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Abstract In this paper, we present an approach which
enables a low-cost quadrocopter to fly various trajectories
autonomously. Artificial landmarks are used for pose esti-
mation, and a fuzzy controller is utilized to generate steering
commands. The presented system can navigate a low-cost
quadrocopter along a predefined path without the need for
any additional external sensors. In addition to a full descrip-
tion of our system, we also introduce our software package
for Robot Operating System, which allows the robotics com-
munity to experiment with proposed mapping algorithm.

Keywords Quadrocopter · ArUco · Autonomous flying ·
ROS · Fuzzy control

1 Introduction

Research in the field of autonomous micro-aerial vehi-
cles (MAVs) is currently divided into several different
approaches: One part of the community focuses on improv-
ing the accuracy of quadrocopter control and has led to
notable advances such as aggressive flight maneuvers [1,2],
ping pong [3] and even collaborative construction tasks [4].
While these developments are certainly impressive, such sys-
tems nonetheless require external motion capture systems
to perform these demanding tasks properly. Another part of
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the community focuses on outdoor flights where GPS-based
pose estimation is possible. Although complete solutions in
this field are already available [5], researchers continue to
work on improvements in stabilization, [6], photogramme-
try, obstacle detection and avoidance.

However, by far the largest part of the community is
interested in the most popular topic in the field of MAV’s—
autonomous flying in indoor GPS-restricted environments.

A wide variety of different approaches to this task have
already been investigated. These range from methods which
enable the quadrotor to learn a map offline from previ-
ously recorded manual flight [7], to approaches utilizing
wireless network sensors [8] and hybrid ultrasound systems
[9]. However, the most popular and challenging approach
relies entirely on MAV onboard sensors with the use of
Simultaneous Localization and Mapping (SLAM) algo-
rithms.

Recent research has improved the accuracy of SLAM
methods by combining data from laser scanners, stereo-
cameras and inertial measurement units (IMU) [10], but
such a complex sensing system requires high initial invest-
ment and significant computer power. In order to overcome
this problem and to enable even low-cost platforms to fly
autonomously, SLAM techniques using monocular sensor
systems have been explored. Parallel Tracking And Map-
ping (PTAM) algorithm has been used successfully [11], but
this method requires the MAV to remain in more or less con-
stant visual contactwith the initial starting scene, a restriction
which ultimately limits the actual operating area of theMAV.
Stabilizing controllers based on optical flow have also been
investigated [12], but these systems tend to drift over time and
are therefore not considered suitable for reliable long-term
navigation.

A much easier and more intuitive method of low-cost
MAV indoor localization and navigation may lie in the tech-
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nique of distributing augmented reality (AR) markers in the
environment, and a number of studies have already inves-
tigated this possibility. Among the earliest research in this
field was that published by Eberli et al. [13] in which the
camera pose was estimated from the elliptic appearance of
a circle in perspective projection. By estimating 5DoF and
assuming that yaw is controlled independently, this approach
enables the quadrotor to take off, hover over the marker and
land autonomously.

An alternative monocular pose estimation technique was
proposed by Lamberti et al. [14]. Amarker-less visual odom-
etry algorithm exploiting SIFT descriptors was combined
with amarker-based trackingmethod relying onARmarkers.
Markers were distributed at precise locations in the envi-
ronment and served as reference points for the quadrotor.
When flying from one marker to another, the position of
the quadrotor was estimated entirely from the visual odom-
etry algorithm and corrected once the next marker had been
detected. One major drawback of this method, however, was
the fact that the positions of the reference markers had to be
hardcoded to the MAV prior to flight.

AR markers were also used in a 2014 study published
by Hartmann et al. [15] which focused on improving the
precision of vertical landings of quadrotors. The landing
platform was tagged by several markers mounted on exact
positions which thereby enabled the MAV to localize the
landing area from different angles and to perform precision
landings.

The research presented in our studywas inspired by recent
work from Munoz-Salinas et al. [16] from the University of
Cordoba. In their latest paper, a novel mapping and local-
ization approach using planar markers was presented and
compared with state-of-the-art Structure from Motion and
Simultaneous Localization and Mapping Techniques. The
“Marker Mapper” method which they introduced is capa-
ble of obtaining better maps and localization results under a
wider range of viewpoints than up-to-date SLAM techniques
such as LSD-SLAM or ORB-SLAM2.

Inspired by these results, we decided to experiment with
theMarkerMapper approach and to use it for real-timeMAV
localization and mapping. Since the original Marker Mapper
method is intended to be used offline to process previously
recorded video footage, our implementation simplified the
existing pipeline to allownear real-timeperformance (Fig. 1).
In order to prove its effectiveness for MAVs, we developed
our work further and achieved fully autonomous flight with
an off-the-shelf quadrotor relying solely on our mapping
method and fuzzy control. The overall accuracy of the pro-
posed system was tested under different lighting conditions
and measured by a laser tracker station during flight. This
paper is also accompanied by a video which demonstrates
the robustness of our approach and the ability to follow a pre-

Fig. 1 Our approach enables low-cost quadrocopter to follow trajec-
tories defined by artificial landmarks

Fig. 2 Intel miniITX-based ground station for off-board processing
and control

defined trajectory accurately. It is available online at: http://
youtu.be/3mCu_7Ek2fs.

2 Hardware platform

The Parrot AR Drone, a commercially available quadro-
copter, was used as the platform for our experiments. The
low unit cost of the Parrot in comparison with other MAVs is
not the only advantage which it offers; the AR Drone is also
robust and can safely operate in close proximity to people.
Its main drawback, however, is the lack of flexibility; neither
the MAV’s onboard software nor the hardware itself can be
easily modified.

The AR Drone is equipped with two cameras, an ultra-
sound, pressure altimeter, a 3-axis gyroscope, an accelerom-
eter and a magnetometer. The frontal 720p HD camera has a
92◦ diagonal field of view at a streaming rate of 30 fps. The
bottom camera covers a 64◦ field at 60 fpswith a resolution of
320×240 pixels. Communication with the Parrot is effected
through wireless LAN from the ground station (Fig. 2).

The onboard software running a 1GHz32 bitARMCortex
A8 processor uses sensor data to control the roll �, pitch �

heading � and vertical velocity ż according to external set
points received from control system every 10ms. The AR
Drone weighs 420g and measures 53 × 52cm.
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3 ArUco pose estimation and mapping

ArUco library was originally developed by Rafael Muñoz
and Sergio Garrido [17] to generate a set of AR fiducials
and to simplify the estimation of 6DoF marker poses. It is
based on OpenCV and enables the detection of various tag
dictionaries. Its detection pipeline ismuchmore effective and
faster than the pipeline of the similar AprilTag library.

In general, ArUco markers are synthetic square markers
comprising a wide black border with an inner binary matrix.
The black border facilitates the fast detection of the image
and the binary codification allows marker identification, the
application of error detection and correction techniques.

The marker detection process is performed in two main
steps—the detection of marker candidates and codification
analysis.

In the detection process, adaptive thresholding and con-
tour extraction in combination with additional extra filtering
is used in order to detect square shapes which are candidates
to be markers.

The goal of the second step is to analyze inner codification.
Perspective transformation is used initially in order to obtain
the marker in canonical form; Otsu thresholding method is
then applied to separate white and black sections, and bit by
bit analysis is finally performed in order to determinewhether
the marker belongs to a specific tag dictionary. The position
of the four marker corners in the image and the real size of
the marker are sufficient to allow the system to estimate its
full pose in absolute scale.

In this standard use, the camera is identified with world
origin, while the marker position is calculated in respect to
the camera frame. If C denotes camera frame and M-marker
frame, then the pose of the marker with respect to the camera
is expressed as:

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦
C

= TMC

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦
M

(1)

where TMC is a transformation matrix calculated as:
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with e0, e1, e2, e3 expressing quaternion components, and tx ,
ty , tz translational components of marker positions.

This approach allows us to estimate marker pose whether
the camera is identified as world origin, but for mapping pur-
poses an inverted approach in which the camera position is

estimated with respect to the static markers is more conve-
nient.

The same principle is also used in the AprilSLAM
technique originally developed by Chao Qu and Gareth
Cross from Kumar Robotics. But while AprilSLAM recal-
culates the position of each visible marker continuously, our
approach is slightly different. In our implementation, the
world’s origin is defined by the first detected marker while
each consecutive marker is fixed to these world’s coordinates
firmly immediately after the detection. While AprilSLAM
is only aware of the locations of currently visible mark-
ers (and even these are continuously being re-calculated),
our algorithm stores the positions of all of the previously
detected markers. This pipeline may not be precise at the
sub-milimeter level, but in combination with the more effec-
tive detection pipeline of ArUco library in general, results
in the robust and smooth localization system viable even for
real indoor MAV flights. For a fuller understanding of the
proposed algorithm, see the original video available at the
ArUco_mapping ROS Web site: https://youtu.be/MlOy9qt_
K4Y.

So, in case of inverted principle, the transformation
between camera frame and marker is:
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Creating a chain of marker pose estimations, or calculating
the position of the secondmarker with respect to the first, and
the third marker to the second, etc., is the key to successful
mapping (Fig. 3). In general, the nth marker position can be
computed as:

TMnWo = TM1M0TM2M1TM3M2 . . . TMnMn−1 (4)

The only prerequisite of serialized mapping is the simulta-
neous occurrence of the n − 1th marker within a camera
image at the moment when the nth marker is detected for

the first time. By calculating the pose of the newly detected
marker in respect to the previous one, it is possible to keep
track of the whole trajectory and to locate the absolute cam-
era position in respect to the world origin during the whole
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Fig. 3 Localization and mapping approach—serialization as a main
principle

flight. In a real-world scenario, this limits the mutual dis-
tances of following landmarks when creating a trajectory,
since at least two landmarks must be visible at the same time.
If two or more markers are visible, camera pose is estimated
with respect to all of them, but in order to maximize the accu-
racy of the system, the value used as the actual camera pose
is calculated from the closest marker.

4 Fuzzy control

Robust and reliable localization is not the only requirement
for autonomous flying—aprecise and accurate controlmech-
anism is also vital. PID controllers are commonly used for
MAV, but recent years have seen an increased interest in the
field of fuzzy control [18]. Fuzzy logic is a proven control
method for nonlinear systems in situations in which exact
parameter identification is difficult or even impossible. Its
inferencemechanism also allows simpler transition of human
experience into the control algorithm and this is of consider-
able benefit in the development of autonomous MAV flight.
Several interesting studies have been proposed in recent years
describing dynamical models, simulations, identification and
the development of fuzzy controllers for quadrotors [19–
22,24].

Our approach is very similar to the work recently pub-
lished by Indrawati et al. [25]. This study also deals with the
fuzzy control of a Parrot AR Drone, and the authors define a
set of linguistic rules andmembership functions according to
the experience of a human pilot in an approach very similar
to that outlined in our study. However, the main difference
when compared to our approach is the fact that our controller
is capable of controlling not onlymovement inX-,Y -,Z-axis,
but also the heading of the MAV, thereby allowing circular
motions in real flight as shown in Fig. 4.

A simplified mathematical model of the quadrocopter is
shown in Fig. 5. The sum of forces Fi and momentum Mi

serves as the input for the Newton–Euler motion equation,
a formula which is typically used to derive mathematical
models of systems with 6DoF.

Newton–Euler motion equations describe the movement
of the center of gravity of the body caused by the actuation of

Fig. 4 Additional fuzzy control of heading enables circular motions

Fig. 5 Simplified mathematical model of quadrocopter

external forces and momentum. The first Eq. (5) expresses
the change in quadrocopter rotation ω′

b due to the effect
of momentum on individual axes. Changes of rotation are
dependent on themagnitudeofmomentumandmass distribu-
tionwithin the drone, which is represented by themomentum
of inertia. Angular ratesωx ,ωy ,ωz together with input forces
are used to calculate changes in linear velocities V ′

b (Eq. 6).
Changes of angular rates are transformed to the change of
attitude quaternion q ′

E (Eq. 7), and the last equation trans-
forms the linear velocities Vx , Vy , Vz expressed in the body
frame to changes in pose P ′

E in Earth frame (Eq. 8).
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Fig. 6 Control diagram—the quadrocopter is a nonlinear system with four inputs and position feedback
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In contrast to systems which use direct thrust control for
each motor, the Parrot AR Drone uses built-in controllers
to stabilize each axis. The system therefore expects steering
commands in the form of total thrust, roll, pitch and heading
set points.

The built-in stabilization system of the Parrot permitted
the use of a fuzzy controller to control the quadrocopter posi-
tionand heading directly through four system outputs (See
Fig. 6). For the purposes of this study, a discrete fuzzy con-
troller with a standard PI structure—input variables e, and
�e, with output �u for all four control variables—was cho-
sen.

In the case of our controller, regulation deviation e
describes the difference between the desired and current
speeds. Changes in regulation deviation�e provide informa-
tion about the actual dynamics of the system for each axis—if
the system accelerates or decelerates. The control effort �u
is the output value—speed set point in particular axis.

In theory, a Mamdani fuzzy controller is comprised of
four main blocks [23]—fuzzifier, knowledge base, inference
mechanism, defuzzifier. If a normalized signal is required,
two additional blocks normalization and denormalization are
added to the controller. The most important element is the
base of rules which implements the relationship between the
input and the output of the system.The rule-base houses a col-
lection of IF–THEN rules summarizing the knowledge base
that underpins the decisions made by the fuzzy controller.

Fig. 7 Fuzzy control diagram with Mamdani’s interference method
and standard PI structure

In our study, a set of linguistic rules illustrated in Fig. 7
was obtained frompreviously conducted experiments and the
experience of human pilots.

The following value range is used in the tables:

– N2—Large Negative
– N1—Small Negative
– Z—Zero
– P1—Small Positive
– P2—Large Positive

Table 1 shows the set of rules for the X , Y axes plus head-
ing control, while the second table provide rules for altitude
control—Z-axis.

The main problem in quadrocopter control is the fact that
the propellers are unable to generate negative thrust, and this
places significant limits on altitude control. In a real flight,
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Table 1 Set of linguistic rules for X, Y and heading controller with
standard symmetric distribution

e-regulation deviation

N2 N1 Z P1 P2

�e
change
of reg.
deviation

N2 N2 N2 N2 Z Z

N1 N2 N2 N1 Z P1

Z N2 N2 Z P1 P2

P1 N1 Z P1 P1 P2

P2 Z Z P2 P2 P2

Table 2 Set of linguistic rules for Z controller with non-symmetric
distribution

e-regulation deviation

N2 N1 Z P1 P2

�e
change
of reg.
deviation

N2 N2 N2 N2 N2 N1

N1 N2 N2 N2 N1 Z

Z N2 N1 Z P1 P1

P1 N1 Z Z P1 P1

P2 Z Z P1 P2 P2

it means that in order to stop the quadrocopter at a specific
height during takeoff, it is necessary to reduce actual thrust
just before the desired altitude is reached. This limitation
affects the set of rules for the altitude—Z -axis controller as
shown in Table 2.

In order to convert the linguistic rules to real output val-
ues, standard triangularmembership functionswere used and
these are listed in Fig. 8. Membership functions are defined
for each input (e,�e) and output (�u) values by five clusters.

The variables of the inference system were represented
as membership functions with each input normalized to the
range of 〈−1, 1〉. Defuzification was based on the single-
ton weight centers method due to the short processing time
required.

As is shown in the experiments section, our fuzzy con-
troller was capable of controlling the quadrocopter in fully
autonomous mode.

5 Experiments and results

In order to analyze properties of the proposed system, three
different experiments were conducted.

Fig. 8 Triangular membership functions of linguistic variables—e,
�e, �u are defined by five clusters

The goal of the firstmeasurementwas to estimate the over-
all accuracy of the mapping algorithm. In order to guarantee
the precision of our measurements, we printed our testing
track in real-world scale on a 4m long roll of paper. The seven
markers printed on the sheet, each ofwhich are 135mmwide,
were placed 585mm apart. Three different cameras (indus-
trial BlueFox MLC200, Parrot AR Drone front HD camera
and wide-lens Genius F100, each properly calibrated) were
used to collect data. During this measurement, the cameras
were manually guided along the trajectory while estimating
the position of each new marker with respect to the previous
one. This difference between real and estimated positions
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Table 3 Measurement of pose estimation accuracy—real vs. estimated pose

Marker SD (cm)

Axis 1 2 3 4 5 6 7

Real position x 0 0.5850 1.1700 1.7550 2.3400 2.9250 3.5100

y 0 0 0 0 0 0 0

Bluefox MLC200W x 0 0.5884 1.1837 1.7698 2.3624 2.9539 3.5389 1.80

y 0 −0.0078 −0.0157 −0.0181 −0.0123 −0.0189 −0.0199 1.54

A.R.Drone front camera x 0 0.6254 1.2230 1.8112 2.4054 3.0008 3.5881 6.14

y 0 0.0107 0.0083 0.0096 0.0114 0.0172 0.0227 1.33

Genius F100 x 0 0.6175 1.2331 1.8397 2.4482 3.0490 3.6647 9.45

y 0 −0.0049 −0.0165 −0.0186 −0.0277 −0.0242 −0.0494 2.35

was essential for evaluating the accuracy of the system. The
results obtained with all three devices are shown in Table 3.

The most accurate device according to the results listed
in Table 2 was the industrial Bluefox MLC200W camera
which demonstrated an error of only 1.80cm in the x-axis.
This low level of absolute error is a result of the small dis-
tortion of the high-quality 2.4mm lens in combination with
proper calibration using a large scale calibration grid. The
lower accuracy of the results obtained from the AR Parrot
HD camera (6.14cm) and the wide-lens Genius F100 Parrot
(9.45cm) shown in Fig. 9 can likely be attributed to the low-
cost nature of the optics used in these cameras, however this
combination would still be acceptable for various robotics
navigation applications.

The goal of the second experiment was to measure the
accuracy of the overall localization. For the purposes of this
experiment, 32 markers were distributed over the floor in
random positions. A Parrot AR drone was equipped with an
additional 360◦ reflector and its front camera was tilted down
by 45◦. The measurement was performed in an underground
parking lot in order to simulate real-world conditions. During
this experiment, the quadrocopter was manually controlled
to fly over the area of markers while two different sources
were used to estimate its position.

The first source was the camera stream in conjunction
with the proposed algorithm. The algorithm was run on the
ground station and generated a map of markers according
to the incoming images while simultaneously localizing the
Parrot in space and capturing the trajectory of the Parrot’s
actual flight. When several markers were visible within a
frame, the current location was calculated with respect to the
position of the marker closest to it. The second source used
to determine the ground truth position of the quadrocopter
was a Leica laser station (Fig. 10). The laser station provided
ground truth data since it was able to pinpoint the location of
the 360◦ reflector attached to Parrot chassis approximately
10 times per second with an error margin of less than 1mm.

In order to compare the precision of the proposed method,
the trajectories acquired during real flight were aligned using

Fig. 9 Absolute error of marker pose estimation for three different
cameras

Fig. 10 Measurement of localization accuracy

standard ROS tools. As is shown in the axis decomposition
in Fig. 11, even though several measurement disturbances
were detected, the precision of our localization system was
still convincingly accurate—the average overall error within
this experiment was less than 7cm. Additional filtering of
estimated values might improve the overall precision even
further by removing the noise andmeasurement disturbances
causing plot spikes.We assume that their occurrence and size
is closely related to the camera chip size and lens distortion.
When using a standard 4:3 camera format, the measurement
error of themarker detected at the very right edge of the frame
was greater than the error of the marker detected at the very
top of the frame. The reason for this is the level of distortion
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Fig. 11 Laser Station data compared with ArUco estimation, an error
was within 5–7cm range

which is closely coupled with the absolute distance from the
optical center axis.

Figure 12 combines data from previous plots and provides
a comparison of estimated and ground truth trajectory in 3D
space.

Our final experiment (Fig. 13) combined both ArUco-
based localization and fuzzy control into the operation of
a fully autonomous flying quadrocopter. In order to test this
system, two different trajectories, rectangular and triangular,
were created in an empty warehouse. Markers were arranged
in ascending order with the exactly determined orientation
the x-axis of every nth marker pointed to the center of the
n+1th marker in order to provide direction for the off-board
processing system.

Fig. 12 Aligned data from laser tracker station (red color) and ArUco-
based localization (green color) (color figure online)

Fig. 13 Final experiment—Parrot autonomously following triangle
trajectory defined by ArUco markers

As in the previous experiment, the front Parrot HD camera
was tilted down by 45◦ and the video stream was transferred
to the ground station, where marker positions as well as Par-
rot’s actual position were determined in near real time. In
addition to the pure localization performed in the previous
experiment, the system was in fully autonomous operation
in this situation. The fuzzy controller calculated steering
commands in accordance with the feedback from the ArUco-
based localization. The Parrot was guided by controlling
program to approach currently visible marker with the high-
est ID. However, due to a combination of mutual marker
distances, height of flight and camera field of view, the next
markerwith higher IDwas detected before the closer onewas
actually approached—a new goal was set before the previous
was reached, resulting in the continuous forward movement
seen in the final video.

6 Conclusion

In this study, a marker-based system for the autonomous fly-
ing of quadrocopter is presented. It was inspired by recent
progress in the field of marker-based localization and map-
ping and enables simultaneous localization and navigation
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of theMAV in unstructured, GPS-denied environments using
only a single onboard camera and augmented realitymarkers.
Our implementation which also available as a standard ROS
package called ArUco_mapping is capable of creating both
2D and 3D maps of detected markers in a real-time, while
simultaneously estimating the position of the MAV with
respect to a coordinate system defined by the first detected
marker. In order to demonstrate the practicality and robust-
ness of marker-based navigation even for low-cost hardware
platforms, we developed our system further using fuzzy con-
trol and achieved a fully autonomous flight. The average
localization error in optimal conditions was less than 2cm
with the manually guided camera and less than 7cm for the
onboard camera during a real flight.

By adding fuzzy logic for MAV control and utilizing a
mapping approach, we achieved a fully autonomous flight
in which the quadrocopter was able to navigate visually and
to follow a predefined trajectory while estimating its own
absolute position in a world reference frame.

As a suggestion for further study, the precision of the
mapping approach could be improved even further by inte-
grating closing-loop detection algorithms which have been
recently developed for keypoint-based SLAM methods. The
stability of the quadrotor in flight could also be refined by
examining the flight data using Lyapunov function. In order
to reach faster system response and more accurate control
in flight, a nonlinear estimation based on the mathematical
model described in the fuzzy control section could also be
added to the existing system.
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