather than discrete road network graphs. (iii) Design of a
deadlock avoidance scheme that can continuously eliminate
deadlocks between different groups of robots. (iv) Continu-
ous re-planning for adapting the changes in the robot flows.

This paper is organized as follows: Sect. 2 very briefly
lists some relevant related works. The algorithm framework
is presented in Sect. 3. The approach involves construction
of an offline roadmap (Sect. 3.1), which is used numerous
times for online planning. The problem of routing for judi-
cious distribution of robots is done (Sect. 3.2) to eliminate
the build-up of high density of robots. The robot moves using
a reactive planner (Sect. 3.3) based on the deliberative path
in a hybrid architecture (Sect. 3.4). Deadlocks may happen,
which are detected and resolved (Sect. 3.5). The results are
given in Sect. 4. The conclusion remarks are given in Sect. 5.

2 Related works

In the literature much less work has been done in the context
ofmotion of a large number of densemobile robots.Although
muchwork exists in the related problems ofmotion of robotic
swarms [9] wherein the swarmmoves collectively and is thus
homogeneous in contrast to the problem of motion of mul-
tiple robots. Similarly there are works in crowd simulation
which simulate a large number of crowds, and aim at imi-
tation of the human motion by virtual agents. The work in
the domains of both robot swarms and crowd simulation has
not considered the problem of global congestion avoidance
by active re-routing of the agents. Even though some of the
tools account for density, the density avoidance is similar to
obstacle avoidance and is not done so as to route the agents to
avoid subsequent build-up of congestions on popular routes.
Some of the popular techniques are discussed.

Pelechano et al. [10] modelled for different crowd
behaviours including avoiding obstacles and people, avoid-
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ing walls, queuing, pushing, panic propagation, impatience,
etc., hence allowing for the motion of people. Musse and
Thalmann [11] presented different behavioural models like
flocking, following, space availability, safe wandering for the
motion of crowds, which could also be controlled by scripts
and events. Curtis et al. [12] used behavioural finite state
machine modelling to identify goals of crowds, thereafter
computing and adapting the path. Similarly Gu and Deng
[13] aimed to make the simulation process more realistic
and modelled different styles of agent motion. The simula-
tor aimed at increasing the style diversity among the agents.
Kountouriotis et al. [14] specifically concentrated on the
reactive navigation of the agents to see the emergence of
group behaviours by amicroscopicmodelling technique. The
authors modelled different forces of goal seeking, aggrega-
tion, obstacle avoidance, friction and body compression.

In another related work Han et al. [15] demonstrated
the notion of routing of humans for the specific task of
evacuation. The route choice depended upon the factors of
density, congestion at exit, length of the route and the dis-
tance between the pedestrian and route. A potential field
modelling was used for the actual navigation of the robot.
The simulations were based upon the dispersion behaviour
which inhibits interaction between groups going in opposite
direction, which is the main crux of the proposed approach.
Golas et al. [16] further used anticipation to predict the tem-
poral densities of crowds, which was taken as a probabilistic
distribution. The authors used the same for long-range colli-
sion avoidance. The anticipation does result in spreading the
crowd and hence congestion avoidance; however, themethod
is computationally expensive that restricts its use to the level
of re-routing for congestion control. The proposed algorithm
hence heuristically handles the same problem.

A lot of work is also done in hierarchical planning of
the robots. Cowlagi and Tsiotras [17] used A∗ algorithm at
two levels for planning a robot. The finer level A∗ algorithm
computed the transition costs that were used by the coarser-
level A∗ algorithm. In another vein Sgorbissa and Zaccaria
[18] used Voronoi graphs for planning a robot at the coarser
level, while the actual motion was done using the potential
field approach. The authors avoided deadlock by identify-
ing scenarios called roaming trails, wherein the robot was
unable to move as per the deliberative plan. Similarly, Chang
and Yamamoto [19] made a robot operate using a Voronoi
which was built as the robot navigated for exploration, with
the specific motion of the robot guided by potential field for
obstacle avoidance. Roadmaps are also used with the pres-
ence of multiple robots. Yao and Gupta [20] used multiple
robots to sense the environment and to collectively make a
roadmap in a distributed manner. Clark [21] also used a sin-
gle query PRM wherein multiple robots communicated with
each other to make a complete roadmap. Chai and Su [22]
presented a mechanism of coordinating the motion of multi-

ple robots. At the centralized level the problem was motion
of a group towards a goal by forming a certain shape. In case
of infeasibility, the shape constraints were changed. Density
regularization and congestion avoidance is clearly not the
theme of any of the hierarchical approaches. The concentra-
tion is only on the reduction in computation time, because of
which the other agents aremostly ignored during deliberative
planning.

The reactive planning used in this paper is inspired from
the work of Alvarez-Sanchez et al. [23] who performed a
circular scan of the environment to get the clearest direction
of motion of the robot, and the work of Sezer and Gokasan
[24]who found the largest gap ahead of the robot and used the
same for moving the robot, considering the non-holonomic
constraints. Similarly Kim and Kwon [25] used vanishing
point of the obstacle and assessment of angle of the obstacle
in order to make the robot navigate towards the goal while
avoiding collisions on the way. In this paper the ideas have
been adapted to the navigation of small dense robots and
knit in the overall framework. Further, the reactive paradigm
considers both the clearance and path length as a metric for
navigation decisions.

Another popular method of reactive planning is velocity
obstacles [26], wherein infeasible immediate velocities of the
robots are eliminated from the set of possible velocities, from
which an immediate navigation velocity is selected based on
heuristics. Hybrid reciprocal velocity obstacle [27] method
eliminates the problem of oscillations in such an approach
by assigning the potentially colliding robots with opposing
corrections. Similarly Rashid et al. [28] proposed to use ori-
entations aswell in the selection of velocities.Unlike velocity
obstacles, the choice of method for navigation is geometric
in nature considering that the robots are capable of and will
largely change their speeds as they travel, which for a large
number of robots can be better modelled using the geometric
approach. Further, the proposed approach allows for inser-
tion of new obstacles of arbitrary shapes during navigation,
which is more realistic.

In another related reactive navigation approach Karagoz
et al. [29] presented the mechanism by which multiple
disc-shaped robots can go to their goals by following a
potential-based approach. The authors identified goal selec-
tion schemes that guarantee convergence. The behaviours
were restricted to goal seeking. Similarly Zhong et al. [30]
learnt a model for navigation from observations of crowd
motion in videos using genetic programming. Using the
learnt model, the authors could predict motion even to sce-
narios not directly seen during learning. Patil et al. [31]
constructed navigation fields to decide the path of an agent,
while using local collision checking algorithms for the
motion of the agent in pursuit of the goal. The papers tackle
the reactive paradigm of the problem only. This paper puts
in the notion of deliberation for planning complex maps and
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Fig. 1 Algorithm methodology
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deliberation for collision avoidance in addition to these basic
behaviours.

The proposed approach samples out the given configu-
ration space using PRM. Effective sampling of the config-
uration space is another problem for which a lot of active
research exists. Hybridization of samplers creates possibili-
ties for the different samplers to complement each other, thus
resulting in a compact roadmap that can be quickly generated.
Hsu et al. [32] used different samplers in the generation of the
roadmapandusedperformancemeasures of these samplers to
adaptively vary the contributions of the individual samplers.
In another relatedwork Rodrıguez et al. [33] classified differ-
ent areas of the configuration space based on obstacle density
and used appropriate samplers for each region. Morales et al.
[34] determined the difficulty of a region based on its edge
connectivity and sampled so as to enhance the connectivity.

As evident from the literature, the context of routing of
robots is absent from the literature of multi-robot motion
planning, while the literature around dense simulation of
robots, each with a different source and goal pair, is slim.

3 Algorithm

Given a free configuration spaceC free
static, the sources S = {Si }

and goals G = {Gi } of all robots, the problem is to compute
the trajectoriesT = {τi }of the robots such that they start from
the source τi (ti ) = Si , end at the goal, τi (t) = Gi ∀t ≥ tGi .
Here tGi is the time when the robot i reaches its goal. The
robots should not collidewith any static obstacles, nor should
the robot collide with each other, that is Eq. (1)
(
τi (t) ∈ C free

static

) ∧ (
R (τi (t)) ∩ R

(
τ j (t)

) = φ
) ∀t, i, j, i �= j

(1)

here R(·) is the function that maps the robot’s configura-
tion space to the set of points in the workspace. Two robots
are non-colliding if their set of intersection points in the
workspace is empty.

The space is continuous in nature that is converted into a
graph by the use of a probabilistic roadmap technique. The
graph so-generated can be used for searching a solution to
the goal for every robot by a graph search algorithm, and the
problem is called as routing. The search attempts tominimize
path length and minimize congestion. The path may still not
be navigable by the robot due to the presence of other robots
and robot constraints, for which a reactive technique of nav-
igation is designed. The deliberative technique using routing
guides the reactive navigator, creating a fused deliberative
and reactive navigation system. Finally, the complete scheme
may still have deadlocks for which a FSM-based deadlock
avoidance system is used. The discussed methodology forms
one of the states of the FSM,while transitions occur on detec-
tion and for preventing deadlocks. The complete approach is
summarized in Fig. 1.

3.1 Probabilistic roadmap construction

The first part of the problem is to generate the roadmap
G〈V , E〉. The approach is adapted from an earlier work of
the author [35]. For the generation of the vertices, a hybrid of
different sampling techniques is used. The first sampler used
is a narrow corridor sampler that generates a sample inside
obstacles, promotes the sample to the obstacle-free config-
uration space and uses a bridge test [36] to see whether the
sample is in a narrow corridor. The second sampler is an
obstacle-based sampler [37] that generates a sample in the
obstacle-prone configuration space and promotes it to the
obstacle-free configuration space. The last sampler is a uni-
form sampler.

For connecting the vertices, initially edge connections
with the neighbouring k nearest vertices are made. Subse-
quently, a hybrid edge connecting strategy is used. The first
strategy attempts to join disjoint set of vertices so as to get
a path between all points of the configuration space. The
disjoint set is selected stochastically based on the distance
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Robot A

Less congested 
Trajectory

Shortest 
Trajectory

Fig. 2 Avoiding congestion. Robot A should take the less congested
trajectory rather than the shortest trajectory so as to avoid congestion
and reach its destination earlier. This is achieved by actively routing the
robot on a congestion centric metric. The robot continuously searches
for shorter and less congested paths

between the sets, closer disjoint sets being more desirable.
The participating vertices are also selected stochastically
based on their distance. Connection attempts involve adding
a new vertex intermediate between the participating vertices
and making edge connections if possible. The second strat-
egy of edge connection selects a leaf node in the roadmap and
grows it in a random direction like expansive space trees. The
third strategy creates a lower-dimensional memory hash and
encourages generation of vertices in cells with lower vertex
density. The sample is used to grow the roadmap in a rapidly
exploring random trees style expansion [38,39]. The last con-
nection strategy makes a random expansion of the roadmap
in a rapidly exploring random tree style expansion.

The roadmap is used for the online planning of the robots.
A temporary roadmap R′〈V ′, E ′〉 is created with all vertices
and edges of the roadmap R′〈V ′, E ′〉. Source and goal of the
robot queried are added as additional vertices. These are con-
nected to the nearest k vertices, if a straight line connection
is possible. A∗ algorithm [40] is used to compute the trajec-
tory τ ′

i of the robot, the trajectory used to guide the reactive
planner.

3.2 Routing

Consider the scenario shown in Fig. 2. If the robot A was
human, trying to go from the left of the corridor to the right,
he/she would have the sense to take the longer route as too
many people are already going through the corridor, making
the route congested. Hence, weights of the roadmap R〈V , E〉
need to bemodified to get the same attributes in themotion of
the robots. The proposal is to add a penalty term to the costs
of the edges, so as to avoid taking routes with high density.

Let ρ(x, y) be the density at the point (x, y). Considering
thatmicroscopic variables aremaintained,while the intention

is to compute themacroscopic variable density, let the density
be recorded at an observation window of size w × w. The
density is the ratio of the area occupied by the robots to the
total area of the observation window, given by Eq. (2).

ρ (x, y) =
(
countx−w/2≤τ X

i,t≤x+w/2∧y−w/2≤τYi,t≤y+w/2 (i)
)

πr2

area(W free
static ∩ [x − w/2, x + w/2] × [y − w/2, y + w/2])

(2)

τi,t is the current position of robot i of radius r with X com-
ponent as τ X

i,t and Y component as τYi,t . W
free
static is the free

workspace of the robot; the component in the observation
window is considered. countC(x) is used to denote count of
all x that satisfy the condition c. The observation window is
trimmed if it is outside the navigable area.

Consider the straight line edge e〈vi , v j 〉 from vi to v j . A
point at a distance of l from vi , denoted by e(l), is given by
Eq. (3). Here ||.|| is the Euclidian norm, which is the distance
between the vertices. The cost of the edge is given by Eq. (4).

e (l) = vi + l
v j − vi∥∥v j − vi

∥∥ (3)

w
(
e
〈
vi , v j

〉) =
∫ l=‖vi−v j‖
l=0

(1 + α · ρ (e (l))) .dl (4)

here α is the constant relating density to penalty. 1+ α · ρ(·)
is the penalty term. If the visible density is large, the penalty
term increases, making it less likely for the robot to select the
path, and vice versa. If α is very large, the algorithm starts
preferring robot-free paths, if it can find one. If α is 0, the
algorithm reduces to a shortest path search.

3.3 Reactive planning

Considering the instantaneous position of robot as q at time
t , the task of the reactive planner is to determine its posi-
tion at the next time step t + � based on some control input
ureactivei 〈vreactivei , ωreactive

i 〉. Let gi be the goal given to the
reactive planner. Let θ be the direction of the vector gi − q,
which is the desired angle of motion not accounting for the
other robots. The notations are shown in Fig. 3a. So that the
robot does not get stuck, the immediate motion of the robot
is restricted between θ − γ and θ + γ , where γ is the allow-
able window of deviation from going straight to the goal.
Let d(ν) be a restricted proximity sensor that senses dis-
tances to a maximum of L in the direction ν. The approach
used in this paper is entirely based on the geometric assess-
ment of the obstacles as perceived by the sensors. Another
popular method is the social potential field method [41,42]
wherein the different obstacles exert virtual forces that are
modelled using social relations between robots and obsta-
cles. The choice here is primarily based on the intuition that
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q

gi

θ

γ
γ

static obstacle

l

ν

q + l [cos(ν) sin(ν)]T

Robot

dR(β)

2r

β

q

τj,t

2r

Robot
θij

νijδ

a

b

Fig. 3 Computation of distance a between robots and a static obstacle,
b between two robots

the humans tend to place themselves right in the middle of
the available region, while the social potential approach does
not necessarily model this.

In order to make the distance function, one must calculate
the distance at direction ν in C free

static by traversing through the
line in the same direction, given by Eq. (5). The terms are
illustrated in Fig. 3a.

dobs(ν) = min
l≤L,q+l[cos(ν) sin(ν)]T ∈C free

static

(l) (5)

here minc(x) denotes minimize x subjected to the condition
c.

Similarly theminimumdistancewith the other robotsmust
be computed. For this consider the configuration space of the
robot centred at q, with only the other robots centred at q j .
This can be achieved by taking a point robot centred at q
and the other robots with sum of the radii of the two robots.
Consider Fig. 3b, using the law of cosines, the distance is
given by Eq. (6).

dR (β) = di j cos (β) −
√

d2i j cos
2 (β) −

(
d2i j − 4r2

)
,

β = ν − θi j , − δ ≤ β ≤ δ (6)

here di j is the distance between q j and q, and θi j is the
angle between q j and q. δ is the limiting angle for which the
formula holds, given when the line becomes a tangent to the
circle, δ = sin−1(2r/di j ). The notation − δ ≤ β ≤ δ is

Direction of 
motion

Distance detected

Fig. 4 Computation of angle of movement. Red lines show the cone
in which distance is scanned. Blue line shows the detected minimum
distances. The distances are assuming double radius of the other robots,
such that the robot as a whole is avoided. Green line shows the direction
of maximum distance used for motion

an abuse of notation as it numerically does not account for
the circular nature of the angles. The distance function can
hence be given by Eq. (7). The equation simply states that
the minimum distance from obstacle and robot is considered,
subjected to a threshold of L .

d(ν) = min (dobs (ν) , dR (ν) , L) (7)

The direction of travel (φ) of the robot is taken as the direction
which maximizes the distance. In case of a tie, the largest
gap is taken. Further of all the regions that host the largest
distance, the middle point of the region hosting the largest
gap is taken. The general concept is shown in Fig. 4. The
angular speed ωreactive

i is set so as to obtain the direction of
travel φ, given by Eq. (8). Equation (8) is again an abuse of
notation as the angle differences need tomaintain the circular
property, which is not shown in the equation.

ωreactive
i =

⎧
⎨

⎩

(φ − θ)/� ωmin ≤ (φ − θ)/� ≤ ωmax

ωmin (φ − θ)/� > ωmax

ωmax (φ − θ)/� < ωmin

(8)

The linear speed setting is given by Eq. (9).

vreactivei =
{

vmax
i d(φ)/� ≥ 2vmax

i
d(φ)/2� otherwise

(9)

The speed setting enables the robot to travel with the maxi-
mum speed, as far as possible. Once the robot is closer to a
static obstacle or another robot, the speed is slowly reduced,
such that the speed slowly tends to 0 as the robot approaches
the robot or obstacle.

The navigation of the robot is assumed to be using an
infinite acceleration model in both the linear and angular
speeds. So the linear and angular speeds can be instanta-
neously set. A small additional check is performed to ensure
that the selected speed and steering makes the new position
feasible, failing which the speed is iteratively reduced till the

123



Intelligent Service Robotics (2018) 11:25–39 31

settings are feasible. The calculations shown above are not
made on the radius r as shown in the equations; instead, a
small comfortable distance of ε is kept so as to eliminate
two robots nearly touching each other or the obstacle bound-
ary, if possible. The pseudo-code of the approach is given as
Algorithm 1.

3.4 Fusion of deliberative and reactive planning

The deliberative planner gives an indicative trajectory τ ′
i for

the robot to follow. The reactive planner needs a goal and
continuously moves the robot so as to move towards the goal
avoiding the obstacles. The deliberative planning is resolu-
tion optimal that is the planning generates the optimal path
subjected to some resolution, and resolution complete that
is the planning guarantees to find a solution if one exists
subjected to some resolution. However, the approach is very
computationally expensive and cannot be used for real-time
navigation of the robot. The approach cannot be used to
handle sudden changes in the map. If changes in the map
are reported, after some time the path can be adapted by
re-planning. In contrast, the reactive planner neither guaran-
tees optimality nor completeness. The algorithm parameters
can be tuned so as to get some local optimality that enables
the robot to maintain optimal distances from the obstacles
around. However, the robot may not follow the optimal route
towards the goal in a complex obstacle grid. In fact, most of
the times the robot may get trapped in an obstacle framework
and may never be able to react to the goal. The reactive plan-
ner is very fast in computation. It can therefore react to any
suddenly appearing obstacle or sudden changes in the map.

It must be noted that the completeness and optimality
notions here are defined for a static scenario only and in the
absence of other robots. For the case of multiple robots these
properties can only be ascertained by centralized planners
which work by considering the joint states and joint actions
of all robots, and is not an option when the number of robots
is so high due to the exponential complexity. Decentralized
planners do not guarantee optimality, but tend to be near-
optimal subjected to the validity of the heuristic used, which
here is penalization due to density.

The fusion of deliberative and reactive planning enables
moving the robot as a result of the added advantages of

.

Map

Robot 
Positions

(1) Deliberative 
Planner & Re-planning

(Sec. 3.2)

Trajectory

(3) Reactive Planner
(Sec. 3.3)

(2) Goal Point Selector
(Sec. 3.4)

Sensors

PRM
(Sec. 3.1)

Roadmap

Fig. 5 Fusion of deliberative and reactive planning. The non-shaded
boxes form the main logic flow of the program, while the shaded boxes
denote the standard robot operations

the two methodologies. Here a master–slave architecture of
fusion is used. The deliberative planner works at the mas-
ter level and is responsible for deliberative planning and
re-planning of the robot. The slave reactive planner looks
at the obstacles and robots around and makes a move. The
integration is based on the goal point. The deliberative plan-
ner supplies a goal point gi , which is taken as the goal of the
reactive planner. The fusion module looks at the deliberative
trajectory and searches for the goal point gi . The goal of the
reactive planner, gi , is taken as the point at a distance of more
than D from the current position pi . This is given by Eq. (10).

gi =
{

τ ′
i (s) : ∫ s

t=0 τ ′
i (t)dt = D

∫
τ ′
i (t) · dt ≤ D

Gi
∫

τ ′
i (t) · dt > D

(10)

The fusion may be visualized as the reactive planner being
tempted by showing a goal point, asking the reactive planner
to move towards it. As the robot moves towards the goal, the
goal moves following the deliberative trajectory so as to be
at a distance of D from the robot. The fusion architecture is
shown in Fig. 5.

If the distance D is taken too large, the robot essentially
moves using the reactive planner with negligible contribution
of the deliberative planner, and vice versa. The pseudo-code
for the approach is given by Algorithm 2.

3.5 Deadlock avoidance

The scheme so designed, running by a density-aware active
deliberative re-planning and reactive planning solves most of
the problems in multi-robot motion planning. The delibera-
tive mechanisms are supposed to make the robot avoid trap
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Start motion by reactive planner not possible
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Goal Reached
q = Goal

Goal Reached
q = Goal

Sec. 3.4

Fig. 6 Deadlock avoidance. The circles represent the states, the lines represent the transitions with the transition conditions written on the arrows,
and the dotted boxed blocks show the continuous dynamics

situations to some extent, considering that the static obsta-
cles are accounted for. However, the mobile robots behave
as special kind of obstacles, not considered in the deliber-
ative planning, that produce trap situations. Since there are
too many other robots, the chances of producing deadlock
situations are very high.

The deadlock situation is resolved using a hybrid finite
state machine modelling. The modelling is given in Fig. 6.
The hybrid system represents continuous dynamics of the
robot inside the states, while there are a set of discrete state
changes. In the problem, the states are given by Eq. (11).

S = {Reactive Planner Move,Wait, Invalid,Random Moves,Stop}
(11)

The continuous dynamics and discrete step changes in
states together constitute the hybrid system. The system pro-
posed is a timed hybrid system, wherein a timer is always

maintained and can be used for continuous dynamics or
state changes. At any time the robot is at either of the
states s ∈ S, while starting from the initial state s0 =
Reactive Planner Move. The transition from one state to the
other takes place based upon the guard condition. A set of
guard conditions are associated with every state, and when-
ever the condition becomes true, a discrete transition occurs.
The guard conditions are labelled edges on the directed graph
denoting the hybrid finite state machine. A transition from
the state a to b occurs if the condition T (a, b) evaluates to
be true.

Whenever the robot is moving, it is in the moving or reac-
tive planner move state. The continuous dynamics of the
system for the state is already described by Eqs. (5–9). A
deadlock is said to have occurred when the robot is not mov-
ing for dead units of time, excluding very minor position
adjustments. The transition condition is given by Eq. (12).
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T (reactive planner move,wait) :=
(
ureactivei (l)

= 0∀t − dead

≤ l ≤ t ∧ l > 0) (12)

The parameter dead is a constant. High values result in too
much time wasted to call a deadlock. Considering that a
deadlock avoidance many times leads to another deadlock
situation, and numerous deadlock attempts may be required
to fully resolve all possible deadlocks, the undue timewasted
can make the motion slow. Small values can wrongly call
situations as deadlock, like motion through congested areas.
Deadlock avoidance calls for making suboptimal moves, and
hence, this should be avoided.

Once a deadlock is detected, the robot moves in a wait
state. In this state the robot waits for a random amount of
time, wait, subjected to a maximum ofwaitmax. The waiting
time is not completed if the deadlock naturally gets cleared,
giving way for the robots to make some move ahead. The
waiting time is important when two robots are causing each
other deadlock, moving one of them clears the way for the
other. So two robots can be asked to wait, and after the first
takes the deadlock avoidance strategy, the way for the other
is already clear to normallymove. The time is kept as random
so as to have a probabilistic completeness of the clearance of
deadlock. Two robots causing deadlock, with only one con-
flicting way to go ahead for each, can indefinitely come into
a deadlock if they both simultaneously start the conflicting
move, realizing the conflict cancel the move, wait for the
same time and re-start the conflicting move again. Waiting
for too long is not suggestive, since it wastes time. Waiting
for too small time can cause all conflicting robots to simul-
taneously make random moves as a result creating a chaos.
The continuous dynamics of the state is simply no motion,
given by Eq. (13). The transition from wait state is given by
Eq. (14). Here ts denotes the time spent in the specific state,
obtained from the timer. However, if the deadlock naturally
clears, the robot continues tomove using the reactive planner.
The transition condition is given by Eq. (15).

uwaiti = 0 (13)

T (wait, random moves) := (ts ≥ wait) (14)

T (wait, reactive planner move) := (vreactivei > 0) (15)

Afterwaiting for the prescribed time, if the deadlock still does
not clear, the robots make move number of random moves.
The move is taken randomly for move times, subjected to a
maximum of movemax, for the same reasons. This motion is
uninterrupted, since it may appear that a deadlock is clear,
which may actually not be clear, landing up the robot in the
same state. Moving too little may cause the robot to come in
exactly the same deadlock again. Making too many random
moves may make the motion of the robot as suboptimal,

taking the robot too much out of course. Once the random
steps are made, the robot again attempts to move normally
as per the reactive system. It may still get into a deadlock, in
which case all the steps are repeated. The transition condition
is given by Eq. (16).

T (random moves, reactive planner move) := (ts ≥ move)

(16)

In order to move the robot randomly, first a random direc-
tion φ is chosen and then the speed in the same direction is
computed as per equation (9). If moving appreciably in the
direction is not possible due to feasibility, a new direction is
chosen, till the robot makes amove. Speedmay be reduced to
below the value computed by Eq. (9) if the same is somehow
not feasible. If the robot is currently not in a feasible position
due to noise or invalid motion of the other robot, the random
move can also add feasibility. The continuous dynamics is
given by Eq. (17–18).

urandi 〈vrandi , ωrand
i 〉, ωrand

i

= rand such that vrandi > 0, φrand
i = θi + ωrand

i �

(17)

vrandi =
{

vmax
i d

(
φrand
i

)
/� ≥ 2vmax

i
d

(
φrand
i

)
/2� otherwise

(18)

A preference kept in the design is that the robots should
always keep a small comfortable distance ε. If the same is
not maintained due to reasons of noise or improper working
of the other robots, the robot enters the invalid state, wherein
random moves are made till the invalidity is resolved. This
behaviour is not needed in thewait state, since awaiting robot
is no threat and the moving robots should adjust instead. The
behaviour is not needed in the randommoves state, since any
invalidity is also rectified by the state. The dynamics in this
state is given by Eqs. (19–20). The transition conditions are
given by Eqs. (21–22).

uinvalidi 〈vinvalidi , ωinvalid
i 〉, ωinvalid

i

= rand such that vinvalidi > 0, φ = θ + ωinvalid
i � (19)

vinvalidi =
{

vmax
i d

(
φinvalid
i

)
/� ≥ 2vmax

i
d (φ) /2� otherwise

(20)

T (Reactive Planner Move, Invalid) := (d(θ) ≤ ε) (21)

T (Invalid,Reactive Planner Move) := (d(θ) > ε) (22)

The stop state is a special state when the entire simulation
run stops and therefore the state is not associated with any
dynamics.The transition to the stop state happens on reaching
the goal, given by Eqs. (13)–(25).
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Fig. 7 Results for the first
scenario

T (Reactive Planner Move,Stop) := (q = Goal) (23)

T (Invalid, Stop) := (q = Goal) (24)

T (Random Moves,Stop) := (q = Goal) (25)

The outputs from this machine can be collected both from
the discrete transitions and the continuous dynamics. In this
system the state of the robot q and the control signal applied
u is the output that is used for navigation.

4 Results

The approach is tested for a variety of scenarioswith different
number of robots. Five scenarios are presented. Each scenario
presents a different challenge that increases the complexity
of the overall solution. In the simulations, any of the moving
entities can be taken as a human. In simulation it was ensured
that no communication exists between any two entities and
therefore it does not matter whether a robot is surrounded by
a human or other robots; its motion will remain the same.
The purpose behind the simulation at the microscopic level
is to study the navigation of a robot amidst humans and other
dynamic obstacles. However, in simulation it was not possi-
ble to simultaneously manually control multiple such agents,
and hence a computer program had to be used to control such
agents autonomously. The scenarios are presented in the fol-
lowing subsections.

4.1 Scenario 1

In the first scenario a narrow corridor is taken and 20 robots
are generated at one end of the corridor. The robots need to
travel at the other end of the corridor. Travelling through
the narrow corridor is much shorter as compared to tak-
ing the longer turn around. However, because of density
consciousness, many robots take the longer route and thus
save from build-up of congestion. The results are shown
in Fig. 7. Figure 7a is for the source positions. Figure 7b
shows that while most of the robots take the shorter route
in the middle of the obstacle, some of the robots instead
start to take the longer route so as to avoid congestion.
The complete distribution is shown in Fig. 7c wherein the
robots have distributed themselves. Figure 7d shows the goal
positions. The results are also presented in supplementary
video. The results of all scenarios are also summarized in
Table 1.

4.2 Scenario 2

The second scenario is more general, featuring 49 robots to
travel from their source to the goal. The results are shown in
Fig. 8. Figure 8a shows the initial positions of the robots. In
Fig. 8b as the robots proceed towards the goal, they develop
a little congestion. The congestion gets eventually cleared as
shown in Fig. 8c. The final positions of the robots are shown
in Fig. 8d.
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Table 1 Metrics associated with
the simulations for different
scenarios

S. no. Scenario Simulation time (s) Iterations Mean straight line dis-
tance from source to goal

1 Scenario 1 8.87 266.1 327.6601

2 Scenario 2 8.67 260.1 260

3 Scenario 3 3.9 117 381.6171

4 Scenario 4 5.7 152 419.2627

5 Scenario 5 6.67 200 369.8162

Fig. 8 Results for the second
scenario

4.3 Scenario 3

For further testing, a scenario was designed so that there
are multiple routing options for a group of robots. The aim
was to avoid an unnecessary build-up of congestion over
the shortest route area and to spread the robots in space.
The results are shown in Fig. 9. Figure 9a shows the initial
positions from where the robots start. Figure 9b shows the
robots distributing themselves so as to reach their goal aswell
as to avoid congestion. Subsequently, there are more routing
options available at the second column of obstacles, shown
in Fig. 9c. The robots again distribute themselves so as to
minimize the length of path, while still not developing any
congestion. Figure 9d shows the final positions.

In the next scenario, multiple robots are generated from
different corners that cross each other with an aim to meet
in the middle and create congestion. The results are shown
in Fig. 10 with Fig. 10a showing the initial positions. Ini-

tially, there was a build-up of robots; however, on realizing
this the other robots kept away and started taking longer non-
congestion-prone routes. Due to the choice of scenario, some
congestion at the centre had to develop. The build-up of con-
gestion is shown in Fig. 10b, while the robots finally into
congestion are shown in Fig. 10c. Soon the robots got clear
of congestion and moved to their final positions shown in
Fig. 10d.

4.4 Scenario 5

To further enable a large number of robots naturally gather
around at a place, another scenariowas designed. Here robots
from two sources had to actually cross each other, creating
an unavoidable congestion in the centre with less routing
options after being initially committed to a route. The results
are shown in Fig. 11. Figure 11a shows the source posi-
tions. There was a build-up of robots at a narrow area as
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Fig. 9 Results for the third
scenario

Fig. 10 Results for the fourth
scenario
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Fig. 11 Results for the fifth
scenario

was intended by the simulation design, shown in Fig. 11b.
However, soon thereafter the algorithm pushed the robots
around to take a far longer route, while the robots at the nar-
row region aligned with each other to clear way as shown
in Fig. 11c. The robots finally reached their goal positions
shown in Fig. 11d.

4.5 Analysis of the parameter α

Routing is one of the key aspects of the approach. The routing
algorithm has a major parameter α or the penalty constant.
The parameter is tested for performance for the first sce-
nario. Lower values of the parameter encourage more robots
to travel through the narrow corridor, and hence, the distance
travelled is small. However, due to the increased congestion
inside the narrow corridor, the time taken by the robots to
wait is very large. Larger values of the parameter make the
robots unnecessarily conscious of the density, and hence, the
robots prefer taking longer routes and being far away from
each other. Hence, the distance travelled is very high. The
time required by the robots increases due to the increased dis-
tance. As more robots start travelling away from the corridor
with an increased value of the parameter, the speed increases
from the high congestion low speeds to the free-flow speeds,
almost equal to the maximum permissible value baring the
mandatory speed drop due to start from a congested scenario.

Hence, an intermediate value of α is desirable. α is the only
important parameter of the algorithm that governs the per-
formance and needs to be properly set.

Figure 12 shows themetrics with different values of α. All
units are arbitrary and specific to the simulation tool. The
results are averaged for 5 runs, and further, the curves are
smoothened by using moving average. Travelling by using
the shortest path, without using the routing mechanism, is
similar to the system with very small α. The initial peak at a
small value of α clearly shows the limitations of not routing.
The simulations are stochastic, and therefore, the figures will
have some deviation. Hence, the peak is not at 0 but at 1. A
moderate value of α gives enough incentive for the robots
to avoid congestions, and hence, a moderate value of α is
desirable. The robots travel larger distances, however with
greater speeds and take lesser total amount of time.

5 Conclusions

The paper presented a mechanism to move a large number
of robots from their source to their goal using a deliberative
probabilistic roadmap-based planning, an active re-planning,
a reactive navigation system, a density conscious routing sys-
tem and a deadlock avoidance system. The biggest challenge
of the domain is to completely replicate the intelligence of the
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Fig. 12 Performance for changing values of penalty constant, α

humans in such crowded scenarios, who show natural traits
of self-organization, cooperation and navigate as per mutual
understanding. The results clearly display that the robots
moved using trajectories that are very similar to humans. This
is a very strong indicator that the humanmotion even in large
densities of crowds is reactive in nature. In fact, the results
are demonstrated using very basic rules of navigation, which
further suggests that the human motion is not very complex
and decisions are simple reactions to the precepts.

At the same time, the benefits of deliberation in navigation
are clearly visible from the results. The navigation was much
more efficient by using density-based routing than the nav-
igation without density-based routing. The humans also use
the known densities for all routing-based decisions. The den-
sities on the routes near the current positions mainly affect
decision-making. Even if the algorithm makes a route based
on densities of faraway places, the re-routing will happen

later and the routes will be corrected. At the time of working
it appeared that the lack of anticipation will result in a severe
loss in performance. Many times the humans can predict the
intents of the people aroundbasedon the past experiences.On
a stronger analysis, it appears that the humans do not really
anticipatemuch,which explains taking ahighwaywhich after
joining turns out to be congested; going by the shortest route
which appears clear, not realizing everybody will take the
same route; taking lift instead of stairs only to later realize
that everybody coming out will do the same, etc. So even
though the non-anticipatory system is not efficient, the traits
of such non-efficiency also exist in the humans. Overall, this
is a good framework to simulate the motion of a very large
number of robots so as to effectively study the navigation
intelligence of multi-robotic systems. The framework can be
used to simulate a very large number of robots will modest
computation costs.

Even though the paper claims the navigation model is
closer to humans, the paper does not claim a complete imi-
tation of the human motion. A deep analysis in a socialistic
context requires a ground truth in the form of human nav-
igation data. For this case specifically, the data have to be
macroscopic in nature. No such data however exist that can
be used for benchmarking. Even if such data are recorded,
the problem is that the navigation is applied on the robots
that have different kinematic and dynamic constraints, and
form a different socialistic class in contrast to the humans.
The human data cannot be transferred directly to the robots.
Hence, the approach in this paper is intuitive in nature, that is,
to observegoodhumannavigationbehaviours and to interpret
the same in the robot’s context. Further, the human motion
can incorporate numerous factors like minimizing distance,
minimizing energy,minimizing time ormaximizing comfort.
The travel may change depending upon the emotional status,
whether the human is getting late, the preceding events, etc.
Further, different humans have different styles of naviga-
tion and different preferences, so the crowd dynamics may
change with the constituent of the crowd. Hence, completely
mimicking humansmay neither be advisable due to basic dif-
ferences with humans nor possible due to unknown factors.
The interpretation of human like is purely due to interpre-
tation of the routing behaviour as observed in humans in a
robotic context. In other words, the claim is that the robots
are able to display a behaviour normally displayed by the
humans, hence indicating some human intelligence traits.

The paper does enable routing of the robots based on
the current densities. The same needs to be extended to
anticipated densities without communication between the
robots. The deadlock detection and avoidance schemes need
to be improved so as to minimize false positives and reduce
the time wasted in the detection. Further, the humans can
organize themselves very well using rules such as keep on
left/right, crowd entering travels before crowd leaving, under
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high density some routes may dynamically be used as one
ways, etc. All these need to be implemented in the proposed
approach to make the overall navigation even better.
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