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Abstract Rapidly exploring Random Tree Star (RRT*) has
gained popularity due to its support for complex and high-
dimensional problems. Its numerous applications in path
planning have made it an active area of research. Although
it ensures probabilistic completeness and asymptotic opti-
mality, its slow convergence rate and large dense sampling
space are proven problems. In this paper, an off-line plan-
ning algorithm based on RRT* named RRT*-adjustable
bounds (RRT*-AB) is proposed to resolve these issues.
The proposed approach rapidly targets the goal region with
improved computational efficiency. Desired objectives are
achieved through three novel strategies, i.e., connectivity
region, goal-biased bounded sampling, and path optimiza-
tion. Goal-biased bounded sampling is performed within
boundary of connectivity region to find the initial path. Con-
nectivity region is flexible enough to grow for complex
environment. Once path is found, it is optimized gradually
using node rejection and concentrated bounded sampling.
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Final path is further improved using global pruning to erode
extra nodes. Robustness and efficiency of proposed algorithm
is tested through experiments in different structured and
unstructured environments cluttered with obstacles includ-
ing narrow and complex maze cases. The proposed approach
converges to shorter path with reduced time and memory
requirements than conventional RRT* methods.
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1 Introduction

Motion planning refers to collision-free path generation from
an initial state to a specified goal state. It has widespread
applications such as autonomous cars [1], Unmanned Aerial
Vehicles (UAVs) [2], planet exploration rovers for space
missions, surveillance operations [3] and computer-aided
surgery [4]. A number of path planning algorithms includ-
ing deterministic approaches [5,6], artificial potential fields
[6–8], grid-based methods [9,10], neural networks [11,12]
and evolutionary approaches [13–16] have been used to solve
motion planning problem in static and dynamic environment.
An extensive comparative study describing advantages and
shortcomings of these path planning approaches exists in the
literature [7,8,17–19].

Sampling-based planning (SBP) methods are the most
popular and influential advancement in path planning [6,20].
SBPs are probabilistic complete, i.e., a solution will be pro-
vided, if one exists, given infinite run time [6,21]. They are
capable of dealingwith high-dimensional complex problems.
Major edge of SBPs over other state-of-the-art algorithms
is that they build a road map of feasible trajectories with-
out explicit information of obstacles in configuration space
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[6,22,23]. Further, their easy implementation and low com-
putational cost in high dimensions enable them to deal
with real-time complex problems. Rapidly exploring Ran-
dom Tree (RRT) by Lavalle [24] and Probabilistic Road
Map (PRM) by Kav-raki et al. [25] are most popular SBP
algorithms [6,26]. However, dependence of PRM on obsta-
cles geometry makes it suitable only for static environment.
RRT ismore feasible for dynamic cluttered environment than
PRMand has inherent support for non-holonomic constraints
as well [26]. Due to these advantages, RRT and its further
extensions [25] have been extensively explored in recent
decade.

Karaman and Frazzoli [20] proposed an asymptotic opti-
mal extension of RRT, named RRT*. RRT* finds initial path
quickly than RRT and refines it in successive iterations.
As the number of iterations approach infinity, it generates
an optimal or near-optimal path [20,27]. This asymptotic
optimal property makes RRT* algorithm very expedient
for real-time applications. However, RRT* produces sub-
optimal path and has issues related to slow convergence.
Major constraints of RRT* addressed for improvement in
this paper are:

1. rejection of beneficial samples in vicinity of goal region
during initial iterations because they are not directly
connectable to existing nodes in the tree during early
iterations;

2. exploration and sampling in whole configuration space,
adding far away un-necessary nodes not contributing in
final path;

3. significantly high memory requirements due to the large
number of nodes in tree; and

4. slow convergence towards optimal path.

In this paper, a new off-line algorithm named as RRT*-
adjustable bounds (RRT*-AB) is proposed to overcome the
aforementioned issues. RRT*-AB performs informed explo-
ration in search space of known environment. It generates
highly converged tree populatedwith useful nodes, as a result
reducing memory requirements. First, connectivity region
and goal-biased bounded sampling make fast convergence
towards optimal solution. These two features enhance the
valuable samples in the vicinity of goal region very quickly,
as a result leading to attain optimal or near-optimal path effi-
ciently in less time. Further, path is optimized at fast rate
using concentrated sampling, node rejection technique and
path pruning. Concentrated sampling selects nodes only in
limited vicinity of found path, and node rejection technique
rejects inadequate nodes to insert in tree. In the end, path
is further optimized by applying global pruning. The pro-
posed algorithm RRT*-AB has been tested for its robustness
in different scenarios of structured and unstructured clut-
tered environments including cases of narrow and complex

maze passages. Simulation results show that our proposed
approach is efficient inmemory requirements, execution time
and path length.

Rest of the paper is organized as follows. The related
work is discussed in Sect. 2. In Sect. 3, problem definition is
described. The proposed approach RRT*-AB is presented in
Sect. 4. Results are discussed in Sect. 5. Section 6 concludes
the paper and highlights future research directions.

2 Related work

Karaman and Frazzoli [20] proposed RRT* with proven
asymptotic optimal property. RRT* executes either for prede-
fined fixed number of iterations or fixed period of time. RRT*
constructs tree in free space say Zfree by randomly exploring
configuration space. Tree starts from an initial state say zinit
to find path towards a goal state say zgoal. Tree grows gradu-
ally with the increase in iterations. In each iteration a random
state say zrand is selected from free space [19,28]. If random
state lies in obstacle space, it is rejected, called as TRAPPED
condition. If newly added node itself is goal location, then
path is found, referred as REACHED condition. A nearest
node, i.e. znearest in tree is searched according to a metric
σ . If zrand is reachable from nearest node znearest according
to predefined step size, then it is added in tree as new node
called znew by connecting with nearest node, which becomes
its parent. Otherwise, planner returns a new node znew by
using a steering function and adds it in tree by connecting
it with nearest node as parent. A cost value is assigned to
newly added node according to a defined cost function. It is
referred as EXPAND condition [19,28]. This node expansion
process of RRT* is illustrated in Fig. 1.

During each iteration, near neighbours are searched for
new node within the area of a radius defined by

k = γ (log(n)/n)(1/d), (1)

where d is the dimension of configuration space, n is the
number of tree nodes, and γ is the planning constant based
on environment [19,28]. Then, a node rewiring operation

Fig. 1 Node expansion process in RRT* [19]
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Fig. 2 Near vertices and
rewiring operations in RRT*; a
finding near vertices, b selection
of best parent, c checking cost,
d rewired according to
minimum cost [28]

rebuilds the tree for less cost within this area using identified
near neighbours [29]. This process is shown in Fig. 2. Once
an initial path is found, execution continues for the rest of
iterations to improve the path [19,28].

RRT* improved path quality as compared to initial RRT
approach; however, it required large number of iterations to
optimize initial path resulting slow convergence [19,28]. In
2013, Nasir et al. [30] proposed a variant of RRT* called
RRT*-Smart to resolve the issues of slow convergence in
RRT*. RRT*-Smart converges to optimal or near-optimal
solution at fast pace than RRT* using intelligent sampling
and path optimization techniques. Once, an initial path is
found RRT*-Smart optimizes path by alternatively applying

Algorithm 1: T ← RRT ∗(zinit, zgoal)
1 T ← I ni tiali zeTree();
2 T ← I nsert Node(φ, zinit, T );
3 for i ← 0 to N do
4 zrand ← Sample(i);
5 znearest ← Nearest (T, zrand);
6 (znew,Unew) ← Steer(znearest, zrand);
7 if Obstacle f ree(znew) then
8 znear ← Near(T, znew, |V |);
9 zmin ← Chooseparent (znear, znearest, znew);

10 T ← I nsert Node(zmin, znew, T );
11 T ← Rewire(T, znear, zmin, znew);
12 return T
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Algorithm 2: T ← RRT ∗–Smart (zinit, zgoal)

1 T ← I ni tiali zeTree();
2 T ← I nsert Node(φ, zinit, T );
3 for i ← 0 to N do
4 if i ← n + b, n + 2b, n + 3b.... then
5 zrand ← Sample(i, zbeacons);
6 else
7 zrand ← Sample(i);
8 znearest ← Nearest (T, zrand);
9 (znew,Unew) ← Steer(znearest, zrand);

10 if Obstacle f ree(znew) then
11 znear ← Near(T, znew, |V |);
12 zmin ← Chooseparent (znear, znearest, znew);
13 T ← I nsert Node(zmin, znew, T );
14 T ← Rewire(T, znear, zmin, znew);
15 if I ni tial PathFound then
16 n ← i ;
17 (T, directcost) ←

PathOptimization(T, zinit, zgoal);
18 if directcostnew < directcostold then
19 zbeacons ← PathOptimization(T, zinit, zgoal);

20 return T

random sampling and intelligent sampling at regular inter-
vals [19,28]. These intervals are managed by biasing ratio,
defined by

BiasingRatio = (n/Zfree) ∗ B, (2)

where n is the number of tree nodes, Zfree is free space, and
B is a programmer-dependent constant which sets a trade-off
between convergence rate and exploration of space. Further,
intelligent sampling is performed only around biasing bea-
con points identified in initial path. RRT*-Smart converges
more efficiently than RRT*; however, it requires adjustment
of biasing ratio which makes it highly sensitive to type of
environment map. Moreover, process to identify new biasing
points each time when path improves also causes com-
putational overhead. Additionally, inefficient Biasing ratio
increases random sampling over intelligent sampling. Thus,
RRT*-Smart still explores the whole configuration space
and requires thousands of iterations to converge to optimal
path. This phenomenon generates very dense tree, increas-
ing memory requirements with large number of such nodes
which do not contribute in final path [19,28]. Approaches of
RRT* and RRT*-Smart are shown in Algorithms 1 and 2,
respectively. A comparative feature analysis of RRT, RRT*
and RRT*-Smart is provided in [28].

Gammell et al. [31] proposed another variant of RRT*
called Informed RRT*. Informed RRT* creates an elliptical
area between start and goal positions using an ellipsoidal
informed subset, once an initial sub-optimal path is found.
Sampling area of ellipse also decreases with the convergence

in path. However, Informed RRT* was designed specifically
to address extremely narrow passages. Therefore, its ellip-
tical sub area could not be reduced effectively in cluttered
environment. As a result, sampling in larger ellipse could
not converge quickly to optimal solution in reasonable com-
putation time.

3 Problem definition

Let the given state space be denoted by a set Z ⊂ R
n, n ∈ N,

and n = 2, where n represents the dimension of given
space. Further, configuration space occupiedwith obstacles is
denoted by Zobs ⊂ Z and obstacle-free region is denoted by
Zfree = Z/Zobs . zgoal ∈ Zfree is the goal and zinit ∈ Zfree is
the starting point. This paper only considers off-line planning
in Euclidean space and positive Euclidean distance between
any two states, e.g., z1 ∈ Zfree and z2 ∈ Zfree is denoted
by d(z1, z2). Let the path connecting states z1 and z2 be
denoted by a metric function σ : [0, s], such that σ(0) = z1
and σ(s) = z2, where s is the positive scalar length of
the path. σ f ∈ Zfree is an end-to-end feasible path and set
of all collision-free paths in Zfree is denoted as Σ f , i.e.,
σ f ∈ Σ f . Algorithm runs to find a feasible path σ f ∈ Σ f

from σ f (0) = zinit to σ f (s) = zgoal following the system con-
straints. In order to find the solution, algorithm builds a tree
T = (V, E), where V are the vertices sampled from Zfree,
and E are the edges to connect these vertices. The following
motion planning problemswill be considered in the proposed
algorithm:

Problem 1 (Feasible path solution): Find a path σ f : [0, s],
if one exists in Zfree ⊂ Z such that σ f (0) = zinit ∈ Zfree

and σ f (s) = zgoal ∈ Zfree and report failure if no such path
exists.

Problem 2 (Optimal path solution): Find an optimal path
σ ∗
f : [0, s] which connects zinit and zgoal in Zfree ⊂ Z

such that the cost of the path σ ∗
f is minimum, i.e., c(σ ∗

f ) =
{minσ sc(σ f ) : σ f ∈ Σ f }.
Problem 3 (Convergence to optimal solution): Find an opti-
mal path σ ∗

f : [0, s] in Zfree ⊂ Z in the least possible time
t ∈ R.

4 Proposed approach

This section describes proposed approach RRT*-AB. The
proposed approach aims to address limitations described ear-
lier. The proposed approach tends to grow more promising
tree by exploring only favourable regions to find optimal
path in less time and memory requirements. The innovation
of proposed approach lies in features named as connectivity
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region, bounded sampling, and path optimization. The pro-
posed approach is given in Algorithm 3. Major operations of
the proposed approach are explained as following:

Algorithm 3: T ← RRT ∗–AB(zinit, zgoal)

1 T ← I ni tiali zeTree();
2 T ← I nsert Node(φ, zinit, T );
3 CRegion ← Connectivi t yRegion(zinit, zgoal, T );
4 for i ← 0 to N do
5 zrand ← BoundedSample(i,CRegion);
6 znearest ← Nearest (T, zrand);
7 (znew,Unew) ← Steer(znearest, zrand);
8 if CollisionCheck(znew) then
9 znear ← Near(T, znew, |V |);

10 zmin ← ChooseParent (znear, znearest, znew);
11 T ← I nsert Node(zmin, znew, T );
12 T ← Rewire(T, znear, zmin, znew);
13 if PathFound(T ) then
14 CRegion ← Connectivi t yRegion(zinit, zgoal, T );
15 else if CompleteScan(CRegion) then
16 CRegion ← Connectivi t yRegion(zinit, zgoal, T );

17 T ← PrunePath(T );
18 return T

ConnectivityRegion: This function identifies a connectivity
region denoted by CRegion using Dscale covering the search
space between zinit and zgoal.

BoundedSample: It randomly samples a state zrand ∈
CRegion ⊂ Zfree.

Nearest: The function Nearest(T, zrand) returns the nearest
node from T = (V, E) to zrand according to cost function.

Steer: The function Steer(znearest, zrand) provides a control
input Unew to drive the system from z(0) = zrand to z(1) =
znearest along the path z : [0, 1] → Z giving znew at a distance
�q from znearest towards zrand, where �q is the incremental
distance.

CollisionCheck: This function determines whether a path
z(t) ∈ Zfree such that z : [0, 1] for all t = 0 to t = 1.

Near: The function Near(T, znew, |V |) returns the nearby
neighbouring nodes defined by Eq. 1.

ChooseParent: This function selects the best parent zmin from
the nearby nodes.

InsertNode: This function adds a node znew to V in the tree
T = (V, E) and connects node zmin as its parent. A cost is
assigned to znew which is equal to the cost of its parent plus
the Euclidean cost returned by the distance function between
znew and its parent zmin.

Rewire: The function Rewire(T, znear, zmin, znew) checks if
the cost to the nodes in znear is less through znew as compared
to their older costs. If it is less for a particular node, its parent
is changed to znew.

CompleteScan: It returns true if one whole scan within
CRegion is completed. If after single complete scan path is
not found, then algorithm has to grow CRegion.

PrunePath: It returns nodes from path that are connectable
directly without a collision with obstacles.

4.1 Connectivity region and intelligent bounded
sampling

Proposed algorithm initializes tree T with zinit as root (see
steps 1–2 in Algorithm 3). Then it populates its tree using
intelligent bounded sampling which randomly selects nodes
in limited region named as CRegion.

CRegion limits the search space for sampling of new ran-
dom nodes. CRegion is based on simple step of defining the
search space between zinit and zgoal using expansion distance
scale called Dscale using

Dscale = E/m, (3)

where E is the size of environment map and m is the expan-
sion factor (see step 3 in Algorithm 3), as shown in Fig. 3c, d.
By default m is 4, which gives the scale to generate CRegion

half the size of the environment map.m could be increased to
get a narrowCRegion. Intelligent bounded sampling randomly
selects nodes within bounds of CRegion (see step 5 in Algo-
rithm 3) using goal-biased heuristic. Steps of near neighbour
search, best parent selection, rewiring and node insertion are
performed same as in RRT* (see steps 6–12 in Algorithm 3)
during this procedure.

A path is found when intelligent sampling finds goal
node or a node in goal region (close neighbourhood of goal)
(see steps 13–14 in Algorithm 3) . When bounded sampling
completes a single scan of CRegion (see steps 15 and 16 in
Algorithm 3) and path is not found in the first scan, then
Dscale is increased gradually to increase CRegion until a path
is found (see step 16 in Algorithm 3), as shown in Fig. 3c,
d. Dscale can grow CRegion up to the whole environment map
in extreme complex scenario such as a maze. Exploring the
obstacle-free space inCRegion (see steps 6–12 inAlgorithm3)
makes sampling highly biased towards goal as shown in Fig.
3c. Once an initial path is searched within CRegion, a cost
function returns the cost of path in terms of Euclidean dis-
tance defined by

�d =
√

(x2 − x1)2 + (y2 − y1)2. (4)
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Fig. 3 Process of proposed
algorithm RRT*-adjustable
bounds

4.2 Path optimization

Once an initial path is identified, the path is further optimized
using three strategies: a) path concentrated sampling, b) node
rejection technique, and c) path pruning.

Concentrated sampling Firstly, connectivity region is
adjusted in close vicinity of initial path (see step 14 in Algo-
rithm 3). This new reduced and bounded area is very narrow
CRegion in the vicinity of path way-points. It is generated by
redefining the scale of CRegion around initial path as shown
in Fig. 3f (see step 14 in Algorithm 3). As a result of this phe-
nomenon frequent rewiring operations occur in the vicinity of
initial path, which benefit to decrease path cost very rapidly.
Each time when new path is found, CRegion is redefined or
readjusted again along new path.

Node rejection Second important factor of path optimization
is node rejection technique. Node rejectionworks on the sim-
ple principle of avoiding high-cost nodes. According to it, a
newly sampled node is rejected to insert in tree, if sum of its
cost and its distance from goal is greater than current path
cost. Such a node could not be useful to optimize the path.

Thus, tree cost is maintained by expanding tree with use-
ful nodes only. Path gradually improves with the combined
effect of concentrated sampling and node rejection technique
until the end of defined iterations.

Path pruning In the final phase of path optimization, a global
pruning process [30] is performed to further shorten the path
(see step 17 in Algorithm 3).

Figure 3 shows the top level sequence of major steps
in proposed approach. Figure 3a shows an indoor environ-
ment map. Figure 3b shows occupancy map generated along
with start and goal position shown. Then connectivity region
CRegion is defined by Eq. 3. When path is not searched dur-
ing first scan of CRegion so it is enhanced in double as shown
in Fig. 3d. Figure 3e shows initial path found with a path
cost of 165m and redefinition of connectivity region along
initial path. Figure 3f shows the intermediate result of path
optimization process. Sampling concentrated in the nearby
area around path is performed along with node rejection
technique, which resulted in near-optimal path with a con-
vergence to cost of 136m until completion of iterations, as
shown in Fig. 3g.
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Fig. 4 Results comparison of structured maps M1 to M4
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Fig. 5 Plots for maps M1 to M4; a average execution time, b average path cost

5 Experimental results and discussion

This section demonstrates experiments of proposed approach
in different environments, each with different scenario of
obstacles. The numerical analysis plots of RRT* [20], RRT*-
Smart [30] and RRT*-AB are also presented. The algorithms
are implemented using 64-bit version of MATLAB 15 and
tested on a PC with an Intel i3-4010U@1.70 GHz CPU and
4GB internal RAM. The operating system is 64-bitWindows
8 Enterprise. Experiments are performed with different envi-
ronment maps referred as M1, M2, M3, M4, M5, M6, and
M7 to verify the robustness of proposed approach. Statistics
of experiments along with simulation results are recorded to
provide graphical and numerical comparative analysis with
previous approaches. Considering the stochastic nature of the
methods, each experiment set was conducted twenty times
for each case of environment map and for each approach
using 4000 iterations for maps M5 and M6 and 2000 for all
other maps, respectively. Initial and goal points are chosen
on extreme distance from one end to another end in all the
maps.

5.1 Structured cluttered environment

Map M1 is the scenario of obstacle-free environment shown
in Fig. 4a–c. Map M2 and M3 are scenario of environment
cluttered with different obstacles density, as shown in Fig.
4d–i, respectively. M4 represents an in-bound obstacle shape
shown in Fig. 4j–l. In case of mapM1, it is obvious from Fig.
4a–c that previous approaches explore whole search space
and generate highly dense tree with large number of nodes,
which are not worthy to contribute in final path. On the con-
trary, proposed approach finds out the collision-free route
between zinit and zgoal without moving towards deep explo-
ration of configuration search space. Similarly, for the cases
ofM2,M3, andM4 both previous approaches have expanded
tree in whole space with high tree cost and large number of
nodes as compared to the proposed approach and has also
generated larger paths in more time than proposed approach.

Results in Fig. 4 clearly exhibit that the proposed approach
explores targeted environment region intelligently and adds
most of the meaningful nodes in tree to explore the path. Fur-
ther, it has generated shorter paths with less tree cost and has
also converged to minimum path cost in less time than both
other approaches. It is also demonstrated from comparison of
average path cost and average execution time plots of twenty
test runs of all approaches for each map in Fig. 5.

5.2 Narrow and complex environment

M5 is a scenario of complex narrow passage, shown in Fig.
6a–c,whereasM6 is a case ofmaze passage shown inFig. 6d–
f. Their results show the flexibility of CRegion to adjust its
bounds even for highly complex cluttered environment.Aver-
age execution time plot and path cost plot of narrow passage
case M5 in Fig. 7 demonstrate that proposed approach gen-
erated shorter path in less time than RRT* and RRT*-Smart.
Average path cost plot and execution time plot of maze case
M6 in Fig. 7 demonstrate that RRT* has less execution time
than RRT*-Smart and proposed approach. However, RRT*
has generated longer path than both RRT*-Smart and pro-
posed approach. The main factor of more time and better
path by RRT*-Smart and proposed approach is that they both
adapt intelligent sampling and path optimization techniques
as compared to RRT*. For maze case, the proposed approach
had to expand its CRegion for second scan. However, it still
converged to better path than both previous approaches.

5.3 Unstructured indoor environment

Experiments on unstructured indoor environment are also
conducted. For this purpose, map M7 is adapted from Intel
research lab datasets [32]. It is visible from comparison of
paths in Fig. 8a–c and average execution time and path cost
plots in Fig. 9a that proposed approach converges to opti-
mal solution quickly in less time. Average value plots in
Fig. 9a show proposed approach time and memory efficient
than previous approaches. Since the process of convergence
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Fig. 6 Results comparison of cases M5 and M6

Fig. 7 Plots for maps M5 and M6; a average execution time, b average path cost

to the optimal solution starts after finding the initial feasi-
ble solution, therefore, convergence rate is calculated after
computation of initial path. Figure 9b shows convergence
rate comparison of RRT*, RRT*-Smart and the proposed
approach RRT*-AB for 20 different trials of unstructured

cluttered environment mapM7 using 2000 iterations. Let the
initial feasible path, denoted by σinit , is computed in tinit time
with cinit path cost while the optimal path solution, denoted
as σ(∗), is computed in t∗ time with c∗ path cost. Then the
convergence rate is defined as
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Fig. 8 Results comparison of unstructured map M7

Fig. 9 Plots of unstructured map M7; a average execution time (left) and average path cost (right), b convergence rate

(cinit − c∗)
(t∗ − tinit)

. (5)

It is clear from the plot that convergence rate of proposed
approach RRT*-AB is highest, followed by RRT*-Smart and
RRT*. It shows the fact that once an initial path is found,
the proposed approach improves it rapidly to converge it to
optimal solution than both other approaches.

To provide the comparison of memory requirements and
tree density, average total number of nodes in tree and total

tree cost for all maps by each approach are shown in Fig.
10a, b. It is evident from Fig. 10 that proposed approach finds
path using minimum tree cost and it generates less dense, but
more promising tree than other approaches resulting in less
memory requirements.

Proposed approach RRT*-AB performs better than RRT*
and RRT*-Smart [30]. RRT*-Smart converges quickly than
RRT*; however, it is dependent upon biasing ratio constant.
Biasing constant defines the ratio of direct sampling to intel-
ligent sampling using a computation process (see step 4 in
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Fig. 10 Plots indicating memory consumption by all maps; a average total number of nodes in tree, b average tree cost

Algorithm 2). Secondly its intelligent sampling is limited to
beacon points. Therefore, it does not completely switches to
intelligent sampling and uses direct random sampling also
till the end of iterations. Hence, it partially limits the search
space, as a result increases tree densitywith un-suitable nodes
during optimization process. Further, its pruning is executed
each time when a new path is found, which also delays
execution time. On contrary, proposed approach uses intelli-
gent sampling throughout the process, reduces search space
effectively and uses a three-step optimization process. Two
steps of optimization, i.e., concentrated sampling and node
rejection in readjusted CRegion are performed till end of the
iterations and pruning is used once in the end.

Informed RRT* [31] also limits the search space effi-
ciently but in an hyperellipsoid area and after getting initial
path. It is specifically designed to deal with extremely nar-
row passages. Therefore, it fails to perform well in cluttered
environment because its hyperellipsoid could not be reduced
effectively to converge the path [33]. On contrary, forma-
tion of limiting search space in the proposed approach is
two stage. Initially, proposed approach limits search space
using goal-biased heuristics, which could be increased in
case of complex environment. Once an initial path is found,
then it adjusts a very narrow limited region according to
the way-points of found path, as shown in Fig. 3c–e. As
a result, proposed approach generates fast and meaningful
rewiring operations to improve the path. Moreover, proposed
approach can be used in narrow passages, complex maze,
and cluttered environments as demonstrated by results. Sim-
ilarly, Informed RRT* does not use any path optimization
technique, whereas three-step optimization process in pro-
posed approach not only accelerates the convergence but also
removes redundant nodes in the path.

The improved results of proposed approach are based
on the three features. First, goal-biased intelligent sampling
is performed in limited region of environment map, which
enables to find path quickly. Second, when path is found,

connectivity region is readjusted according to the path. A
concentrated sampling is performed in new connectivity
region, i.e., only in close vicinity of the nodes forming way-
points of path, which causes meaningful rewiring operations
to improve path cost. Whereas in other approaches, a lot of
nodes are rewired in tree far away from the found path, giving
no benefit to improve path cost. Since, rewiring in tree also
adds time overhead, so it is highly desired that only beneficial
rewiring should take place once initial path is found. Third,
node rejection technique restricts tree to increase unneces-
sarily by inserting only promising nodes. Moreover, it also
effects execution time for near neighbour search and rewiring
operations, as inRRT* these operations takemuch time if tree
has large number of nodes. Further, improvement in time effi-
ciency can be achieved by adapting near neighbour search
techniques such as kd-tree or quad tree [34].

6 Conclusion and future directions

In this paper, a novel path finding algorithm called RRT*-
adjustable bounds (RRT*-AB) is proposed. Experimental
results show that proposed algorithm (1) generates promising
tree by intelligently exploring the search space using novel
schemes, i.e., connectivity region, goal-biased bounded sam-
pling, concentrated sampling and node rejection; (2) con-
verges to optimal solution quickly; (3) generates shorter
paths; (4) consumes less memory; (5) also deals with narrow
and complex environment formations along with cluttered
environment. Numerical analysis of simulation results is
presented to support the theoretical analysis. Moreover, con-
vergence rate is also identified for simulations to compare the
improved performance with other RRT* approaches. Future
directions are the advancement of this approach to gener-
ate feasible path in un-known 3D environment for car-like
mobile robots.
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