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Abstract Recently, various rehabilitation robots have been
developed for therapeutic exercises. Additionally, several
control methods have been proposed to control the rehabil-
itation robots based on user’s motion intention. One of the
common control methods used is torque-based impedance
control. This paper presents an electromyogram-based robust
impedance control for a lower-limb rehabilitation robot using
a voltage-based strategy. The proposed control strategy uses
surface electromyogram (sEMG) signals in place of force
sensors to estimate the exerted force. In addition, the control
is basedon the voltage control strategy,whichdiffers from the
common torque control strategies. For example, unlike the
torque-based impedance control, the controller is not depen-
dent on the dynamical models of the patient and the robot.
This is particularly important as the dynamic of the patient is
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both difficult tomodel precisely and changes during the reha-
bilitation period. These simplifications results in a significant
reduction in calculation time. To illustrate the effectiveness
of the control approach, a 1-DOF lower-limb rehabilita-
tion robot is designed. Experimental sEMG-force data are
collected and used to train an artificial neural network. Simu-
lation results show that comparedwith a torque-based control
approach, the voltage-based is simpler, less computational
and more efficient while it considers the presence of actua-
tors. Finally, we design an adaptive fuzzy system to estimate
and compensate the uncertainty in performing the impedance
rule. The adaptive fuzzy system has an advantage that does
not need new feedback to estimate the uncertainty. The
control approach is further verified by stability analysis. Sim-
ulation results show the efficiency of the control approach in
performing some therapeutic exercises.

Keywords Rehabilitation robot · Impedance control · Fuzzy
adaptive · Voltage-based strategy · SEMG signals

1 Introduction

Recently, rehabilitation robotics are attracting higher atten-
tion by physiotherapists and robot researchers. There are
many reasons for this increasing attention. The rehabilitation
robots can consistently apply therapy over long periods with-
out tiring. In addition, the use of sensors can highly improve
the quality of the therapy. Moreover, it can provide vari-
ous exercises that cannot be performed by a therapist and
can decrease the cost of physiotherapy process. Finally, the
rehabilitation robot can be easily programmed by the phys-
iotherapist to perform the suggested exercises [1].

To perform therapeutic exercises, various control strate-
gies such as position control, force control, hybrid position-
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force control, and impedance control have been proposed.
Advanced controlmethods such as adaptive control [2], fuzzy
control [3] and neural-fuzzy control [4] have been efficiently
used to performmentioned control strategies. Hybrid control
and impedance control are two commonly used controlmeth-
ods. The hybrid control was successfully implemented on the
LOKOMAT robotic system [5,6]. Compared with other con-
trol methods, the impedance control is more effective and
flexible to apply a wide range of rehabilitation exercises
in the presence of uncertainties [7]. The therapeutic robots
such as MIT-MANUS employ impedance control for pas-
sive and resistive exercises [8]. An impedance control law
is a desired dynamics, which a rehabilitation robot should
show in contact with human to perform a commanded ther-
apeutic exercise. Because of applying impedance control,
the robotic system will interact with the environment such a
mass-spring-damper system in response to the applied force
from the environment.

sEMG is one of the biological signals, which is often used
for controlling the robots according to the user’s intention
[9–11]. It reflects the muscle activation level in real time
directly [12–18]. In voluntary movement, force is associated
with motor unit recruitment and variations in motor unit fir-
ing frequency [19]. At the same muscle length and during
isometric conditions, a greater number of recruiting motor
units with greater discharge frequencies (i.e., muscle activa-
tion) lead to a greater generation of force. Therefore, a linear
relationship between sEMG and muscle force is assumed.
Precise estimation of muscle force based on sEMG signals in
real time provides valuable information for robot in order to
perform effective therapeutic exercises. Although sEMG sig-
nals are random, continuous and nonlinear in nature [20,21].
Therefore, sEMG signals should be processed in order to get
a simple model for its amplitude and thenmap this amplitude
for the joint force. Various methods have been proposed for
sEMG-based force estimation such as mathematical mod-
els, artificial neural network (ANN) and neuro-fuzzy. ANN
is one of the most powerful methods of force estimation
[22–24]. Essence of torque-based control methods forced
researchers to need the precise value of human force; there-
fore, the majority of previous studies used complex methods
for signal processing or feature extraction [25–29]. How-
ever, this article shows that using voltage-based methods let
the researcher to use simpler signal processing or feature
extraction methods.

Impedance control is basically defined as a torque control
scheme. In the other words, the joint torques of the robot
are commended to implement impedance control. For this
purpose, the controller should overcome complex problems
such as uncertainty and nonlinearity involved in the dynam-
ics of the robotic system. Furthermore, in the torque control
scheme, control system design depends on the dynamics of
the patient’s limb. However, this parameter is nonlinear and

time-varying. Furthermore, themajority of the proposed con-
trol approaches has ignored the dynamics of actuators, which
are important in motion control. Generally, these proposed
control approaches need to use estimator to estimate par-
ticipant’s limb properties [30–32]. Also in the torque-based
control approaches, it is assumed that the actuators can pro-
vide the commanded torques for the robot joints. However,
this assumption may not be satisfied perfectly due to some
practical problems such as the actuator dynamics, actuator
saturation and sensing limitations. To overcome these prob-
lems, this paper presents a novel robust impedance control
based on the voltage control strategy. The proposed control is
based on the voltage control strategy, which differs from the
common torque control strategy. As advantages, unlike the
torque-based impedance control, the controller is not depen-
dent on the dynamical models of the robot and the patient,
so in comparison with a torque-based control approach, the
voltage-based is simpler, less computational and more effi-
cient while it considers the presence of actuators. In the
proposed control approach, estimation of human force and
uncertainty are both used as input in control law. To do this,
first, sEMG signals with force sensor data are collected and
used to train ANN. The sEMG signals as well as kinematic
data, angle and angular velocity, are used as input to provide
an online estimation of the limb force. Next, a novel adap-
tive fuzzy system based on voltage strategy is proposed to
estimate uncertainties in the control approach.

The paper is organized as follows: Sect. 2 formulates the
dynamics of the rehabilitation robot, explains the neural net-
work algorithm for estimation of joint force from sEMG
signals and development of the impedance control to per-
form therapeutic exercises. Section 3 presents the simulation
results. Discussion is presented in Sect. 4.

2 Materials and methods

2.1 Force estimation

In this paper, a methodology for controlling rehabilitation
robot using sEMG (for estimation of patient force) has been
proposed. The estimation system architecture is divided into
two phases: the training and the real-time operation, as shown
id Fig. 1.

The training phase During the first phase, the users were
instructed to perform the maximal (100% MVC) isometric
extension contraction in a ramp fashion, gradually increase
the knee extension effort over 2 s (loading), and hold the
achieved moment for a further 2–3s. The subjects had a
mandatory rest period of at least 3min between each isomet-
ric contraction. Absolute and normalized moment variations
(particularly relative to body mass) were specified at each
angle. Processed signals are incorporated into a neural net-
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Fig. 1 The force estimation system architecture

work in order to train a set of models that will be used in real
time for force estimation.

The real-time operation phase As soon as the training
phase had finished, the real-time operation phase com-
menced. In this phase, the robust impedance control is used
to perform a therapeutic exercise in real time.

2.1.1 Experimental setup and sEMG data collection

In this study, twomale and two female participants were used
for the data collection (the ageof all participants is 27).All the
participants agreed to the experimental protocol andgaveper-
mission for the publication of their photographs for scientific
purposes. Four channels of sEMG signals are used as main
input signals to estimate the real force of participants. The
locations of sEMGelectrodes are shown in Fig. 2. Each chan-
nel mainly corresponds to one muscle, as shown in Table 1.
To determine the magnitude of sEMG signals of the knee

extensors, our participants were seated on a dynamometer
(Biodex-System3, Biodex Medical Systems Inc., USA) with
hip angle of 85◦. We chose the 85◦ hip angle because in this
position the contribution of the bi-articular rectus femoris, to
the resultant kneemoment is minimal [33–35]. The lever arm
of the Biodex was securely attached to the shank at around
5 cm above the lateral malleolus. Velcro straps were placed
firmly across the hip and trunk to restrict the participants’
movement during the knee extension contraction (Fig. 2). For
the warm-up, participants exerted five submaximal and two
maximumvoluntary isometric concentric contractionswithin
2–3min. Following this, the experimental protocol began.

The axis of rotation of the knee joint was set to be parallel
to the axis of the rotation of the dynamometer, and passing
through the midpoint of the line connecting the lateral and
medial femoral condyles [36]. The influence of the simulta-
neous activation of the hamstrings, working as antagonists
during the knee extension contraction, on the resultant joint
momentwas taken into account by establishing a relationship
between hamstrings sEMG-amplitude and exerted moment,
while working as agonists (described in following with more
details).

For the experiment, eight sticky surface electrodes (Ag/
AgCl) with an electrolytic gel interface were positioned
above the midpoint of the muscle belly (with 2 cm distance
on inter-electrodes) of the rectus femoris, vastus lateralis,
vastus medialis and biceps femoris (Fig. 2). Moreover, ref-
erence electrodes were located on the patella bone. The skin
was carefully shaved and cleaned with alcohol to reduce skin

Fig. 2 The location of the
sEMG electrodes

Table 1 Muscles for each
sEMG channel

sEMG channel Ch.1 Ch.2 Ch.3 Ch.4

Vastus lateralis Rectus femoris Vastus medialis Biceps femoris
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Fig. 3 Procedure of sEMG
preprocessing
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impedance. To reduce motion artifacts of the electrodes, they
were further secured to the skin with an elastic tape, together
with the preamplifier. Prior to the experiment, the legwas pas-
sively shaken to check mechanical artifacts of sEMG signals
from each muscle. Several tests (e.g., contractions against
manual resistance in knee flexion and extension) were per-
formed to visualizewhether a good signalwas produced from
each muscle. When artifacts or a poor signal were observed,
the preparation procedure was repeated. ME6000 is used for
recording the sEMG signal from the muscle in the Sport Sci-
ences Research Institute of IRAN (SSRI). Data from sEMG
sensor were sampled using 2000Hz sampling frequency.

2.1.2 Preprocess of EMG signals

The estimated force from sEMG signals together with kine-
matic data,which included angle and angular velocity, is used
as an input signal to the controller. Since raw sEMG signals
are not suitable as input signals to the controller, the raw
signal must be preprocessed. Raw sEMG processed in three
steps. Step 1:RawsEMGsignalmust befiltered. In this step, a
fifth-orderednotchfilter is used to remove the 60Hznoise due
the power supply. Step 2: Rectify sEMG signal. Step 3: The
online moving average (OMA) of the preprocessed sEMG
signal is calculated. The OMA calculation is written as

E(t) =
√
√
√
√

1

N

N
∑

i=0

E(t − i)2 (1)

where N is the number of the segments (N = 100) and E(t) is
the voltage at its sampling point (sampling rate is 2000Hz).
At least processed sEMG (PEMG) signal is used as input
for artificial neural network estimator. Signal processing is
shown in Fig. 3.

2.1.3 Design neural network estimator

In this paper, the multilayer perceptron (MLP) type ANN is
considered, which is consisting of three layers: input layer,
tan-sigmoid hidden layer, and linear output layer. The detail
structural design for feed-forward condition is depicted in
Fig. 4. It is still under challenging task when it comes to
deciding and select a number of neurons in the hidden layer.
In addition, to store the huge numbers of network variables,
the huge memory is required and hence training becomes
complicated. In addition, over fitting may be occurred. Over
fitting makes the network excessively complex thus, the
nongeneralized network generates random error and conse-
quently results in a very poor classification. On the other
hand, the network cannot adjust the weights and biases prop-
erly during training if a very low number of neurons are
selected in the hidden layer. Due to the lack of specific rule
in finding the numbers of hidden neurons to obtain optimized
performance of the network, particle swarm optimization
(PSO) was used to find best ANN architecture. As the result
of using PSO for force estimation is obtained that best con-
dition for ANN is 6 inputs, 10 tan-sigmoid neurons in hidden
layer and 8 linear neurons in the output layer. After design-
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ing the ANNwith specified architecture and different hidden
neurons, a suitable and efficient back-propagation training
algorithm is required for the adjustment of synaptic weights
and biases at different layers.

The relationship between the sEMG channels and the par-
ticipant force is modeled as

Fhest =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ech1(t)
Ech2(t)
Ech3(t)
Ech4(t)

θ

θ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Whl1
6×nW

hl2
n×mW

ol
m×1 (2)

where Fhest is the joint force vector and Ech.i (t) is the joint
pressed sEMG channel for each i , θ and θ̇ is angular posi-
tion and velocity angular. Whl1

6×n and Whl2
n×m are the neural

network’s weight matrices for the hidden layers and W ol
m×1

is the weight matrix for the output layer. Figure 5 shows the
results of force estimation from the learned neural network
in real time.

2.2 Control system

2.2.1 Design adaptive robust impedance control

The state-spacemodel of the electrically driven rehabilitation
robot, which is shown in Fig. 6, has been obtained by Fateh
and Khoshdel [33] as
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Fig. 5 Force estimation by the learned neural network

ż = f(z) + bw (3)

where w =
[

Fh

v

]

is considered as the inputs, z =
[

qT q̇T ITa
]T

is the state vector, b and f(z) are of the form

f(z) =

⎡

⎢
⎢
⎣

z2
(

Jmr−1 + rM(z1)
)−1 (

−
(

Bmr−1+rC(z1, z2)
)

z2 − rD(z1) + Kmz3
)

−L−1
(

Kbr
−1z2 + Rz3

)

⎤

⎥
⎥
⎦

,

b =

⎡

⎢
⎢
⎣

0 0
(

Jmr−1 + rM(z1)
)−1

rJTe (z1) 0

0 L−1

⎤

⎥
⎥
⎦

(4)

In order to obtain a task-space model, a transformation from
the joint-space to the task-space should be used. This trans-
formation is defined by manipulator Jacobian as

ẋ = J(q)q̇ (5)

where x ∈ Rn is the position of the end effector and J(q) ∈
Rn×n is the Jacobian matrix of the robot manipulator. Thus

q̇ = J−1(q)ẋ (6)

If the Jacobian matrix is not square, the pseudo-inverse Jaco-
bian, J(q)†, is defined as

J(q)† =
(

J(q)TJ(q)
)−1

J(q)T (7)

Also, an impedance rule is proposed as

Md(ẍd − ẍ) + Dd(ẋd − ẋ) + Kd(xd − x) = Fh (8)
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Fig. 6 A schematic of
rehabilitation robot

where Md, Dd and Kd are the diagonal matrices, which
include the desired impedance parameters and Fh is esti-
mated force by ANN. From (8), we have

ẋ = D−1
d Md(ẍd − ẍ) + ẋd + D−1

d Kd(xd − x) − D−1
d Fh

(9)

In addition, in order to obtain themotor voltages as the inputs
of the system, we consider the electrical equation of geared
permanent magnet DC motors in the matrix form,

RIa + Lİa + Kq̇ = v (10)

where K = Kbr−1, v ∈ Rn is the vector of motor voltages,
Ia ∈ Rn is the vector ofmotor currents,R,L andKb represent
the n × n diagonal matrices for the coefficients of armature
resistance, inductance, and back-emf constant, respectively.
So, it can be obtained by using (6) and (10) that

RIa + Lİa + KJ−1(q)ẋ = v (11)

Otherwise, the exact value of model’s parameters expressed
by (11) is not known. So the nominal model is known and
proposed based on the knowledge about the system and the
nominal parameters R̂, K̂ and Ĵ are the estimations of R,
K and J, respectively. The dynamics of the nominal model
are simpler than the actual model. Since the electrical time
constant of the DC geared motor is much smaller than its
mechanical time constant. This implies that the effect of L İa
being ignorable. Moreover, İa might be noisy thereby the
measurement of İa is not recommended; therefore, the term
L İa is not used in the nominal model. It is easy to write from
(11)

R̂Ia + K̂Ĵ−1(q)ẋ + (R − R̂)Ia + (KJ−1(q)

−K̂Ĵ−1(q))ẋ = v (12)

Then, η has been defined as

η = (R − R̂)Ia + (KJ−1(q) − K̂Ĵ−1(q))ẋ (13)

Substituting (13) into (12) yields

R̂Ia + K̂Ĵ−1(q)ẋ + η = v (14)

By substituting (9) into (14), an impedance controller, which
establishes the impedance rule is proposed as

R̂Ia + K̂Ĵ−1(q)(D−1
d Md(ẍd − ẍ) + ẋd + D−1

d Kd(xd − x)

−D−1
d Fh) + η̂ = v (15)

We cannot use η in the control law since η is not known.
Instead, η̂ is employed, where η̂ is the estimation of η by
using an adaptive fuzzy system.

The closed-loop system is formed by substituting the con-
trol law (15) into the system (14) as

R̂Ia + K̂Ĵ−1(q)ẋ + η = R̂Ia + K̂Ĵ−1(q)(D−1
d Md(ẍd − ẍ)

+ẋd + D−1
d Kd(xd − x) − D−1

d Fh) + η̂ (16)

In other words, (16) can be written as

Md(ẍd − ẍ) + Dd(ẋd − ẋ) + Kd(xd − x) − Fh

= K̂−1Ĵ(q)Dd(η − η̂) (17)

In (17) η̂ is a fuzzy system to approximate function η. It can
conclude from (17) that the desired impedance law has been
reached if η̂ = η. It is noticeable that for each degree of
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freedom a fuzzy adaptive system must design separately. Let
us define the inputs of fuzzy system as x1, and x2

x1 = Ia, x2 = ẋ (18)

If three membership functions are given to each fuzzy input,
the whole control space is covered by nine fuzzy rules. The
linguistic fuzzy rules are proposed in the form of Mamdani
type as

Rule 1 : If x1 is Al and x2 is Bl Then η̂ is Cl (19)

where Rule 1 denotes the lth fuzzy rule for l = 1, 2, . . . , 9.
In the lth rule, Al , Bl andCl are fuzzy membership functions
belonging to the fuzzy variables x1, x2 and v, respectively.
Three membership functions P , Z and N are given to the
input x1 in the operating range of manipulator are shown in
Fig. 7. They are expressed as

μP (x1) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 x1 ≤ 0
2x21 0 ≤ x1 ≤ 0.5
1 − 2(x1 − 1)2 0.5 ≤ x1 ≤ 1
1 x1 ≥ 1

,

μN (x1) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 x1 ≤ −1
1 − 2(x1 + 1)2 −1 ≤ x1 ≤ −0.5
2x21 −0.5 ≤ x1 ≤ 0
0 x1 ≥ 0

μZ (x1) = exp
(

−x21/(2σ
2)

)

, σ = 0.3 (20)

The membership functions belonging to x2 are given the
same as x1. The membership functions of output u in the
Gaussian shapes are expressed by

μCl (η̂) = exp
(

−
(

(η̂ − ŷl)
2/(2σ 2)

))

(21)

where ŷl is the center of Cl . If we use the Mamdani-type
inference engine, the singleton fuzzifier and the center aver-
age defuzzifier, η̂ is calculated as [33].

η̂ =
9

∑

l=1

ŷlψl(x1, x2) = ŷTψ(x1, x2) (22)

where ŷ = [

ŷ1 . . . ŷ9
]T

and ψ = [

ψ1 . . . ψ9
]T

in which
ψl is a positive value expressed as

ψ(x1, x2) = μAl (x1)μBl (x2)
9∑

l=1
μAl (x1)μBl (x2)

(23)

Membership functions of inputs expressed by (20) take val-
ues in the interval (0, 1]. Thus μAl , μBl ∈ [0, 1] implies that
|ψl(x1, x2)| ≤ 1 for l = 1, . . . , 9. Therefore, vector ψ is
bounded.

Result 1 Let η̂ be a fuzzy system in the form of (22). Then,
the vector ψ is bounded.

The parameters ŷ in (22) determined by adaptive rule after-
ward. Based on the general approximation of fuzzy systems,
η can be approximated as

η = yTψ(x1, x2) + ε (24)

where y = [

y1 . . . y9
]T

and ε is the bounded approximation
error.

Substituting (22) and (24) into the closed-loop system (17)
yields

Md(ẍd − ẍ) + Dd(ẋd − ẋ) + Kd(xd − x) − Fh

= Kv(yT − ŷT)ψ(x1, x2) + Kvε (25)

Kv = K̂−1Ĵ(q)Dd (26)

can be written as

ë = −α(ė) − β(e) + M−1
d Fh + γ(yT − ŷT)ψ(x1, x2) + γε

(27)

α = M−1
d Dd (28)

β = M−1
d Kd (29)

γ = M−1
d Kv (30)

The state-space equation in the tracking space is obtained
using (27) as

Ż = AZ + Bw (31)
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where

A =
[

0 1
−β −α

]

,B =
[

0
1

]

,Z =
[

e
ė

]

,

w = M−1
d Fh + γ(yT − ŷT)ψ(x1, x2) + γε (32)

A positive definite function V is suggested as

V = 1

2
ZTPZ + γ

2α

(

yT − ŷT
)

(

y − ŷ
)

(33)

where the constant α > 0, P and Q are the unique symmet-
ric, positive definite matrices satisfying the matrix Lyapunov
equation

ATP + PA = −Q (34)

Then, V̇ is calculated using (31)–(33) as

V̇ = −1

2
ZTQZ + ZTPB

(

M−1
d Fh + γ(yT − ŷT)ψ(x1, x2)

+γε) − γ

α

(

yT − ŷT
) ˙̂y (35)

V̇ = −1

2
ZTQZ + ZTPB

(

M−1
d Fh + γε

)

+(yT − ŷT)

(

ZTPBγψ(x1, x2) − γ

α
˙̂y
)

(36)

If the adaptive law is given by

˙̂y = αZTPBψ(x1, x2) (37)

we have

V̇ = −1

2
ZTQZ + ZTPB

(

M−1
d Fh + γε

)

(38)

The tracking error reduces if V̇ < 0. Thus, satisfying V̇ < 0
results in

ZTPB
(

M−1
d Fh + γε

)

<
1

2
ZTQZ (39)

One can imply λmin(Q) ‖Z‖2 ≤ ZTQZ ≤ λmax(Q) ‖Z‖2
where λmin(Q) and λmax(Q) are the minimum and maxi-
mum eigenvalues of Q, respectively. To satisfy V̇ < 0 it is
sufficient that

2 ‖PB‖ .

∣
∣
∣M−1

d Fh + γε

∣
∣
∣ /λmin(Q) < ‖Z‖ (40)

The tracking error becomes small in the area defined by (40).
As a result, the tracking error ultimately enters into the ball

with the radius of 2 ‖PB‖ .

∣
∣
∣M−1

d Fh + γε

∣
∣
∣ /λmin(Q).

Therefore, Z is bounded where Z is expressed as, e and ė
as expressed by (31).

Result 2 The variables e and ė are bounded.

Proposed control is shown in Fig. 8.

2.2.2 Stability analysis

Aproof for the boundedness of state variables is given by sta-
bility analysis. In order to analyze the stability, the following
assumptions are made:

Assumption 1 The desired trajectory in the task-space xd
must be smooth in the sense that xd and its derivatives up
to a necessary order are available and all uniformly bounded
[37].

In order to avoid singularity, some constrictions are used for
the joint variables. This means that the proposed workspace
is nonsingular. Therefore, the following assumption is made.

Assumption 2 There is no singularity in the workspace or
det(J(q)) �= 0.

Fig. 8 The block diagram of
the proposed control scheme
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Table 2 The parameters of the
robot and patient

Link Izzi Iyxi Iyyi Ixxi mr mp Ixzi Iyzi xc yc zc

1 0.91 −0.12 0.23 0.91 2 4 0.91 0 0.09 −0.16 0

Assumption 3 The rehabilitation robot has revolute joints.
This follows the Jacobianmatrix of the robotJ(q) is bounded.
A robot which has only revolute joints, the Jacobian matrix
J(q) consists of bounded sinusoid functions.

Result 3 The Jacobian matrix J(q) is bounded.

Using Assumption 2 and Result 2 implies that

Result 4 J(q)−1 is bounded.

The desired trajectory Xd and its derivative Ẋd are
assumed bounded. From result 1 Since e = Xd − X and
ė = Ẋd − Ẋ, thus boundedness of e and ė follows bounded-
ness of x and ẋ.

Result 5 The variables x, ẋ and ẍ are bounded.

When the adaptive rule (37) is used for the adaptive fuzzy
estimation so the parameters ŷ is bounded.

Result 6 The variable ŷ is bounded.

In (22) parameters ŷ andψ is bounded as result 1 and result 6
therefore

Result 7 The variable η̂ is bounded.

In (15) nominal parameters R̂, K̂ and Ĵ are bounded. The
matricesMd(t), Dd(t) andKd(t) are diagonal bounded pos-
itive matrices. From result 1, result 4 and result 7 implies that

Result 8 The variable v is bounded.

According to (10), the rehabilitation robot is driven by elec-
tric motors under bounded voltages. According to a proof
given by [34], the current, time derivative of current, and
velocity of the motor are bounded. As result,

Result 9 Ia, İa and q̇ are bounded.

The robotic system is stable, since all system states q, q̇ and
Ia are bounded.

3 Results

In this study, at the first, the proposed Impedance Voltage
Control (IVC) strategy for a lower-limb rehabilitation robot
in (11) is compared with the commonly used Impedance
Torque Control (ITC) strategy presented by [1]. In this stage,
it has been assumed that the exact value of model’s param-
eters expressed in (11) are known. This comparison shows

Table 3 The electric motor parameters

Motor V R Kb L J B r k

1 40 1.6 0.26 0.001 0.0002 0.001 0.02 500

the superiority of voltage-based control strategy. In the next
stage, to present the performance of control systems in the
presence of uncertainties, the proposed robust impedance
voltage control (RIVC) strategy compared with the IVC.

Parameters of rehabilitation robotic systemand thepatient,
which are obtained from Solidworks are given in Table 2
where mr is the mass of link, mh is the mass of the patient’s
leg, lr is the length of link, lp is the length of the patient’s leg,
and rc = [xc, yc, zc] is the center of mass for the link.

The inertia tensor in the center of mass is expressed as

I =
⎛

⎝

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞

⎠ (41)

Parameters of the motor are given in Table 3. The parametric
uncertainties k̂b, r̂ , and R̂ are assumed to be 80% of their
real values which introduced in Table 3. The estimate of the
Jacobian is given also as Ĵ(q) = 0.8J(q). Depends on the
type of exercise, the impedance parameters are selected. In
order to have a comparison with the presented impedance
control approach given by [6], the same impedance parame-
ters Md = 4, Dd = 2, Kd = 100 has been set.

Isometric exercise For the tracking control, the desired
trajectory should be sufficiently smooth such that all its
derivatives up to the required order are bounded. In addition,
tracking the desired trajectory in the given exercise should
be suitable for the patient. The desired trajectory for the iso-
metric exercise starts from zero and goes up to 80◦ smoothly,
then stops for 10 s, and finally a desired force is applied to
the patient. The force is determined by a physiotherapist. In
this type of exercise, limbmoves to the desired angle without
applying any force by the patient. After that, the desired force
is applied to the patientwhile the patient resists againstmove-
ment. The force that applied to the patient has been selected
Fd = 20N. Simulation results show a comparison between
the proposed IVC and ITC in Fig. 9. The IVC tracks the
desired trajectory better than ITC. Furthermore, Fig. 9 shows
that the IVC can converge the position of robot quickly to the
constant value and the controller is able to prevent oscillation
of the robot’s joint.
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Fig. 9 Tracking performances of ITC and IVC for isometric exercise
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Fig. 10 Tracking performances ofRIVCand IVC in isometric exercise
in the presence of uncertainties

The proposed RIVC and the proposed IVC are compared
in Fig. 10. Figure 10 illustrates that both controllers are same
in the term of tracking trajectory. The impedance control can
be evaluated according to how well the impedance law is
performed; therefore, to have complete comparison between
controllers the applied force to the patient must be shown.
The applied force to the patient is shown in Figs. 11 and 12.
The art of IVC has been shown in force applied to the patient,
where the ITC shows a force error with a maximum value
of 6N, the IVC shows an insignificant error. In the presence
of uncertainties, the IVC and RIVC show a force error with
a maximum value of 3.1 and 2.2N, respectively. The motor
voltage and motor current of robot for isometric exercise are
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Fig. 11 A comparison between ITC and IVC for isometric exercise
(knee flexion-extension)
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Fig. 12 A comparison between RIVC and IVC for isometric exercise
in the presence of uncertainties

shown inFig.13.Thevoltage and currents of controllers are in
valid rangeswithout sudden changes. Finally, to compare and
contrast the performance of controllers, integral of absolute
errors are shown in Table 4.

4 Discussion

In this paper, a sEMG-based robust impedance control
strategy was proposed for controlling rehabilitation robot.
The previous impedance control approaches were developed
based on the torque control strategy, whereas the proposed
impedance control is based on the voltage control strategy.

123



Intel Serv Robotics (2018) 11:97–108 107

0 5 10 15 20 25
-10

-5

0

5

Time (s)

V
ol

ta
ge

 (v
ol

t)
Voltages of Motor for isometric exercise

0 5 10 15 20 25
-10

-5

0

5

Time (s)

C
ur

re
nt

 (A
m

pe
r)

Currents of Motor for isometric exercise

IVC
IVC(u)
RIVC

IVC
IVC(u)
RIVC
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Table 4 Integral of trajectory tracking errors in the isometric exercise

Without considering uncertainties ITC 53.7104

IVC 3.3767

In the presence of uncertainties RIVC 10.4850

IVC 27.1929

In comparison with the torque-based control approaches,
the proposed approach is free of manipulator dynamics and
it is not dependent on the model of patient’s lower-limb
dynamics. Therefore, it is simpler, more robust and requires
less computation. To implement our sEMG-based robust
impedance control strategy, a 1-DOF lower-limb rehabilita-
tion robot was designed. In training phase, the sEMG signals
along with force sensor data, as well as kinematic data were
collected and used to train the ANN. The trained ANN used
sEMG signals as well as kinematic data, angle and angular
velocity as input to provide online estimation of the limb
force. Experimental results showed that the ANN can effec-
tively estimate the exerted force. Also, a novel adaptive fuzzy
system was proposed to estimate uncertainties in the control
approach. Simulation results show that the adaptive fuzzy
system can model the uncertainty as a nonlinear function of
the system states and is efficient in overcoming uncertainty
and reducing the error. The adaptive fuzzy system has an
advantage that does not need any additional feedback to esti-
mate the uncertainty. Moreover, it can overcome the noises
in the measured acceleration. Finally, the control approach
was verified by a stability analysis. Results presented in
this paper, indicate the superiority of the proposed control
approach over a torque-based impedance control approach
for isometric exercises.
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