
Intel Serv Robotics (2018) 11:61–78
https://doi.org/10.1007/s11370-017-0235-8

ORIGINAL RESEARCH PAPER

Learning task-parameterized dynamic movement primitives using
mixture of GMMs

Affan Pervez1 · Dongheui Lee1

Received: 10 October 2016 / Accepted: 3 July 2017 / Published online: 26 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract Task-parameterized skill learning aims at adap-
tive motion encoding to new situations. While existing
approaches for task-parameterized skill learninghavedemon-
strated good adaptation within the demonstrated region, the
extrapolation problem of task-parameterized skills has not
been investigated enough. In this work, with the aim of good
adaptation not only within the demonstrated region but also
outside of the region, we propose to combine a generative
model with a dynamic movement primitive by formulat-
ing learning as a density estimation problem. Moreover, for
efficient learning from relatively fewdemonstrations,wepro-
pose to augment training data with additional incomplete
data. The proposed method is tested and compared with
existing works in simulations and real robot experiments.
Experimental results verified its generalization in the extrap-
olation region.

Keywords Programming by demonstration · Dynamic
movement primitives · Task-parameterized movement

1 Introduction

Humans are very good at learning and reproducing complex
tasks, but it is often tedious and cumbersome to program
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a robot for performing them. Programming by demonstra-
tion (PbD) alleviates this problem, giving the possibility to
teach a skill to a robot through demonstrations. The skill can
be acquired from an expert in the corresponding field and
removes the bottleneck for the teacher to have knowledge of
robotics or programming. This also provides a great poten-
tial for industrial applications as PbDcan significantly reduce
the setting up time of an assembly line. Since PbD aims at
speeding the setting up time, collecting a lot of demonstra-
tions can be an expensive and time consuming task. Thus, it
is a desirable attribute to learn from as few demonstrations
as possible. Moreover, since the demonstrations are finite,
the learned controller should not only be able to generate
motions within the demonstrated ranges, but also beyond
them. There are skills in which multiple demonstrations can
look very different due to the underlying task-specific varia-
tions [18,27,28]. As an example, Fig. 1 presents a sweeping
task. In this task, the trash position can completelymodify the
trajectory of the broom, even for a fixed starting and collec-
tion point. For this task, the trash position can be interpreted
as a task parameter, governing the variations in different
demonstrations.

This paper utilizes these types of task-specific demonstra-
tions. Our approach combines dynamical systems [19,26]
and statistical machine learning techniques [7]. The existing
works extending dynamic movement primitives (DMPs) to
include task parameters have used discriminative approaches
for learning [10,18,27,28]. Discriminative models are used
for modeling the dependence of an unobserved variable y
on an observed variable x . This is done by modeling the
conditional probability distribution P(y|x), which is then
used for predicting y from x . On the contrary, we combine
a generative approach with the DMP, as it can make use of
incomplete/unlabeled training data. This results in an 1-Step
learning procedure similar to [27].Generativemodels encode
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Fig. 1 This figure shows the illustration of a sweeping task. The posi-
tionof the trash (colored circles) canbe considered as the taskparameter,
governing variations in the demonstrations. For a new trash position
(blue circle), which is away from the demonstrated region, the robot
should be able to generate trajectory for moving trash to the collection
point (color figure online)

the joint distribution of P(x, y) of the variables of interest.
The conditional distribution can later be inferred from the
joint distribution, i.e., P(y|x) = P(x, y)/p(x) where p(x)
is obtained by marginalizing out y from P(x, y). The aim
of this work is to learn from very few demonstrations which
implies sparsely distributed data. We solve the data spar-
sity problem by augmenting training data with additional
incomplete data while poor local optima are avoided with
deterministic annealing expectation maximization (DAEM).

The main contributions of this paper are:

– Instead of a discriminative model, we have used a
generative model for modeling the forcing terms in a
task-parameterized DMP (Sect. 3).

– The local maxima problem during the likelihood maxi-
mization is resolved with DAEM (Sect. 3).

– We solve the data scarcity problem by using additional
incomplete data and the expectation maximization (EM)
algorithm [9] (Sect. 4). The detailed derivation of the
incomplete data EM is also provided (Appendix).

– Through simulated and real robot experiments, we show
that our approach requires very few demonstrations for
learning and provides superior extrapolation capabilities
when compared with the related works (Sect. 6).

2 Movement primitives

2.1 Dynamic movement primitive

DMP is a way to learn motor actions [26]. It can encode dis-
crete as well as rhythmic movements. We consider the DMP
formulation presented in [19], as it overcomes the numeri-
cal problems which arises when changing the goal position
in the original formulation [26]. A separate DMP is learned
for each considered degree of freedom (DOF). A canonical
system acts as a clock and for synchronization each DMP is
driven by the common clock signal.

τ ṡ = −αss (1)

The parameter s is usually initialized to one and it monotoni-
cally decays to zero, τ is the temporal scaling factor while αs

determines the duration of the movement. From Eq. (1), the
time t and s are related as s(t) = exp(−αs t

τ
). The canonical

system drives the second-order transformed system:

τ v̇ = k(g − x) − dv − k(g − x0)s + skF(s)

τ ẋ = v

where g and x0 are goal and start positions, respectively,
k acts like a spring constant while the damping term d is
set such that the system is critically damped. The learning
of forcing term F(s) allows arbitrarily complex move-

ments. F(s) is defined as
∑K

i=1 ψi (s)ωi
∑K

i=1 ψi (s)
where ψi (s) =

exp(−hi (s − ci )2) are Gaussian basis functions with spread
hi , centers ci and adjustable weights ωi . To encode a move-
ment, we first register x(t) and its first and second derivatives
v(t) and v̇(t), respectively, at each time step t = 0, . . . , T .
Then for a suitable value of τ , we integrate the canonical
system and calculate the target value Ftar(s) for each time
step.

Ftar(s) = v̇τ − k(g − x) + dv + k(g − x0)s

sk

Now learning is performed to minimize the error criterion
J = ∑

s (Ftar(s) − F(s))2 which is a linear regression
problem and the weights ωi are learned with weighted least
squares.

2.2 DMP learning with a Gaussian mixture model

The forcing term F(s) can be encoded with a Gaussian
mixture model (GMM) [2] or any other suitable function
approximator [27]. When using a GMM, the manual speci-
fication of the meta parameters related to the basis functions
(means and spread) is not required as the means and covari-
ances of the GMM components are learned using EM. That
is why the GMM-based encoding also requires less num-
ber of components as compared with the number of basis
functions. The number of GMM components can also be
optimized by using an appropriate model selection crite-
rion [22]. A GMM with K components is parameterized
by θ (K ) = {πk,μk,�k}Kk=1, where π1, . . . ,πK are mix-
ing coefficients with constraints πk > 0 and

∑K
k=1 πk =

1, μ1, . . . ,μK are means and �1, . . . ,�K are covariance
matrices. The learning scheme is as follows. First a dataset
is created

x =
(

s1 . . . sT
Ftar(s1) . . . Ftar(sT )

)

(2)
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Then, a GMM is fitted to the data with EM [9]. Eigenvalues
of covariance matrices are regularized to avoid singularity
during EM [5]. Now for retrieving F(s) for a given s value
we can useGaussianmixture regression (GMR) [4]. InGMR,
input and output variables in each component are represented
separately

μk =
[

μI
k

μO
k

]

, �k =
[

� I
k � I O

k
�OI

k �O
k

]

For a given input variable xI , the expected value of xO is
calculated as:

E(xO |xI ) =
K∑

k=1

hk x̂k

with hk = πkN
(
xI ;μI

k ,�
I
k

)

∑K
l=1 π lN

(
xI ;μI

l ,�
I
l

)

x̂k = μO
k + �OI

k

(
� I

k

)−1 (
xI − μI

k

)

3 Task-parameterized DMP

The DMP parameters can be separated into two types: (1)
the shape parameters ωi associated with the basis functions
and (2) the DMP meta parameters which are all parameters
other than the shape parameters, i.e., τ, g, K ,, etc. DMP pre-
sented in Sect. 2 does not consider external parameters T ,
which are referred to as task parameters in this work (e.g.,
the trash position in Fig. 1). Also the only input to a DMP is
the clock signal. In the task-parameterized DMP (TP-DMP),
we firstly want to learn from multiple demonstrations exe-
cuted for different task parameters. Secondly for adapting
the motion to a new task, the task parameters should also
be passed as an input along with the clock signal. Following
are the preprocessing steps that we consider in our TP-DMP
framework:

1. Since a common clock (canonical system) drive all
DMPs, we assign a common time duration to all demon-
strations.

2. All demonstrations are linearly resampled to have an
equal number of samples. A sample inbetween two data
points is created by linear interpolation of the neighbor-
ing data points.

3.1 TP-DMP learning using mixture of GMMs

We consider learning as a density estimation problem
where we want to learn the joint distribution of (s,T ,F).
Learning a single GMM over all demonstrations encoding

(s,T ,F) can suffer from curse of dimensionality in higher-
dimensional space. That is whywe learn a separate GMM for
each demonstration in lower-dimensional space, i.e., (s,F),
by first creating the data sets as in Eq. (2) and then applying
EM as mentioned in Sect. 2.2.

μo,m =
(

μs
o,m

μF
o,m

)

, �o,m =
(

�ss
o,m �sF

o,m
�Fs

o,m �FF
o,m

)

Here, the subscripts o and m denote the indexes of demon-
strations and components, respectively, while the terms s and
F in superscript denote the dimensions corresponding to s
and F , respectively. Since the task parameters remain con-
stant during a demonstration,we can simply concatenate their
values in the learned means of the GMM components. The
diagonal values corresponding to the task parameters in the
covariances are not learned and are set to small value ε

μo,m =
⎛

⎝
μs
o,m
T o

μF
o,m

⎞

⎠,

�o,m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�ss
o,m 0 . . . 0 �sF

o,m

0 ε
. . . 0

...
. . .

. . .
. . .

...

0
. . . ε 0

�Fs
o,m 0 . . . 0 �FF

o,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If the task parameters are varying during the demonstrations,
the GMMs can simply be learned over all of the variables,
i.e., (s,T ,F), and we will have unconstrained covariances.
In fact, it is the fixed task parameters for each demonstration
that makes the learning challenging. The idea of combining
separately learned HMMs has also been introduced in [13],
but in our approach we apply an additional EM cycle over the
separately learned GMMs for achieving task-specific gener-
alization. We mix the separately learned GMMs to achieve
generalization for novel task parameter values. Similar to
the mixing coefficients π which represent the weights of the
components within a GMM, we introduce a mixing coef-
ficient φ representing the mixing weight of each GMM,
having the same constraints as that of π , i.e., πi > 0 and∑K

i=1 πi = 1. With these settings we apply EM to learn a
mixture of GMMs. We do not update the mixing weights
and the means of the components within each GMM as
they are important for preserving the local behavior of each
demonstration. As EM maximizes the likelihood locally, it
can converge to a local maxima. To overcome local max-
ima problem, we use DAEM [29]. DAEM has a temperature
parameter β which has a small value at the beginning and
it gradually increases to one. It uses the ideas from sta-
tistical mechanics, by applying the concept of maximum
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Fig. 2 TP-DMP learning using mixture of GMMs. a The mixture of GMMs, b the underlying regression surface and c the intuitive reasoning for
such a response

entropy. The objective function is considered as the thermo-
dynamic free energy, which is regulated by the temperature.
EM is applied deterministically for each temperature value
and the estimated parameters become initialization for the
next temperature value. At lower temperature values, DAEM
suppresses poor local optima and increases the likelihood of
convergence to the global maximum. For M demonstrations
with T data points in each demonstration,wefirst create a sin-
gle dataset containing all demonstrations (define N = T M)
and then apply the DAEM for learning mixture of GMMs,
whose update equations can be written as:
E-step

pi,o,m = (
φt
oπo,mN

(
xi ;μt

o,m,�t
o,m

))β

bi,o =
∑K

l=1 pi,o,l
∑M

r=1
∑K

l=1 pi,r,l
, qi,o,m = pi,o,m

∑M
r=1

∑K
l=1 pi,r,l

M-step

φt+1
o =

∑N
i=1 bi,o
N

,

�t+1
o,m =

∑N
i=1 qi,o,m(xi − μo,m)(xi − μo,m)�

∑N
i=1 qi,o,m

where bi,o represents the responsibility that the oth GMM
takes for explaining the i th data point while qi,o,m represents
the responsibility that the mth component of the oth GMM
takes for explaining the i th data point. It is a common practice
to apply regularization on learned covariances for avoiding
singularities during EM. As a regularization measure, if any
of the eigenvalues of the learned covariances becomes lower
than a predefined threshold ε, then we reset it to ε. We apply
the described approach to the mixture of GMMs learned for
encoding the forcing terms of a DMP, with variations along a
scalar task parameter. The learned mixture of GMMs, which
is also the estimated density function, is shown in Fig. 2a. The

GMMs remain unchanged. The regression for the mixture of
GMMs is calculated as:

E(xO |xI ) =
M∑

r=1

K∑

l=1

vr,l x̂r,l

with vo,m = φoπo,mN
(
xI ;μI

o,m,� I
o,m

)

∑M
r=1

∑K
l=1 φrπr,lN

(
xI ;μI

r,l ,�
I
r,l

)

x̂o,m = μO
o,m + �OI

o,m

(
� I

o,m

)−1 (
xI − μI

o,m

)
.

For evaluation, we generate linearly spaced samples of
T and s within the demonstrated ranges and use GMR to
predict the value of F for each sample, i.e., {s × T } �→ F .
The surface plot of this data can be visualized in Fig. 2b.
We can see that it has a step along the task parameter. This
shows that as we have sparse data in the task space (only
two trajectories), each GMM in the mixture kept concen-
trated at regions of demonstrations. Due to data sparsity, the
density estimate is overfitted in its current form. The reason
for the step in surface plot can be explained by Fig. 2c. If
we have well-separated Gaussians (Fig. 2c-top) then their
activation functions, calculated as the responsibility term in
EM, switches in a very narrow region (Fig. 2c-bottom). The
same phenomenon occurred in the regression surface where
regions close to a GMM are mostly influenced by it. As we
move away, the activation transits sharply to a nearby GMM.
This also means that this model is overfitted and can only
be useful for exact reproduction of task parameter values
in training dataset and it fails to generalize for novel task
parameter values. Instead of usingEM, a simple trick to avoid
overfitting problem could have been to manually specify a
reasonable value of variance ε for the task variables, as in the
LWR-based approaches [28]. This is analogous of applying
a regularization term along task variables. Although this can
provide interpolation behavior, it fails to extrapolate beyond
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Fig. 3 Result of manually setting the variance along task variable. a The mixture of GMMs, b the mixture of GMMs after manually setting the
variance along task variable and c the underlying regression surface

Fig. 4 Graphical model
illustrating dependence of input
and output variables

the demonstrated regions, as the underlying regression sur-
face changes its behavior beyond the demonstrated interval
as shown in Fig. 3.

4 Generalizing from incomplete data via the EM

Due to the few demonstrations, the challenge of data sparsity
is posed in task space. We show that the data sparsity prob-
lem can be solved by augmenting the training data with the
additional incomplete data spanning the input space. This
can subsequently be used for getting a better estimate of
the underlying distribution and thus improving the gener-
alization behavior of the already learned GMMs. Since the
mixture of GMMs is a generative model, it can benefit from
incomplete data [3].

4.1 Defining input data distribution

For a task-parameterized DMP, the input variables are (s,T )

for which we want to predict the value of output F . Without
loss of generality, we can assume that the input variables are
independent of each other but conditionally dependent for a
given output value, as shown in Fig. 4.

We first separately model the distribution of each input
variable. Among the input variables, the clock signal s is
generated by an exponentially decaying function (canonical
system) and has uneven distribution of samples in different
regions. Since a GMM can model any arbitrarily complex

density function, we model the distribution of s by fitting a
univariate GMM with W components (through EM) to its

samples θ s(W ) = {π s
w,μs

w, (σ s
w)2}Ww=1. The same procedure

cannot beused for the very limited samples of taskparameters
T , which are equal to the number of demonstrations. For sim-
plicity, we assume each dimension of task variables to follow
a univariate normal distribution, i.e., for the dth dimension
of T = [T 1 . . . T d . . . T D]�, T d ∼ N

(
μd , σ

2
d

)
where

μd = T d
1 +T d

2 +···+T d
M

M and σ 2
d = 1

M−1

∑M
i=1(T d

i − μd)
2.

Since the inputs are provided in a regression problem, we
refer to themas the observable variables. Similarly, the output
variables that need to be predicted are termed asmissing vari-
ables. Using the assumption of independence, the resultant
distribution of the input variables is defined by concatenating
all the distribution learned separately to form a multivariate
GMM with W components.

θobs(W ) = {πobs
w ,μobs

w ,�obs
w }Ww=1 with πobs

w = π s
w,

μobs
w =

⎡

⎢
⎢
⎢
⎣

μs
w

μ1
...

μD

⎤

⎥
⎥
⎥
⎦

and �obs
w =

⎡

⎢
⎢
⎢
⎢
⎣

(σ s
w)2 0 . . . 0

0 σ 2
1

. . .
...

...
. . .

. . . 0
0 . . . 0 σ 2

D

⎤

⎥
⎥
⎥
⎥
⎦
.

As the output dimension is not considered for now, we
term the input data distribution as incomplete data GMM
(IDGMM).

4.2 Incorporating incomplete data via EM

Figure 5 shows a dataset with a mixture of complete and
incomplete data. The incomplete data still provides useful
information when applying EM for fitting a GMM [9]. As
mentioned earlier, the regression using mixture of GMMs
encountered problem due to the data sparsity in task space.
What would be the effect of filling regions inbetween GMMs
with incomplete data, i.e, without the outputs F? The EM
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Fig. 5 If we have data points whose certain dimensions are missing
then they can still be used when applying EM for fitting a GMM. For
instance, the output value of the data plotted on the input axis is missing.
For this incomplete data, the expected values of the missing output
values are also estimated within EM

applied with additional incomplete samples provide smooth
activation of responsibilities when switching from oneGMM
to a nearbyGMM.Sincewe treat learning as a density estima-
tion problem, the amount of incomplete data required to fill
the empty regions can increase drastically with the increase
in the dimensions of task parameters (curse of dimension-
ality). The computational burden of EM also increases with
the increase in size of training data. To avoid these problems,
we instead directly use the IDGMM.

To use the IDGMM, a weighting parameter analogous to
the number of data points represented by the IDGMM has to
be specified by the user. Our training dataset consists of N
data points. The weighting parameter is also set equal to N
and thus each IDGMM component represent πobs

w × N data
points. It has to be noted that the EM applied with this addi-
tional data still provides a maximum likelihood estimate of
the model parameters as the IDGMM is defined on data and
not on the parameters of the model. Now, for benefiting from
this incomplete data, we use the current mixture of GMMs
for calculating the Expectation of incomplete terms appear-
ing in likelihood maximization [12]. It turns out that, for a
data point xi with observable (input dimensions) andmissing

(output dimensions) parts

[
xobsi
xmiss
i

]

, we have to calculate three

expectations [12], i.e., E[zi,k |xobs, θ t ], E[zi,k, xmiss|xobs, θ t ]
and E[zi,k, xmissxmiss�|xobs, θ t ], where zi,k is an indicator
variable defining association of xi to the kth cluster. These
expectations can be directly used in M-step [12].

In the M-step, the value of dt+1
i,o,m calculated only on the

observable dimensions can be directly used for updating
φt+1
o .

E-step

pt+1
i,o,m = (

φt
oπo,mN

(
xi ;μt

o,m,�t
o,m

))β

ct+1
w,o,m =

(
φt
oπo,mN

(
μobs

w ;μobs
o,m,�obs

w + �obs
o,m

))β

bt+1
i,o =

∑K
l=1 p

t+1
i,o,l

∑M
r=1

∑K
l=1 p

t+1
i,r,l

, qt+1
i,o,m = pt+1

i,o,m
∑M

r=1
∑K

l=1 p
t+1
i,r,l

dt+1
w,o,m = ct+1

w,o,m
∑M

r=1
∑K

l=1 c
t+1
w,r,l

× πobs
w × N

M-step

φt+1
o =

∑N
i=1 b

t+1
i,o + ∑W

w=1
∑K

l=1 d
t+1
w,o,l

2N
,

�t+1
o,m =

∑N
i=1 q

t+1
i,o,m(xi − μo,m)(xi − μo,m)� + ∑W

w=1 Aw,o,m
∑N

i=1 q
t+1
i,o,m + ∑W

w=1 d
t+1
w,o,m

where

μo,m =
[
μobs
o,m

μmiss
o,m

]

, �o,m =
[

�obs
o,m �obs.miss

o,m
�miss.obs

o,m �miss
o,m

]

Aw,o,m = dt+1
w,o,m

[
Xobs

w − μobs
o,m

Xmiss
w − μmiss

o,m

] [
Xobs

w − μobs
o,m

Xmiss
w − μmiss

o,m

]�

=
[
A11 A12

A21 A22

]

with

A11 = dt+1
w,o,m

(

�obs
w +

(
μobs

w − μobs
o,m

) (
μobs

w − μobs
o,m

)�)

A21 = dt+1
w,o,m�miss.obs

o,m

(
�obs

o,m

)−1
Aw,o,m

A12 = A21
�

A22 = dt+1
w,o,m�miss

o,m + dt+1
w,o,m�miss.obs

o,m
(
�obs

o,m

)−1
Aw,o,m

(
�obs

o,m

)−1
�miss.obs

o,m
�

−dt+1
w,o,m�miss.obs

o,m

(
�obs

o,m

)−1(
�miss.obs

o,m

)�

where Aw,o,m = �obs
w + (μobs

w − μobs
o,m)(μobs

w − μobs
o,m)

�
.

Since we do not update the means, the additional data cannot
pull the already learned GMMs away from the demonstrated
regions, the components cannot get to a saddle point during
DAEM and it also results in a fast rate of convergence for
EM.

One may wonder about the result of fitting a single GMM
instead of using the mixture of GMMs. As the data are con-
centrated at discrete regions of input space (task parameters),
the components of a single GMM will also get attracted to
same regions as by the mixture of GMMs. An appropriate
regularization term must be used for a single GMM, to avoid
singularity issues of covariance matrices, as the data con-
centrated at discrete regions in higher-dimensional space.
The reason for using the mixture of GMMs instead of a sin-
gle GMM is that now we optimize the weight φ of each
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GMM separately, without disturbing the weights π within
each GMM, as they are important for preserving the local
behavior of each GMM. This also results in a smaller num-
ber of parameters update during the second EM cycle, in
contrast to updating the mixing weights π of a single GMM.

4.3 Computational complexity

The computational complexity of our approach during
motion execution isO(n) for the number of DMPs, the num-
ber of demonstrations and the number of GMM components.
Since GMR involves matrix inversion over input variables,
the computational complexity isO(n3) for the dimensions of
task parameters. For the special case of fixed task parameters
throughout the trajectory, one can find conditional GMMs for
the fixed task parameters (Table 1). This makes the compu-
tational complexity irrelevant of task parameters, i.e., for the
fixed task parameters T , the conditional parameters for the
regression are calculated as:

φ̂oπ̂o,m =
φoπo,mN

(
T ;μT

o,m,�T
o,m

)

∑M
r=1

∑K
l=1 φrπr,lN

(
T ;μT

r,l ,�
T
r,l

)

μ̂o,m = μ{s,F}
o,m + �{s,F}.T

o,m

(
�T

o,m

)−1 (
T − μT

o,m

)

�̂o,m = �{s,F}
o,m − �{s,F}.T

o,m

(
�T

o,m

)−1
�T .{s,F}

o,m

where the terms s,F and T in superscript denote the dimen-
sions corresponding to s, F and T , respectively.

5 Related work

In general, there are two main approaches for learning
motor skills; firstly those based on mimicking motion data
using dynamical systems, i.e., DMPs [19,26], secondly
those relying on statistical machine learning, i.e., Gaussian
mixture models (GMMs) [7] and hidden Markov models
(HMMs) [16,17]. DMPs consider one-shot learning and
provide spatial and temporal scalability properties as well
as guaranteed convergence to the goal position. Learn-
ing is done at acceleration level and many variations exist
for DMPs [11,20,21]. Statistical machine learning-based
approaches directly learn on spatial data and can easily
encode multiple demonstrations at a time, but lack certain
properties presented by a DMP, for instance spatial amplifi-
cation of the movement or guaranteed convergence to a goal
position.

Among the GMM-based approaches, [7] used different
frames of reference for capturing distinct aspects of multi-
ple demonstrations. Task parameters are defined as frames of
reference. For generalization, the already learned GMMs are

Table 1 Computational complexity during motion generation with
respect to the variables of interest

The number of DMPs O(n)

The number of demonstrations O(n)

The number of GMM components O(n)

The number of task parameters O(n3)

For constant task parameters O(1)

placed with respect to new frames and multiplied to retrieve
a GMM for a new scenario. A similar method is [6], where
they have shown that such an approach can also provide
some extrapolation capability. However, these approaches
lack typical properties associated with DMPs, e.g., spatial
amplification of the movement and guaranteed convergence
to a goal position. Additionally, the frames of references
cannot be arbitrarily placed and the user needs to have a
certain level of understanding about how to place the frame
of references for the TP-GMM to be successful. Probabilis-
tic movement primitives (ProMPs) have been shown to have
better inference capabilities than a DMP and can combine or
blend multiple demonstrations to achieve task-specific gen-
eralizations. However, ProMPs require a large number of
demonstrations for learning.According to [25], ProMPs have
a high-dimensional covariance matrix and many free param-
eters. That is why they suffer from overfitting without a large
number of demonstrations.

Task-specific variations of DMPs are considered in [10,
18,27,28]. Basis targets can be extracted for the correspond-
ing style parameters of each demonstration [18]. The basis
targets and style parameters are combined to get appropriate
basis functions. For generalization to a new situation with
different task parameters, for example different height of an
obstacle in a point to point reaching task, one has to provide
appropriate style parameters. To get the style parameters for
novel situations, the mapping from task parameters to style
parameters is learned by supervised learning.

A more direct 2-Step (2S) approach is considered in [10,
28]. In the first step, a mapping from task parameters to the
DMPparameters is learned. It can either be learned by locally
weighted regression (LWR2S), by placing local kernels along
the task parameters [28], or a function approximator such as
Gaussian process regression (GPR2S) [10]. In the second
step, the inferred DMP parameters are used for motion gen-
eration. An extension of [28] is [27], where they used locally
weighted projection regression (LWPR) [30] for avoiding
manual placement of the basis functions, which significantly
reduces the required number of basis functions as compared
with LWR. They also emphasized that any suitable func-
tion approximator can be used for directly encoding forcing
terms of the DMPs, eliminating need to follow the 2-Step
procedure. When using GPR for learning the direct encod-
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Fig. 6 A step by step illustration of TP-DMP learning with additional incomplete data and DAEM. a Demonstrations, b initial GMMs encoding
forcing terms of DMPs for y-axis, c transformed GMMs using incomplete data and DAEM, d learned regression surfaces for y-axis, e multiple
generated movements

ing, they called their approachGPR1S, where the superscript
1S and 2S emphasize on the 1-Step and 2-Step approaches,
respectively. These approaches can provide generalization
capability when interpolating along the task parameters, but
they do not perform well for very few demonstrations and
cannot extrapolate beyond the demonstrated regions of task
parameters, as we also show in our experiments.

In our work, the use of a generative model with a DMP
may seem like a strange choice at first, as existing approaches
use discriminative models [10,18,27,28]. The discrimina-
tive models have been shown to yield lower asymptotic
errors compared to their generative counterparts, but they
also require higher amount of training data to reach those lev-
els [14]. More specifically, a discriminative model requires
O(n) training examples for reaching its asymptotic error
while a generative model requireO(log n) [14]. This implies
that, for few training examples, the generative model might
have already reached its lowest asymptotic error, and thus
performing better than a discriminative model. Since PbD
focuses on learning from as few examples as possible, a gen-
erative model is indeed a useful choice.

6 Results

For all experiments the temperature schedule (β) which we
use for annealing (DAEM) is [0.1 0.2 . . . 1.0]. The regular-
ization term ε for eigenvalues of the GMM covariances is set
to 10−6. For initializing GMMs, the trajectories are equally
segmented in time domain and then the Gaussians are calcu-
lated from the samples of each segment. The parameters of
all models are empirically set.

6.1 Simulation of variable height obstacle avoidance

Our first experiment consists of a planar point to point reach-
ing taskwith the variable height of the obstacles. If there is an
obstacle in the way, the trajectory has to change according to

the height of the obstacle. In this experiment, the task param-
eter is defined as the maximum height to avoid the obstacle.1

The goal of learning is to adapt a motion trajectory for a
new desirable height. The demonstrations can be visualized
in Fig. 6a. There are only two demonstrations with 200 sam-
ples in each demonstration. The task parameters associated
with these demonstrations are [0.0903, 0.1598]. Two DMPs
are learned for generating motion in the x and y axis. We
set the number of components in each GMM to 6. The two
GMMs (ε = 10−6) corresponding to the forcing terms of
DMPs for motion on the y-axis are shown in Fig. 6b. Now,
we apply our prescribed approach with the components in
the IDGMM empirically set to 15. This transforms the com-
plete data GMMs as shown in Fig. 6c. A single computer
with Ubuntu 14.04, Intel Core i7 4790K QuadCore 4.0GHz
and 16GiB memory took approximately 13s for fitting the
GMM in MATLAB R2015b. The forcing terms of all DMPs
can be predicted in less than 1ms during the reproduction in
simulation.

Comparison the proposed approach is compared with
LWR2S [28], GPR1S [27], GPR2S [10] and TP-GMM [5].
Since we have used Gaussian mixture regression for direct
prediction of forcing terms, we refer to our approach
as GMR1S. For LWR2S, [28] and [27] used tricubic kernel
and Gaussian kernel, respectively. We use Gaussian kernel
with 5 equally spaced kernels placed along the task space.
The choice of kernel is seldom important for the performance
of LWR [28]. In LWR2S and GPR2S, the number of basis
functions for shape parameters are set to 10, as the smaller
values do not correctly capture the demonstrations. On the
other hand, the GMMs in our approach require fewer num-
ber of Gaussians (i.e., 6) in this experiment. As in [27], GPR
is used with the covariance function of the Matérn form,
with isotropic distance measure and hyperparameters opti-

1 This chosen task parameter can be directly used for evaluation for the
task performance. But the alternative choice of task parameter is also
possible (such as the height of the obstacle) without any algorithmic
changes.

123



Intel Serv Robotics (2018) 11:61–78 69

Table 2 Task errors
(simulation) with different
approaches

GMR1S GMR1S (without DAEM) LWR2S GPR1S GPR2S TP-GMM

Interpolation

ME (m) 0.0027 0.0067 0.0072 0.0015 0.0074 0.0055

SD (m) 0.0012 0.0046 0.0045 0.0010 0.0052 0.0028

Extrapolation

ME (m) 0.0113 0.0539 0.0541 0.0407 0.0835 0.0159

SD (m) 0.0033 0.0272 0.0313 0.0265 0.0385 0.0034
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Fig. 7 Learned regression surfaces for y-axis a with GMR1S without DAEM, b with LWR2S, c with GPR1S and d with GPR2S
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Fig. 8 Motion reproductions a with GMR1S without DAEM, b with LWR2S, c with GPR1S, d with GPR2S and e with TP-GMM

mization [24]. Three frames of reference are defined for
TP-GMM, one at the starting point, one above the starting
point with height equal to the desired height and one at the
ending point. The number of components in theTP-GMM is
empirically set to 4, as the higher values yield spiky motions.
When performing learning with few demonstrations, if the
GMMs in TP-GMM are learned with the high number of
Gaussians then they converge to the data points of the indi-
vidual trajectories. Calculating the product of GMMs with
Gaussians concentrated at regions of individual trajectories
results in sudden activation of the responsibility term from
oneGaussian to anotherGaussian of a different trajectory and
thus results the spiky behavior and wrong motion reproduc-
tion. Also the GMMs in TP-GMM is formed by encoding the
relationship inbetween the clock signal and the spatial data
with GMMs in different frame of references and their prod-
ucts afterward while the GMMs in a TP-DMPmodel encode

the relationship inbetween the clock signal, task parameters
and the forcing term of a DMP. Since both models operate
differently and encode different set of variables, setting the
same number of Gaussians in each is not needed for fair
comparison.

The errors can be defined as the difference inbetween
the maximum desired height of the trajectory (i.e., the input
task parameter value used for the regression) and the actual
achieved height values by the reproduced trajectories. We
generate 50 linearly spaced task parameter values in the
range [min(T ),min(T ) + 2.5 × (max(T ) − min(T ))]
([0.0903,0.2641]). The generated trajectories for these task
parameters are shown in Figs. 6e and 8. Table 2 presents
the Mean absolute Error (ME) and its Standard Devia-
tion (SD) when interpolating (task parameter in the range
[0.0903,0.1577]) and extrapolating (task parameter in the
range [0.1612,0.2641]). All approaches produce small errors
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Fig. 9 Motion reproductions for changing the height during execution a with GMR1S, b with LWR2S, c with GPR1S, d with GPR2S and e with
TP-GMM

Table 3 Task errors (simulation) of different approaches when the
height is changed during the trajectories

GMR1S LWR2S GPR1S GPR2S TP-GMM

ME (m) 0.0038 0.0329 0.0239 0.0532 0.0129

SD (m) 0.0029 0.0253 0.0221 0.0342 0.0035

when interpolating while GMR1S outperformed all other
approaches when extrapolating beyond the demonstrated
task parameters. The use of DAEM is critical for the perfor-
mance ofGMR1S as the performance degrades substantially
without annealing. TheTP-GMM fails to preserve the shape
information of the demonstrations, as it can be seen in Fig. 8e.

Figures 6d and 7 present the surface plots of the gen-
erated forcing terms ({s × T } �→ F) of the DMP-based
approaches for y-axis. The regression surfaces of all the
approaches except GMR1S change their response in the
extrapolation range, which is also the reason for their large
errors when extrapolating. The regression surface ofGMR1S

without DAEM shows that the EM converged to a poor local
optimawithout annealing. Thekernels inLWR andGPbased
approaches predict by mostly using the nearby data. Thus,
their performance degrades when trying to extrapolate. The
emphasis in TP-GMM model is to strictly pass through
certain frames of reference and thus it can lose the shape
information. Additionally, with the clock signal as the only
input, the starting point of the reproductions with the TP-
GMM, which is marked by a ‘−’ sign in Fig. 8e, moves
quite far away from the starting point of the demonstrations.
This problem can happen when the clock signal is the only
input in the TP-GMM without consideration of the current
point of a trajectory. A remedy to such a problem can be to
encode the current point as an input.

Since we use a generative model for encoding the forcing
terms of the DMP, our approach can benefit from the incom-
plete data. The IDGMM spans beyond the demonstrated
range and thus retrieves a better underlying function when

Fig. 10 Schematic of our vision system

compared with the supervised learning approaches, which
only rely on training data.

Varying task parameter the task parameter is not neces-
sary to be fixed during the reproduction phase and can vary
if needed. Now 20 trajectories are generated with the initial
desired task parameters linearly sampled from the interval
[0.0903, 0.1577]. After one third of the executed motion, the
desired task parameters are multiplied with 1.5. They now lie
in the interval [0.1355,0.2366]. Figure 9 contains the plot of
the generated trajectories. A benefit of using a DMP-based
approach is that the output trajectories are always smooth,
even though the change in the task parameters is discontinu-
ous. The reproduction errors are given in Table 3. Again,
due to the aforementioned reasons, the TP-DMP outper-
forms all other approaches by producing least amount of
error. Care should be taken in a real robot experiment, as
an instantaneous change in the value of desired task param-
eters can cause a high acceleration at the end-effector. The
high accelerations can be avoided by smoothly changing the
task parameters when required.
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Fig. 11 Demonstrations are collected by setting the robot in gravity compensation mode while a Cartesian impedance controller is used for motion
generation. a A human provides the demonstration for moving the trash to the dustpan. b The robot generates motion for a new trash position
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Fig. 12 Comparison of GMR1S, LWR2S, GPR1S, GPR2S and
TP-GMM for the sweeping task. a Demonstrations for the sweeping
task. Circles represent the trash positions while the rectangle repre-
sents the bounding box enclosing these trash positions. b Blue dots

represent trash positions for interpolation evaluation while the red ones
are for extrapolation evaluations. c–f) Generated movements for new
trash positions (color figure online)

6.2 Real robot experiments

Experimental setup the experiments are conducted using a
KUKA lightweight robot IV+. For collecting demonstra-
tions, the robot is set to gravity compensation mode. With
GPR1S, offline trajectories are generated due to its high com-
putational cost. This also means that with GPR1S, the task
parameters should remain fixed during the motion reproduc-
tion. The markers are tracked with Kinect RGB-D camera
by using ROS wrapper for Alvar, an open source augmented
reality tag tracking library [1]. More specifically, we have a
fixed marker with respect to robot’s frame of reference and
a moving marker. The fixed marker is used for localizing
the camera while the moving marker is used for tracking
objects, as shown in Fig. 10. A low pass filter is applied to
remove high frequency noise in the vision system. TheGMM
model is always learned offline in MATLAB. A single com-

puter with Ubuntu 12.04 32-bit, Intel Core i5-2500 quad core
3.3GHz and 16GiB memory is used for marker tracking as
well as online motion generation. For motion reproduction
with GMR1S, the forcing terms of all DMPs are predicted
within 7ms. A Cartesian impedance controller with a control
frequency of 100Hz is used for motion generation.

6.2.1 Sweeping task

This experiment considers a sweeping task, which consists
of moving trash to a collection point. The task parameters are
defined as the planar coordinates of the trash.A teacher phys-
ically holds the end-effector for various trash positions and
demonstrates the requiredmotions formoving the trash to the
collection point, as shown in Fig. 11a. Learning is performed
in task space (position and orientation of the end-effector).
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Table 4 Task errors (KUKA)
with different approaches

GMR1S LWR2S GPR1S GPR2S TP-GMM

Interpolation

ME (m) 5.4 × 10−3 13 × 10−3 7.5 × 10−3 14.5 × 10−3 11 × 10−3

SD (m) 4.3 × 10−3 7.1 × 10−3 4.3 × 10−3 10.3 × 10−3 5.3 × 10−3

Extrapolation

ME (m) 9.9 × 10−3 68.3 × 10−3 43 × 10−3 84.6 × 10−3 33.8 × 10−3

SD (m) 9.6 × 10−3 6.3 × 10−3 5.7 × 10−3 13 × 10−3 8.2 × 10−3

Each demonstration has a duration of approximately 5 s with
a sampling rate of 10ms.

Three DMPs are learned, two for generating a planar
motion and one for encoding the planar orientation of the
end-effector. As shown in Fig. 12a, four demonstrations are
provided for different positions of the trash. In our demon-
strations, the x and y values of the trash position lie between
[−0.0216m ,0.0350m] and [−0.54m, −0.454m], respec-
tively, (drawn as a rectangle). We selected 25 new trash posi-
tions (a grid) for evaluation in the extended x and y ranges
of [−0.0358m ,0.0491m] and [−0.6045m, −0.3895m],
respectively, which can be visualized in Fig. 12b. The
blue samples, which are close to the bounding box of the
demonstrated region, are used for evaluating interpolation
performance. The red samples, which are far away from
the bounding box, are used for evaluating extrapolation
performance.

Comparison we defined error as the minimum distance
inbetween the trash position and the generated trajectory.
Table 4 contains theME and its SDwhen using our approach,
LWR2S, GPR1S, GPR2S and TP-GMM. Three frames at
starting point, ending point and at the trash location are
defined for TP-GMM. The number of components in the
TP-GMM is empirically set to 6, as the higher values yield
spiky motion. The basis functions in LWR2S and GPR2S

are set to 60. For our approach, the components in each
GMM, as well as the IDGMM, are set to 40. The remain-
ing settings are same as in previous experiment. Like in the
previous experiment, our approach requires less components
as compared with the basis functions in the other approaches.
Again, our approach produces less errors for interpolation as
well as extrapolation as shown in Fig. 12c–f and Table 4.
The error for other approaches increases considerably as we
move away from the demonstrated interval. Additionally,
some of the trajectories generated by TP-GMM surpassed
the collection points as the TP-GMM model does not have
the notion of a goal position. Interestingly, no demonstra-
tions are provided for the trash positions in the upper half of
the sweeping area, which makes it an interesting region for
comparing different approaches. GMR1S also successfully
generates the motion for the trash position in this region, as
shown in Fig. 12f.

6.2.2 Striking task

This experiment considers a task which involves striking a
ball such that it hits a desired target position. The ball is
always placed at the same point and the task parameter is
defined as the the x-coordinate of the target. The y-coordinate
of the target is fixed in the two demonstrations. Similar to
the previous experiment, a teacher physically holds the end-
effector and demonstrates the required motion for hitting the
target. The demonstrations have a duration of appropriately
1.5 s with a sampling rate of 10ms. Due to the small dura-
tion of the motions we increase the size of data ten times
(to approximately 1500) by inserting samples in between
the adjacent data points of the trajectories by using linear
interpolation. Now we consider learning in joint space. Dif-
ferent demonstrations can produce completely different final
joints configurationduring thedemonstrations.Thefinal joint
configurations are measurable in the demonstrations but are
unknownwhen reproducingmotion for a new target position.
Thus, it is necessary to predict the final joints configuration
during the reproduction phase. Seven DMPs are learned with
one DMP for each joint of the robot and thus utilizing all
DOFs.

Our approach can also easily incorporate the learning of
meta parameters in a DMP. For GMR1S, we learn the dis-
tribution of (s, [T g],F). Similar to task parameters, the
goal terms g (meta parameters) are constants for a single
demonstration. Thus, we simply interpret them as additional
task parameters. This also means that different DOF in each
demonstration will now have different task parameters. The
final joint configurations (goal positions), which we set as an
additional task parameter, cannot be known in advance. As
there is no distinction inbetween input and output variables
when fitting a GMM and during GMR, any set of variables
can be selected as input, to retrieve the expected value of
remaining variables. Thus with GMR, the observable task
variable can be used for predicting the expected value of
missing task variables and for motion generation. So now,
with GMR, we not only predict the goal terms g of each
DMP but also generate the forcing terms. For GMR1S the
components in each GMM (ε = 10−4), as well as in the
IDGMM, are set to 60. The number of basis functions in
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Fig. 13 Joint angles and end-effector trajectory of the demonstrated motions. a Demonstrated joint angles in radians and time in seconds. b
End-effector trajectory in Cartesian space
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Fig. 14 Reproductions with LWR2S. a Reproduced joint angles. b End-effector trajectory in Cartesian space

LWR2S and GPR2S is set to 100. The goal positions for
LWR2S andGPR2S are predicted in the first step along with
the DMP parameters by using LWR and GPR, respectively.
The goal position in GPR1S is predicted at each time step
along with the forcing terms by using GPR. Two frames of
reference are defined for TP-GMM: one at the start of the
trajectory and one at the end of the trajectory. As mentioned
before, the final joint configurations are not known and hence
the TP-GMM cannot be used directly in this experiment. To
use TP-GMM, we first predict the final joint configuration
with GP and then the second frame of reference is placed
at that final joint configuration for motion reproduction i.e.,
the offset vector for second frame of reference looks like
b2 = [t f j f 1 j f 2 j f 3 j f 4 j f 5 j f 6 j f 7]′ where t f is the final

time value and j f n is the predicted final joint angle for the
nth joint. The transformation matrices for the two frames of
references are set to identitymatrices. The number of compo-
nents in the TP-GMM is empirically set to 4. The remaining
settings are same as in the previous experiments.

Comparison a binary evaluation criterion is defined as
a success if the robot is able to hit the target and failure
otherwise. Demonstrations are provided for hitting a target
with x-coordinate of−0.4891m and−0.6703m, as shown in
Fig. 13a. Figure 13b shows the end-effector pose. Interpo-
lation performance is evaluated for the target x-coordinates
of −0.5663m while extrapolation performance is evaluated
for the target x-coordinates of −0.4146m and −0.7933m.
When generalizing for novel goal positions, the DMPs can
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Fig. 15 Reproductions with GPR1S. a Reproduced joint angles. b End-effector trajectory in Cartesian space
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Fig. 16 Reproductions with GPR2S. a Reproduced joint angles. b End-effector trajectory in Cartesian space

produce high accelerations at the beginning of the move-
ment [15]. This is due to the initial interaction inbetween the
linear dynamics and forcing terms. This undesirable behavior
was slightly observed in this experiment. A simple solution to
solve this problem is to gradually activate the forcing terms.
Thus, we multiply the predicted forcing terms by (1 − s10).
As s decays exponentially, the effect of this term vanishes
very quickly.

Figure 14 contains the reproduction results with LWR2S.
It produces a good trajectory for interpolation performance as
it lies inbetween the demonstrated trajectories. The trajecto-
ries for the extrapolation fail to reproduce the task as they are
similar to the demonstrations. The LWR2S also encountered
the same problem during the first experiment where suc-
cessful trajectories were generated for interpolation intervals

but it failed to reproduce during the extrapolation intervals.
Figure 15 contains the reproduction results with GPR1S. It
can easily be observed that the initial end-effector trajectory
required to approach the ball (and critical for the execution
of the task) is very similar for the three reproductions. The
trajectories lose the important shape information required for
the successful execution of the task.Also the green and brown
trajectories of one of the joints are almost overlapping. Since
the reproduction is in joint space, an incorrect motion of even
a single joint can lead to the failure of the task. Figure 16
contains the reproduction results with GPR2S. Some of the
reproduced trajectories are very different from the demon-
strated ones. As withGPR1S, the trajectories generated with
GPR2S lose the initial shape information which is required
for the successful execution of the task. The failure of both of
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Fig. 17 Reproductions with TP-GMM. a Reproduced joint angles. b End-effector trajectory in Cartesian space
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Fig. 18 Reproductions with GMR1S. a Reproduced joint angles. b End-effector trajectory in Cartesian space

Fig. 19 Executed motions for the two extrapolation evaluations. a, c Robot initial configuration and different target positions. b Executed striking
motion for hitting the target in (a). d Executed striking motion for hitting the target in (c)

the GP-based approaches can be attributed the small amount
of training data, i.e., only two trajectories. Figure 17 contains
the reproduction results withTP-GMM. The reproduced tra-

jectories do not capture the demonstrated motions and it fails
to learn anything useful for this task. The joint distribution
of all the eight variables (one phase and seven joint angles) is
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encoded in the TP-GMM. As we only have two trajectories,
the product of GMMs in TP-GMM suffers from a severe
curse of dimensionality.

Figure 18 contains the reproduction results withGMR1S.
The shape information is preserved in the reproduced trajec-
tories and the DMPs goal parameters are correctly inferred.
The generated joint angles trajectories extend further away
from the demonstrated trajectories for extrapolation. The
joint angles trajectories for interpolation are inbetween the
extrapolation trajectories. Executingmotion trajectories gen-
erated byGMR1S on KUKA show that our approach always
yields success in the extended range of [0.4146, 0.7933]. For
the two extrapolation evaluations with our approach, the ball
trajectories, as well as the executed motions on KUKA, are
visualized in Fig. 19, where the different final joint configu-
rations of the reproduced motions are also observed.

7 Conclusion and future work

We have shown how the task-specific generalization of a
DMP can be achieved by formulating learning as a den-
sity estimation problem. The proposed approach captures
the local behavior of each demonstration by using a GMM.
These GMMs are then mixed to get the task-specific gen-
eralization. We have handled the data sparsity along task
parameters by introducing additional incomplete data fill-
ing the input space. Deterministic Annealing EM is used to
avoid the local maxima problem. We retain the local behav-
ior of each GMM by keeping the means and mixing weights
within the GMMs fixed. The task-specific generalization is
achieved by just adapting covariances and mixing coefficient
of the already learned GMMs. The TP-DMP framework can
perform learning in task space as well as in joint space and
can even handle the learning of meta parameters of a DMP.
As shown in the experiments, our approach requires very few
demonstrations for learning and it outperforms the existing
approaches specially when extrapolating beyond the demon-
strated ranges of the task variables. As future work, we plan
to extend our proposed work with sample reuse approach [8]
and to investigate the scalability issue to complex tasks.

Appendix

Following properties have been used in this proof [23]:

Property 1 If X ∼ N (μ,�) and b a vector then E[(X+ b)
(X + b)�] = � + (μ + b)(μ + b)�

Property 2 The product of Gaussian densities is defined
as: N (μ1,�1)N (μ2,�2) = e N (μe,�e) where e =
N (μ1;μ2,�1 + �2).

Expected pdf value

The expected pdf value of a GaussianN (μ,�) evaluated at
a Gaussian stochastic random variable X ∼ N (μX ,�X ) can
be defined as: E[N (X;μ,�)] → E[N (N (μX ,�X );μ,

�)] which is similar to E[ f (X)] = ∫
f (x)p(x)dx . Now

E
[
N (N (μX ,�X );μ,�)

] =
∫ ∞

−∞
. . .

∫ ∞

−∞
N (μ,�)N (μX ,�X )

By using property 2.

E
[
N (N (μX ,�X );μ,�)

] =
∫ ∞

−∞
. . .

∫ ∞

−∞
eN (x;μc,�c)

= e
∫ ∞

−∞
. . .

∫ ∞

−∞
N (x;μc,�c)

= e

where

e = N (μ;μX ,� + �X ) (3)

Incorporating incomplete data via EM for mixture of
GMMs

In the E-step, the expectations E[zi,k |xobs, θ t ], E[zi,k, xmiss|
xobs, θ t ] and E[zi,k, xmissxmiss�|xobs, θ t ] have to be cal-

culated for incomplete data [12]. Let μo,m =
[
μobs
o,m

μmiss
o,m

]

,

�o,m =
[

�obs
o,m �obs.miss

o,m
�miss.obs

o,m �miss
o,m

]

, Xw =
[
Xobs

w

Xmiss
w

]

where

Xobs
w ∼ N (μobs

w ,�obs
w ) is the observable part representing

the GMM components spanning the input space. Now the
similar expectations of the missing dimensions (output) are
calculated as:

E[zw,o,m |Xobs
w , θ t ] = dt+1

w,o,m

= ct+1
w,o,m

∑M
r=1

∑K
l=1 c

t+1
w,r,l

× πobs
w × N

with ct+1
w,o,m =

(
φoπo,mN (μobs

w ;μobs
o,m,�obs

w + �
obs
o,m)

)β

whereN (μobs
w ;μobs

o,m,�obs
w + �

obs
o,m) is the expected pdf cal-

culated only on the observed dimensions, as derived for
Eq. (3).

E[zw,o,m, Xmiss
w |Xobs

w , θ t ] =
dt+1
w,o,m(μmiss

o,m + �miss.obs
o,m (�obs

o,m)
−1

(Xobs
w − μobs

d,m))
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Define: X̂
miss
w,o,m = μmiss

o,m + �miss.obs
o,m (�obs

o,m)
−1

(Xobs
w − μobs

o,m)

E[zw,o,m, Xmiss
w |Xobs

w , θ t ] = dt+1
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miss
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miss�
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Now for updating �t+1
o,m , the term dt+1

w,o,m(Xw −μo,m)(Xw −
μo,m)� for incomplete data is calculated as:
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(
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