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Abstract Self-reconfigurable modular robots (SRMRs)
have recently attracted considerable attention because of their
numerous potential applications in the real world. In this
paper, we draw a comprehensive comparison among five dif-
ferent algorithms in path planning of a novel SRMR system
called ACMoD through an environment comprised of various
terrains in a static condition. The contribution of this work is
that the reconfiguration ability of ACMoD has been taken into
account. This consideration, though raises new algorithmic
challenges, equips the robot with new capability to pass dif-
ficult terrains rather than bypassing them, and consequently
the robot can achieve better performance in terms of traver-
sal time and energy consumption. In this work, four different
optimization algorithms, including Adaptive Genetic Algo-
rithm, Elitist Ant System, Dijkstra and Dynamic Weighting
A*, along with a well-known reinforcement learning algo-
rithm called Q-Learning, are proposed to solve this path
planning problem. The outputs of these algorithms are the
optimal path through the environment and the associated
configuration on each segment of the path. The challenges
involved in mapping the path planning problem to each algo-
rithm are discussed in full details. Eventually, all algorithms
are compared in terms of the quality of their solutions and
convergence rate.
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1 Introduction

Self-reconfigurable modular robot (SRMR) system is made
up of independent and simple modules which can rearrange
and reassemble with other modules to form a variety of con-
figurations [1-3]. The idea of these robots was first proposed
in the late 1980s, and since then a considerable amount of
research has been carried out in this field. Having the capa-
bility to adapt their shape and functionality to their appointed
task or the environment, the SRMRs major advantage is their
great flexibility and robustness. The objective of employing
such robots is to build multi-purpose robots whose func-
tionalities are not confined to one or a few applications. In
robotic applications, including space or underwater explo-
rations [4,5] where versatility and robustness are required
and the total load to be carried is a critical factor, or in rescue
missions [6] where the appointed task or the environment
model may not be fully known, SRMRs outperform fixed-
shape robots [1,7-9]; however, if the environment and the
appointed task are known in advance, it is more efficient to
build fixed-shape and specific-purpose robots. Further moti-
vations for using SRMRs include economic and self-repair
advantages.

Reconfiguration is a process in which the robot changes its
current configuration to another configuration based on a pre-
defined motion plan [8,9]. Generally, SRMRs can be viewed
from two perspectives [10, 11]. From the first point of view,
the individual motion capability of each module is consid-
ered and the second point of view highlights the capability
of group motion as a result of interconnection between mod-
ules. Having considered these viewpoints, the architecture of
SRMRs can be categorized into three different types called:
Lattice-type, Chain-type and Mobile-type [12]. Lattice-type
architecture uses cluster-flow to move and reconfigure [11].
Crystalline [13] and ATRON [14] are examples of this type.
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Chain-type architecture forms chain structures and has joints
that help them move without necessarily performing recon-
figuration. M-TRAN [15] and CONRO [16] are examples of
this type [11]. Unlike two other types, in Mobile-type archi-
tecture, modules can move individually, also can this kind of
modules connect to each other and form a variety of config-
urations. iMbot [17] and ACMoD [18] are examples of this
type. In this paper, we narrow down our focus to Mobile-type,
ACMoD robotic system in particular.

Robot path planning is defined as a problem of finding a
proper collision-free path for one or more robots from a start
point to a goal point with regard to different evaluation cri-
teria [7,19]. The number of feasible paths for a mobile robot
to go from a start point to the goal point is often very large.
Therefore, the path planning problem is one of the most chal-
lenging tasks in mobile robotics [7,8,20,21]. This problem
can be converted to a constrained optimization problem in
which finding an optimal path involves searching the space
of possible solutions [7].

Based on the extent to which the environment is observ-
able by the robot, the path planning problem can be catego-
rized into global and local modes [22]. In the global mode,
the model of the whole environment is known, whereas in
the local mode, the environment is locally observable by the
robot. From the environmental characteristics point of view,
the path planning problem can also be categorized into static
and dynamic modes [22]. In the static mode, the character-
istic of the environment is fixed, but in the dynamic mode,
the environment is changing. In this work, global static mode
has been examined.

Environment description and an appropriate search algo-
rithm are the main prerequisites of any path planning prob-
lem. Over the last decade, different methods have been pro-
posed for environment description which can be categorized
into two general types called environment decomposition and
graph description. In the former method, the whole envi-
ronment is decomposed into smaller grids called cells. The
adjacency of these cells is represented by an undirected graph
called Adjacency Graph. In the graph description method,
the environment is reduced to a network of 1-D curves and
as a result, the path planning problem is reduced to search-
ing a path between the start point and the goal point on this
network. Grid decomposition [23], MAKLINK graph [24],
Voronoi diagram [25], visibility graph [26] and also the com-
bination of these methods are some examples of environment
description methods.

Generally, there are two types of optimization algorithms
known as deterministic and heuristic. In deterministic algo-
rithms, if there exists an optimal solution, the algorithm can
find it by sequentially searching the whole search space.
On the other hand, heuristic algorithms use probabilistic
search methods to find the optimal solution in a proper time
(optimal or near optimal) while there is always a trade-off
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between speed and accuracy. Different algorithms have been
employed for path planning, including Genetic Algorithm
(GA) [7-9,18,20], neural networks [27], particle swarm
optimization [2], artificial potential field method [28,29],
Ant Colony Optimization (ACO) [30-32] and A* algorithm
[8,33,34] which are all heuristic algorithms. Dijkstra’s algo-
rithm has also been reported for path planning [22,24,35]
which is a deterministic algorithm. Q-Learning, as its name
conveys, is a learning algorithm that has also been employed
in path planning in which the robot finds the optimal path
according to the reward that it receives through interaction
with the environment [36-39].

To the best of our knowledge, almost all related works
in path planning have been done with fixed-structure robots;
however, having considered the growing popularity of mod-
ular robots, path planning of SRMRs in multi-terrain envi-
ronments is of particular importance. In this work, we will
show that the path planning of SRMRSs can be simplified and
solved by well-known path planning algorithms which are so
far used for fixed-shape robots. However, for this purpose,
the path planning problem of SRMRs need to be defined
in new form to be mapped to either of these algorithms. In
comparison with our previous work [18], the convergence
rate and the optimal fitness value of the Genetic Algorithm
have been improved by employing the adaptive version of the
Genetic Algorithm (AGA), and the ACMoD robotic system
is now under realization. Furthermore, to draw a more com-
prehensive comparison, more algorithms called Elitist Ant
System (EAS), Dijkstra, Dynamic Weighting A* (DWA¥*)
and Q-Learning algorithm have also been considered.

The rest of the paper is organized as follows: Our novel
SRMR system is introduced in Sect. 2. Basic concepts in
path planning are reviewed in Sect. 3. The mapping of the
robot path planning problem to Adaptive Genetic Algorithm,
Dijkstra, Dynamic Weighting A*, Elitist Ant System and Q-
Learning is presented in Sects. 4, 5, 6, 7 and 8, respectively.
The simulation results of the proposed algorithms are ana-
lyzed in Sect. 9 before Sect. 10 concludes our paper and
provides suggestions for future research.

2 ACMoD robot

In this section, our novel SRMR system called ACMoD
is introduced. The rest of the section briefly reviews the
mechanical design as well as individual motion, group
motion and reconfiguration abilities.

2.1 Mechanical design
An ACMoD robotic system is a set of independently con-

trolled mechatronic modules. In addition to capability of
individual motion on its wheels, each ACMoD module is
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Fig. 1 An ACMoD module and its cross-sectional view. All modules
are identical. Each module can perform some computations and can
communicate with its immediate neighboring modules. SolidWorks
software is used for its mechanical design

also able to connect to other modules to form complex con-
figurations [18]. ACMoD can automatically reconfigure and
adapt to the dynamic environment.

The major contribution of this design includes but not lim-
ited to (1) rigid and flexible structure, (2) mobility of each
module, (3) ability to reconfigure and form several 3-D con-
figurations, (4) group motion. ACMoD modules are designed
so that its center of mass is adjusted close to geometric center
of the robot; thus, individual motion is acceptably stable.

Figure 1 shows an ACMoD module and its cross-sectional
view. Each module is symmetric and has three degrees of
freedom. As it can be seen, it is comprised of different parts.
Part (1) and (2) are two lateral wheels that enable the mod-
ule to move individually. Part (3) acts like a joint and add
another degree of freedom in order to make the module able
to bend around that point. This part plays a critical role in
some configurations like legged configurations. Each module
has four connecting joints overall (two on the wheels and two
on the central box) which let the modules to connect to each
other from different sides. One connecting joint on the wheel
and one connecting joint on the central box are female joints
(Active Connectors), and the two other connecting joints are
male joints (Passive Connectors) as shown in Fig. 2. Part
(6) and (7) are the containers of electronic and mechanical
components, including servo motors, battery and electronic
boards.

2.2 Docking mechanism and feasibility

The docking mechanism of modular robots is a critical
feature as it plays an important role in forming complex con-
figurations [40]. Each module can connect to at most four
other modules. The docking mechanism is shown in Fig. 2.
Because this mechanism should resist high forces in some
configurations, it should provide a rigid and reliable connec-
tion in order to prevent unwanted separation and wobble.
Therefore, in this module we used clasp system instead of
electromagnetic connection.

Fig. 2 The docking mechanism of ACMoD module. Clasp system in
the docking mechanism provides rigid connection

(h)

-

Fig. 3 Some feasible configurations of ACMoD robots and their sym-
bolic representation. (a) Shows a 4-legged robot, (b) shows a few
individual modules, (c) is a snake configuration, (d) is a Segway, (e)
shows a ring, (f) is another type of 4-legged robot, (g) is a another type
of Segway, (h) is a 3-legged robot, and (i) is a 6-legged robot. Only con-
figurations shown in (a), (b), (¢), (g) and (h) are used in the experiments

To form complex configurations for group motion,
ACMoD modules can find other modules and then attach to
each other like swarm robotic system. Each module receives
the information and independently determines its motion. In
this SRMR system, the navigation algorithm to help modules
find each other is ERRT algorithm that was introduced in
[41,42]. Various feasible configurations are shown in Fig. 3.
Each configuration has its own Central Pattern Generator
(CPG) that performs locomotion. These configurations can
be automatically reassembled to form other configurations.
Figure 4 shows some examples of different configurations
on various terrains. For instance, ACMoD robots can form
snake configuration to pass through narrow tunnels, as shown
in Fig. 4c. Legged configurations are suitable for cobbled or
hilly terrains as shown in Fig. 4b, d.
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Fig. 4 a The side view of the simulation environment covered with
various terrains. b 4-legged robot on the cobbled terrain. ¢ Snake con-
figuration passing through a narrow tunnel. d 3-legged robot climbing a
hilly terrain. Modules and the environment are simulated in Microsoft
DirectX software using NVidia PhysX library

After examining the internal structure, the potential capa-
bilities of each module are checked. The most important
constraint in designing the mechanical part of ACMoD is to
choose the appropriate motors in terms of torque and power.
Over design in motors leads to large and heavy modules. In
ACMoD, five servomotors with different characteristics are
needed, two of which are used to control wheels. The third
one is for central joint. Last two motors are used for dock-
ing mechanism (female joints). In configurations, including
4-legged robots, the central joint motors play an import role
because they need to be powerful enough to move legs for
locomotion; thus, for this motor torque is much more impor-
tant than speed.

3 Basic concepts

In this section, some basic concepts concerning environment
representation and optimization criteria are reviewed before
the main problem can be defined. Regardless of any algo-
rithm chosen for path planning the SRMRs, there are some
common steps involved. First, the static environment should
be determined and mapped using a proper global map. The
next step is to choose the start and goal states. Then one of
the proposed algorithms is employed to optimize its objective
function which contains terms of energy and time consump-
tion for both traversal and reconfiguration. The output is then
the optimal path through the environment and associated con-
figuration on each path segment.

3.1 Environment determination
The first step of the path planning problem is environment

determination, meaning that the layout of the environment in
terms of the location of obstacles, start and goal points, and
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Fig. 5 Seven types of traversable terrains and their symbolic represen-
tations on their left. (a) Shows a fenced terrain, (b) shows a stairway, (c)
shows a terrain with gaps, (d) shows a hilly terrain, (e) shows a bridge,
(f) shows a cobbled terrain, and (g) shows a flat terrain

- cl
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Fig. 6 Matrix representation of the environment. Black grids indicate
the presence of an untraversable obstacle in that grid. Other grids are
covered with one of the seven types of terrains. The green path is a
typical valid path from the start grid to the goal grid that algorithms can
find

different terrains should be defined. The environment in our
experiment is divided into squared grids, and each of which
is covered by either an untraversable obstacle or one of the
seven types of terrains as shown in Fig. 5. Matrix representa-
tion is another form of representing the environment in which
a grid is colored black if there is an untraversable obstacle in
that grid; otherwise, the grid is covered with one of the seven
types of terrains as shown in Fig. 6. All grids are numbered
in order. This way of numbering performs better than Carte-
sian method because of its less computational complexity
and memory management benefits [7,20]. It is assumed that
the robot can move in all eight directions (north, northeast,
east, etc.).
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Fig. 7 Graph representation of an environment. For each super-node
of the graph, five nodes are assumed which represent five different
configurations available for the robot

Some of the algorithms proposed in this work including
Dijkstra, DWA* and EAS employ graph representation of
the environment as shown in Fig. 7. In this form of rep-
resentation, we are going to use the term “super-node” to
refer to the grids of the environment and we also assume that
each super-node contains five nodes representing all con-
figurations available for the robot. For instance, if there is
a traversable path from ith grid to the jth grid of the envi-
ronment, there would be a set of edges between ith and jth
super-nodes. For instance, an edge between the first node of
ith super-node to the fourth node of the jth super-node means
that the robot traverses the ith grid with the first configuration
and upon reaching the jth grid, it reconfigures to the fourth
configuration. The weight of each edge shows the cost of
passing that edge. All edges are two ways which means the
robot can return its path.

3.2 Objective function

As it was mentioned before, the contribution of this work is
that the reconfiguration ability of ACMoD is considered in

the path planning problem. This consideration not only cause
some changes in each algorithm, but also emerges in the
objective function as energy and time consumption criteria.
Therefore, the overall objective function would be a weighted
sum of multi criteria which may have the following form:

Objective function = (0 x Er + 2 x Tr)
+ (0 x Ec + 2 x T¢) 1)

where E7 and Tr7 terms are, respectively, the energy and
time costs imposed by traversing the environment. Ec and
Tc terms are, respectively, the energy and time costs imposed
by reconfiguration. § and 2 are two coefficients controlling
the relative importance of energy terms to time terms in the
overall objective function. These two coefficients are chosen
by the user based on the priority that the user puts on time
optimization over energy optimization or vice versa. It is
assumed that the energy and time terms used in the objective
function are known for all configurations and all types of
terrains. This information is obtained by simulations. Table 1
shows the energy and time consumption of the robot with
each configuration traversing each terrain. Table 2 shows the
energy and time consumption of the robot for reconfiguration
between any two configurations.

4 Adaptive genetic algorithm

In this section, mapping our path planning problem to Genetic
Algorithm will be discussed in more details. GA is inspired
by the principle of survival of the fittest in the nature, and
it is one of the robust and powerful optimization algorithms
for complex problems. The algorithm starts with an initial set
of guesses about the solution coded in a population of chro-
mosomes, and then the algorithm tries to improve that initial
population by applying specific genetic operators, includ-
ing crossover, mutation and elitism. In this algorithm, an
objective function is used to evaluate the performance of

Table 1 Energy (KJ) and time

(s) consumption of the robot Terrain Configuration

with each configuration 4-legged 3-legged Segway Individual Snake

traversing each terrain

Er Tr Er Tr Er Tr Er Tr Er Tr

Flat 2.02 22 7.00 25 5.53 16 1.35 22 2.29 21
Fence 3.40 32 4.87 38 00 00 oo 00 4.52 33
Bridge o0 00 o0 00 o0 o0 1.47 22 2.29 21
Cobble 3.20 30 5.13 45 8.43 50 00 ) 4.43 42
Stairway 5.00 36 6.57 42 00 00 o0 00 00 00
Gap 3.45 31 4.20 38 oo o0 00 o0 4.65 33
Hill 5.40 35 8.90 34 00 00 00 00 5.50 45

These numbers are for vertical or horizontal movement of the robot in each grid
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Table 2 Energy (KJ) and Time

. Current Configuration
(s) consumption of the robot for &

Goal Configuration

reconfiguration between any two 4-legged 3-legged Segway Individual Snake
configurations
Ec Tc Ec Tc Ec Tc Ec Tc Ec Tc
4-legged 0 0 5.69 147 5.19 112 0.19 2 6.19 172
3-legged 5.22 115 0 0 5.22 115 022 5 6.22 175
Segway 5.25 117 5.72 152 0 0 025 7 6.25 177
Individual 5 110 5.5 145 5 110 0 0 6 170
Snake 5.1 112 5.6 147 5.1 112 0.1 2 0 0
Start grid Goal grid 4.2 Initial population
[anig@[am: g0 ]am):ge | lonnigm | Choosing the initial population of chromosomes in GA is

TT

|G1§C1||Gz§CzI

=

Fig. 8 Chromosome definition in our problem. Odd and even genes
are, respectively, the grid location G and associated configuration C of
the robot

each chromosome according to specific optimization criteria.
In each generation, one of the selection methods, including
roulette wheel selection, tournament selection, or rank selec-
tion is used to produce the next generation. The evaluation
and production of the next generation is performed iteratively
as long as the algorithm converges, and the optimal solution
is achieved.

4.1 Chromosome definition

The first step in GA is Chromosome definition, meaning
that the solution of the optimization problem should be
encoded into a sequence of genes. In our optimization prob-
lem, the reconfiguration ability of robots should be taken into
account, thus not only the path segment, but also the asso-
ciated configuration on each terrain should be encoded in
genes, whereas in previous works like [7,8], chromosomes
only contain a set of segments of the path. The proposed chro-
mosome has variable length to model arbitrary path length
traversed by the robot in each solution. Each pair of genes
{gk),gk+ 1D}, k=1,3,5,...,n— 1, is the grid loca-
tion -G and associated configuration C of the robot. g (1)
is always the start grid, and grid location genes can be any
integer number from zero to the largest grid number in the
matrix representation of the environment. # is the length of
the chromosome. In other words, (n 4+ 1) /2 is the length
of the path. The convergence speed of GA is dependent on
the chromosome definition. An example of a chromosome is
shown in Fig. 8.
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the other important step that affects the convergence speed
of the algorithm. The initial population contains a number
of possible solutions for the problem under study. If a large
population size is chosen, it is more likely to find the global
optima, but computational time becomes a restricting factor.
There are two methods available to generate the initial pop-
ulation: random and heuristic [20]. In most cases, heuristic
initialization results in faster convergence. In this work, we
used heuristic approach and a penalty term to find feasible
and infeasible paths. The advantage of this approach will be
discussed in the next steps where a few GA operators will be
used to decrease the computation time. This method of initial-
ization shows notable improvement compared to the random
initialization used in [18]. In this method of initialization, we
first assign a very large value to border and obstacle grids and
then assign a small initial value (o) to other grids as shown
in Fig. 9. The next step is to calculate the Euclidean distance
between each free grid and the center of all obstacle grids
(d;j) of the environment. The inverse of these distances is
summed up and is then added to o to obtain a gain for that
grid as follows:

11 Lo
i=c4+—+—+---=0+ — . (2)
8i div  dpp Z(“’t‘j)

where L is the number of obstacle grids in the environment,
and d;; is the Euclidean distance of the ith grid from jth grid.

For each grid i, a vector denoted by P can be computed
that has eight elements filled with the probability of choosing
each surrounding grids by the robot if it is located in the ith
grid. The probability of choosing jth grid if the robot is in
the ith grid is the ratio of g; to the sum of the gains of all
eight grids surrounding the ith grid. Roulette wheel method
is used to choose the next grid for a path generation from the
start grid to the goal grid. After generating a path, we should
optimize the path and remove loops and unnecessary grids
by using specific operators designed for this purpose.
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Fig. 9 The proposed heuristic path generation method for initializing
the population in GA

4.3 GA operators

Optimization in GA is performed by iteratively applying
some operators on each generation population. In this work,
these operators are selection, crossover, mutation and two
customized operators, shortcut and loop removal. These
operators are explained in this subsection.

The primary objective of the selection operator is to ensure
that the best chromosomes (solutions) will survive to repro-
duce the next generation [7]. In this operator, chromosomes
are selected based on their fitness values in order to undergo
the operations, including mutation, crossover. In [18], almost
the whole generation was replaced by children, but in this
paper, we use elitism policy to guarantee that the quality of
solution will not decrease from one generation to the next
generation and eventually improve the convergence rate. For
this purpose, 25% of the best chromosomes (lowest fitness
value) are carried over to the next generation and then the
operators are applied to the whole generation to reproduce
the rest of the chromosomes for the next generation.

Crossover is one of the fundamental operators of genetic
algorithm that combines two parents in order to exchange
their information and generate new solution that would bene-
fit from both parents. There are various versions of crossover,
namely 1-point, 2-point and uniform, etc. We use 2-point
crossover in this work, in which we randomly choose two par-
ents and search for two distinct common genes in them and
then all genes between those two common genes are swapped
between parents to generate two children. Crossover opera-
tor is only applicable on odd genes (grid genes) so that the
resulting path remains continuous.

Mutation is an operator that increases the diversity in the
population by making small alterations in a chromosome.
This operator prevents immediate convergence to alocal min-

imum. In this work, we use two different mutation operators,
grid mutation and configuration mutation. After applying
either of mutation operators, only those results are accept-
able that the obtained pair of genes is valid, meaning that the
suggested grid is traversable by the suggested configuration.

The objective of shortcut removal operator is to reduce
the total length of the path. This operator searches the whole
chromosome to find redundant grids and then remove them.
Likewise, loop removal operator searches for loops in the
path and removes them. Smoothing operator is used to
smooth the paths that have considerable deviation. It should
be mentioned that increasing the number of operators, slows
down the convergence.

4.4 Evaluation and fitness function

Defining a proper fitness function is always a challenging
step, and it is often defined according to the nature of the
problem to be optimized. Appropriate selection of the fitness
function will lead the algorithm toward the optimal solution
[20,27]. All chromosomes are evaluated based on their fitness
value. The fitness value, in fact, determines those chromo-
somes that will be directly transferred to the next generation
and those chromosomes that will not survive or undergo oper-
ations. Our proposed fitness function is multiple criteria.
Time and energy consumption terms imposed by traversal
as well as time and energy consumption terms imposed by
reconfiguration all take part in our proposed fitness function
as follows:

K
f=>\><2(9XET(l‘i,Ci)+~Q><TT(Ii,Ci))

i=1

K—1
+ D (0 x Ec (civcip1) + 2 x Te (ci ¢ig1) 3)

i=1
o+2=1 @

where K denotes the path length. E7 (4, ¢;) and Tt (¢, ¢;)
are, respectively, the energy and time required by the robot
with configuration ¢; to traverse the terrain ;. E. (¢j, Ci+1)
and 7. (c;, cij+1) are, respectively, energy and time required
by the robot to reconfigure from configuration ¢; to configu-
ration ¢;41. 60 and §2 are constant weights defining the relative
importance of time and energy terms in the total fitness value.
\ is a coefficient to distinguish between vertical/horizontal
movement and diagonal movement on each grid. Hence, it
is equal to 1 and +/2, respectively, for the vertical/horizontal
movement and diagonal movement.

In order to make the original version of GA adaptive, the
probabilities of crossover, p., and mutation, p., should be
adjusted adaptively [43,44]. The adaptive version of GA is
called Adaptive GA (AGA). This adaptation is done by uti-

@ Springer



128

Intel Serv Robotics (2017) 10:121-136

lizing the information of population in each generation as
follows:

kl X(f/ffmin> ,

Pe = Tog—Tumy I = Javg )
k F'> fuvg
Ksx(—fui) ¢ <

om = | Caidn) 4 = Jave o
ka F> fang

where fmin and fayg are, respectively, the best and the average
of fitness value in the population. f” is the better fitness value
between parents involved in crossover operation, and f is the
fitness value of the solution to be undergone mutation. If the
value of K|, K,, K3 and K4 are chosen in the interval [0,
1], the two probabilities are updated adaptively. In this work,
Pm is used for both grid mutation and configuration mutation.
Convergence criterion in this algorithm is as follows:

Error (Z) = % < 0.001 7)

z

where f7z and fz_; are the best fitness values for the Zth
and (Z — 1)th generations, respectively.

5 Dijkstra’s algorithm

Dijkstra’s algorithm is an optimization algorithm and also a
graph search algorithm that uses deterministic search to find
the shortest path from a starting node to every other node in a
graph with nonnegative edge path costs [8,45]. If there is an
optimal path, this algorithm can find it with high probability
by searching the whole space. Dijkstra’s algorithm begins
from the start node and assigns a cost value to all its neigh-
boring nodes, then visits the node with lowest cost and does
the same calculation for the new node. During this process, if
it finds a lower cost for any node that it has already assigned
a cost value, it updates the cost of that node and goes on until
it visits the goal node.

To map our problem to this algorithm, the graph model
presented before in Sect. 3 has been employed. The first
step in Dijkstra’s algorithm is to define the adjacency matrix
G (N, E) whose elements are defined as follows:

| wij,  ifedge (ni,nj) e E
gij = {oo, if O.W, ®)
where N is the set of nodes and E is the set of edges. If there
is an edge between node i and node j, then the associated
element of the adjacency matrix is equal to the cost of that
edge. The cost of traversing from node i to node j is obtained
as follows:

wij = x (0 x Er (tj, ¢i) + 2 x Tr (4, ¢;))
+ (0 x Ec(ci,cj) + 2 x T (ci. cj)) , ©)
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where the definition of E7 (t;, ¢;), Tr (4, ¢i), Ec (ci,c;),
Tr (ci, c j), 0, £2 and ) are the same as before. The path
evaluation function C is then the sum of all partial costs
imposed by each edge of the graph from start node to the
final node. Despite being very time-consuming, Dijkstra’s
algorithm has been included in our comparison as a base
line to compare the performance and execution time of other
algorithms.

6 DWA* algorithm

A* is a popular search algorithm that enjoys widespread
use in path planning and graph traversal because of its
speed and performance [33,34]. A* Algorithm is a combi-
nation of Dijkstra’s algorithm and a greedy search algorithm
called Best-First-Search. Despite Dijkstra’s algorithm that
uniformly searches in all directions without considering the
location of the goal node, A* algorithm uses a predefined
heuristic function which proposes an estimation for the short-
est path to the goal node. Therefore, compared to Dijkstra’s
algorithm, A* enjoys faster search and less memory require-
ments. Following the path with lowest estimated cost during
traversal, A* algorithm also keeps a sorted priority queue of
alternative path segments along the way toward the goal node.
If, at any point, a segment of the path being traversed has a
higher cost than another encountered path segment, the algo-
rithm abandons the higher-cost path segment and traverses
the lower-cost path segment instead. This process continues
until the goal has been reached.

The A* algorithm uses a problem-specific heuristic func-
tion denoted by 4 (n), which in our problem is defined to
be the straight-line distance to the goal point in order to
estimate the cost of the path from the current node to the
goal node. The algorithm also evaluates the path cost g (n)
which is the cost incurred from the start node until the current
node. In fact, g (n) represents the performance of Dijkstra’s
algorithm and & (n) represents the performance of Best-First-
Search algorithm. One of the drawbacks of A* algorithm is
that the importance of heuristic function and the cost of path
already traversed equally contribute in the total cost through
the search. To solve this problem, the Dynamic Weighting A*
has been proposed in which the total cost function is defined
as follows:

fm)y=gm)+wn) xh@n), (10)

where w (n) is a weight that dynamically changes the relative
importance of the heuristic function in the total cost function.
In the traditional A* algorithm, this weight is constant and
equal to one, but in DWA*, this weight is first chosen to be
w (n) > 1, so that in the early steps of search, higher priority
is put on finding the right direction toward the goal node more
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quickly, and as we get closer to the goal node, the weight is
gradually decreased in order to put higher priority on finding
the optimal path [46,47].

In comparison with Dijkstra’s algorithm, since A* algo-
rithm use a heuristic function and an ordered priority queue,
it cuts down on the set of nodes that must be investigated.
DWA* further cuts down on such nodes by heavily weight-
ing heuristic function in the early steps of the search, but it
tries to less compromise the optimality as it get closer to the
goal. However, since the heuristic function is greedy, there
is no guarantee that it suggests the actual shortest path [8].
Therefore, execution time and quality of solution can be sig-
nificantly influenced by the definition and the preciseness of
the heuristic function

7 EAS algorithm

The Ant Colony Optimization (ACO) is a probabilistic opti-
mization algorithm that can be used for local and global
path planning. This algorithm is inspired by the behavior
of biological ants when foraging for food to find the short-
est paths between their colony and different sources of food
[30,31,48]. When an ant finds a source of food, on its way
back to the colony, it deposits pheromone trail on the ground.
Other ants choose the pheromone trail that is more intense
compared to other pheromone trails. However, over time,
pheromones evaporate and decrease the attractiveness of
paths, but shorter paths are traversed more frequently and
that keeps their intensity and attractiveness at high level.
Pheromone evaporation, in fact, prevents convergence to a
local optima. By this natural process, ants are able to solve
an optimization problem of finding the shortest path to the
source of food [49].

7.1 Edge selection

In ACO, like the two other graph-based algorithms in this
work, the same graph model presented before in Sect. 3 has
been employed. To generate a new solution for the problem,
each ant moves node to node. In the process of choosing
the next node, each ant makes a probabilistic decision. For
kth ant, the probability of moving from node i to node j is
defined as follows:

() (1)

k o«
Pij = ZIGN{‘ () X(”f])ﬁ
0 if j ¢ Nk

P k
if j €N (a1

where rl.]; is the pheromone level deposited in the transition

from node i to j, and 17{.‘/. is heuristic information that repre-
sents the attractiveness of moving from node i to j. In this

work, r)f.‘j = 1/w;; has been assumed, where w;; is the cost
of edge between node i and j and is defined the same as (9).
o and B are parameters to control the influence of ri];. and nf.‘j ,

respectively. When g = 0, then (nfj)ﬂ = 1 and the prob-
ability of choosing a path only depénds on the pheromone
level and if & = 0, then this probability only depends on the
attractiveness of paths. The summation in the denominator
ensures sum-to-one rule and considers all possible paths in
the paths set N¥, if the kth ant is in node i.

7.2 Pheromone update and evaporation

As mentioned before, the amount of pheromone on different
paths can influence other ants in their decision of choosing
among paths, and hence, shorter paths are traversed more
frequently and thus keep their pheromone at high level. In this
work, we used ACO with Elitism policy, Elitist Ant System
(EAS), in which the deposit of pheromone and evaporation
effect are modeled as follows: [50]:

m
T (t+ 1) = (1= p) x 1 (1) + ) At
k=1
+e><rfj(t), V(i,j)eL,0<p=<1 (12)

where 7;; is the amount of pheromone deposited in the tran-
sition from node i to node j, m is number of ants, and Ari];. is
the pheromone increment left by kth ant on its transition from
node i to node j. In (12), Ari];. can be defined as follows:

i 1

At = v (13)
ij

where wfj is the cost of transition from node i to j for kth

ant, as it was defined in (9). Pheromone also undergoes evap-

oration, and this phenomenon is modeled by an evaporation

coefficient p which is a number between zero and one.

The formulation of ACO system does not have the last
term in the right-hand side of (12); however, in EAS, this
term has been added in the pheromone update rule in order
to take into account the best solution found until that iteration
as well. The effect of the best solution can be even greater
than the other solutions. In other words, by this updating
rule, the solutions are biased toward the best solution. This
modification results in faster convergence, but the algorithm
might also be trapped in local optima. In (12), elitism param-
eter e defines the intensity of the effect of the best solution
on the next solution and tf; (¢) is nonzero only when edge
ij is part of the best path found until that iteration. Appro-
priate value for e helps the algorithm to find better solution
in shorter period of time; however, large value may result in
algorithm concentrates early on suboptimal solution, and the
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algorithm fails to find the optimal solution. In other words,
by this updating rule, one can balance the exploitation and
exploration. The same criterion as GA can be used for con-
vergence criterion of EAS.

8 Q-Learning

Inreinforcement learning algorithm, through interaction with
the environment and in an attempt to maximize the long-
term reward, the agent learns the optimal strategy. In other
words, reinforcement learning is a mapping from the state
space to the action space so that the reward function becomes
maximum [51,52]. Q-Learning is a reinforcement learning
algorithm that can be used for Markov Decision Process
(MDP) in which the model of the environment is not available
[53]. In the interaction with the environment, the decision-
making agent iteratively takes an action a; = a € A and
as the result of that action, it receives an immediate reward
rr4+1 and is transmitted from its current state s; = s € S to
the next state s;1| = s’ € S, where A and S are the finite
set of actions and states, respectively. The quality of state-
action pairs are stored in a matrix called Q-matrix denoted
by Q. Before learning has started, this matrix is initialized to
zero or to random numbers and during the learning process,
it is updated iteratively and finally converges to the optimal
Q-matrix [37,54,55].

Policy  (s) € A is the strategy by which the agent
chooses the next action in each state. The objective of the
agent is to learn the optimal policy 7* (s) € A for any state
s so that the total reward in long term becomes maximum.
Q-Learning finds the optimal policy by approximating state-
action pair values or Q-matrix [21,55]. The optimal policy
can then be achieved as follows:

¥ (s) = arg max (Q* (s, a)) (14)

Q-Learning algorithm finds the optimal Q-matrix Q* (s, a)
through an iterative and recursive method based on available
information. The updating rule in this algorithm is as follows:

O (sr,ar) = Q(s,a1) + X
X [rm +y x max O (5141, a) — O (51, ar)]
(15)

where 0 < ¥ < 1 is discount factor that keeps a trade-off
between the importance of immediate and long-term reward
and 0 < a < 1 is learning rate that defines the importance of
recently obtained information compared to old information
in updating Q-matrix.

During the learning process, the strategy of choosing the
next action among possible actions in each state highly affects
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the convergence speed of Q-Learning algorithm. In order
to increase the convergence speed, various strategies have
been proposed. The simplest strategy is greedy strategy in
which the agent takes the action associated with the highest
quality and thus does not explore other actions. To solve this
problem, e-greedy strategy was proposed in which the agent
takes the action randomly so that the action associated with
the highest quality can be taken with the portability of (1 — ¢)
and other actions can also be taken, but with probability ¢.
This approach controls the balance between exploitation and
exploration by changing the & parameter. The larger the ¢,
the more exploration the agent carries out.

e-greedy strategy is very popular. Its main drawback, how-
ever, is that it assigns equal probabilities to all actions other
than the one with the highest quality. To solve this prob-
lem, soft-max selection method has been proposed. In this
method, actions are taken based on different weights which
are often derived from Gibbs or Boltzmann distributions. The
other drawback of e-greedy strategy is that when the optimal
policy is found, in each state, all actions have the same proba-
bility of ¢ to be taken. One of the strategies proposed to solve
this problem is Value-Different-Based Exploration (VDBE).
This strategy is similar to e-greedy strategy, except that € is
no longer a universal constant parameter, rather it is learned
separately for each state. In this strategy, when the knowl-
edge of this system is limited, at the beginning of learning
process for instance, ¢ is chosen large. Updating rule for ¢ is
as follows:

h(s,a,o)
0 Qis.a) /0 e Qrr1G.a)/o
T QG0 L 0G0 g0i5.a)/0 4 g0ri1.a)/0
(16)
e+1(8) =8 xh(st,ar,0)+ (1 —38) x&(s) a7

where o is a positive constant called inverse sensitivity, and
8 € (0, 1] is a parameter which defines the effect of the taken
action on the exploration rate [56,57].

8.1 WorkSpace

In Q-Learning, like previous algorithms, the environment is
gridded. In Q-matrix, the number of rows is equal to the over-
all number of environment grids and the number of columns
is 8 x 5, where 8 is the number of all directions the robot
can move, and 5 is the number of all configurations. If an
action in a state is impossible, the associated reward would
be a negative large value and the action that leads to the goal
grid is rewarded by a positive large value and finally for other
actions the agent receives following reward in terms of energy
and time consumption for reconfiguration and traversal.
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1

Reward =

AX (@ x ET(ti,c;)+ 82 x Tt (tj,¢c;i)) + (9 x E. (ci,cj) + 2 x T, (c,-,cj))

(18)

where, the definition of E7 (1, ¢;), Tr (t:, ¢i), Ec (ci, c;),
Tr (ci, cj), 0, £2 and ) are the same as before.

9 Simulation results

In this section, the simulation results of the proposed algo-
rithms are analyzed and compared. All simulations were
conducted in MATLAB 2013 on a personal computer with the
following specifications: Intel Core i5, 2.4 GHz, 4 GB RAM.
Algorithms were run with parameters setting as in Table 3.

To draw a more meaningful comparison among algo-
rithms, two measures of evaluation were used: the execution
time of algorithms as well as the quality of their solutions
[7,8]. Simulations were conducted on different sized envi-
ronments with various layouts. In reporting the results of
heuristic algorithms, the average and the variance of the solu-
tions for multiple executions have been included to show the
quality of the solutions as well as the stability of the algo-
rithms.

9.1 Small environment

In this experiment, all algorithms were tested on a 10 x 10
environment. All algorithms were compared in terms of the

Table 3 Parameters setting of the proposed algorithms

Algorithm Parameter Value
GA & AGA K 1
K> 0.6
K3 1
K4 0.55
DWA* h (n) (Heuristic function) A straight-line
distance to the
goal grid
w(n) = 1% wo = 2.5
EAS o (Pheromone trail coefficient) 5
B (Heuristic coefficient) 5
p (Evaporation rate) 0.3
e (elitism parameter) 0.7
Q-Learning o (Learning rate) 0.9
Y (discount factor) 0.5
8,0 0.3
Q (Q-matrix) [0]
Objective ® & Q (constant weights) 0.5
Function
Coefficients

average and the variance of cost value and the average of
execution time. Table 4 compares EAS, AGA and GA with
different population size. Table 5 compares Dijkstra, DWA*
and Q-Learning. The number of execution iterations in EAS,
AGA, GA and Q-Learning was 200. The two other algorithms
are deterministic, and hence, their result was consistent in
multiple iterations.

As it was expected, Dijkstra’s algorithms achieved the
best cost value within reasonable amount of time in the small
environment. Next, in terms of best cost value, were DWA*,
EAS and then AGA. In comparison with GA, AGA showed
noticeable improvement in terms of both execution time and
cost value. Q-Learning minimized the cost value but not as
much as others. Obviously, in EAS, GA and AGA, the larger
the initial population size, the smaller the cost value and its
variance and the longer the execution time. However, the
fastest algorithms in this environment size were DWA* and
then Dijkstra. It should also be mentioned that except Dijk-
stra and DWA* that are deterministic algorithms, others are
heuristic and multiple execution iterations were required to
achieve the best result. However, EAS had the least vari-
ance and Q-Learning performed better than AGA in terms
of variance of solutions. The graphical representation of the
solutions of all algorithms is shown in Fig. 10.

Figure 11 compares the convergence rate of EAS, AGA
and GA proposed in [18]. As it can be seen, AGA outper-
formed GA in terms of both convergence rate and fitness
value. EAS, however, outperformed both. In addition, EAS
convergence rate was smoother and faster than that of GA
and AGA. Figure 12 compares the average and the variance
of fitness value among the population of consecutive gener-
ations in EAS and AGA. As it can be seen, EAS not only
achieved better fitness value, but also on its way to converge
to that value enjoyed considerably smaller variance because
with elitism policy, the best-so-far solution has taken into
account and each generation is biased toward that solution.

9.2 Large environment

The same experiment was conducted on large environment.
The results of this experiment are provided in Tables 6 and 7.
In this experiment, the environment contained 38% obstacle
grids.

Table 8 summarizes the results of Tables 4, 5, 6 and 7. In
this table, algorithms are compared with respect to the exe-
cution speed, the variance of their solutions, susceptibility to
being trapped into local optimum and their specific require-
ments.
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Table 4 Comparison of the

. Environment size 10*10
average and the variance of cost

Number of execution iterations =200

value, and the average of AGA GA in [18] EAS

execution time of EAS, AGA

and GA with different Population size C Var. T C Var. T C Var. T

population size
20 8.40 4.09 0.92 8.47 5.51 0.89 8.18 1.42 0.36
30 8.29 3.52 1.30 8.40 4.25 1.34 8.11 0.93 0.87
50 8.17 3.01 1.98 8.31 3.79 2.10 7.97 0.45 1.63

The number of execution iterations was 80. The environment was 10 x 10. The unit of time is second and
cost is normalized and thus, it is without unit

Table S Comparison of the

. Environment size DWA* Dijkstra Q-Learning
average and the variance of cost
value and the average of C Var. T C Var. T C Var. T
execution time of A*, Dijkstra
and Q-Learning 10*10 7.96 0 0.57 7.85 0 0.78 8.69 1.95 1.87

The number of execution iterations in Q-Learning was 200. The environment was 10 x 10. The unit of time
of time is second and cost is normalized and thus it is without unit
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Fig. 10 Graphical representation of solutions offered by proposed
algorithms. The environment was 10 x 10 and contained 34% obsta-
cle grids. Start grid was the lower left grid, and the goal grid was the
upper right grid. Green solution is the result of Dijkstra’s algorithm.
DWA* algorithm solution is shown in red. AGA found the blue solution.
EAS and Q-Learning solutions are distinguished from other solutions
by black and yellow colors, respectively. As it can be seen from the
figure, a straight path from start grid to the goal grid was not available
and all algorithms successfully overcame this challenge

As it can be concluded from Table 8, choosing among
proposed algorithms is application dependent and different
criteria may affect this choice, but environment size seems
to be the most important criterion. Following are some key
points to consider when choosing among proposed algo-
rithms. It is worth mentioning that ACO, A* and Q-Learning
with e-greedy strategy had been simulated, but for the ben-
efit of conciseness and because their improved versions had
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Fig. 11 The comparison of convergence rate among EAS, AGA and
GA proposed in [18]. The initial population size for all algorithms was
40, and the results were the average of 100 execution iterations

better performance, these basic versions were not reported in
tables. However, in the following discussion all algorithms
have been considered.

Dijkstra Because of its greedy search approach, Dijk-
stra’s algorithm finds the optimal solution, but in large
environment, it shows poor performance in terms of mem-
ory requirement and execution time. In this work, Dijkstra’s
algorithm has been reported as a base line to compare other
algorithms.

DWA* Guiding the greedy search by a heuristic function,
A* algorithm performs better than Dijkstra’s algorithm in
large environments in terms of both memory requirement and
convergence speed. One of the main drawback of A* algo-
rithm is its vulnerability to being trapped in local optima.
DWA*, because of its dynamic weighting strategy, enjoys
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Fig. 12 Comparison of the average and the variance among the population of consecutive generations in EAS and AGA. The initial population
size was 40, and the results were the average of 100 execution iterations

Table 6 Comparison of the
average and the variance of cost
value, and the average of
execution time of EAS, GA and
AGA on different environment
size

Table 7 Comparison of the
average and the variance of cost
value and the average of
execution time of DWA¥*,
Dijkstra and Q-Learning on
different environment size

Environment size Number of execution iterations = 200 Initial Population size = 100

AGA GA in [18] EAS

C Var. T C Var. T C Var. T
100 * 100 65.24  20.12 70.31 69.02 22.89 7344 6133 7.64 49.99
160 * 160 93.44  25.69 100.22 96.91 29.48 103.59 86.23 9.57 52.66
300 * 300 23398 4528 248.02 240.11 51.26 249.27 198.24 1342 170.28

The number of execution iterations was 200. The initial population size was 100. The unit of time is second,
and cost is normalized and thus is without unit

Environment size ~ DWA¥* Dijkstra Q-Learning

C Var. T C Var. T C Var. T
100 * 100 62.52 0 51.24 59.04 0 60.95 64.27 1241  62.13
160 * 160 87.32 0 89.11 85.12 0 120.28  91.29 13.88  106.37
300 * 300 21827 0 197.71 19022 0O 450.23  227.02 27.09 275.61

The number of execution iterations in Q-Learning was 200. The unit of time is second, and cost is normalized
and thus is without unit

Table 8 Comparison of all algorithms with respect to different criteria

Criterion Algorithm
AGA Dijkstra DWA EAS Q-Learning

Execution speed Small Env. Low High Very high Medium Very low

Large Env. Medium Very low High Very high Medium
Cost optimization Small Env. Medium Very good Good Good Medium

Large Env. Medium Very good Good Very good Medium
Variance of solutions Large Zero Zero Small Medium
Memory requirement Small Very large Large Medium Medium
Local optima Susceptible Not susceptible Susceptible Susceptible Susceptible
Initial population Required Not required Not required Required Not required
Environment model Required Required Required Required Not required
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even faster execution time and less memory requirement
compared to A*, but it may perform worse than A* in find-
ing the optimal solution. However, in DWA*, the user can
change the weighting rule in order to make a desirable trade-
off between speed and optimality.

AGA and EAS AGA and ACO perform well even in
large environments. This performance is mainly due to the
large and appropriate initial population. This might be con-
sidered as an undesirable prerequisite of these algorithms
because producing such a population may not always be an
easy task. However, as far as these two algorithms are con-
cerned, ACO performs better with random initialization and
requires less memory space. Moreover, compared to GA,
ACO shows better adaptability in changing environments.
EAS converges even faster than ACO, but because of elitism
policy, it may experience early convergence to local optima.
Hence, properly setting elitism parameter plays an important
role in maintaining a balance between speed and optimality.
EAS also enjoys smoother convergence rate to local optima
compared to ACO and AGA. In comparison with other algo-
rithms, a crucial criterion to notice is the heuristic approach of
these algorithms that necessitates multiple runs to achieve the
best solution. Therefore choosing, from execution time point
of view, between algorithms like Dijkstra’s algorithm and
EAS or AGA is not necessarily an obvious decision because
although Dijkstra’s algorithm is time-consuming, it finds the
global optimum with only one execution, but algorithms like
AGA or EAS which can be executed faster, need to be run
multiple times to find the best solution. However, AGA, ACO
and EAS algorithms naturally enjoy high level of parallelism
and if their codes are developed to suit multi-core proces-
sors like GPUs, significantly faster execution time can be
achieved.

Q-Learning Q-Learning is model-free and interactively
updates its previous experience of the environment. There-
fore, without any modification to the algorithm it can also be
employed in dynamic situation where either the environment
or the robot performance undergo changes through time. Its
drawback, however, is that in large environments, the robot
requires considerable amount of time interacting with the
environment. In addition, making a trade-off between explo-
ration and exploitation is always a challenging decision in
this algorithm when e-greedy strategy is used. However, by
employing VDBE strategy, a fair trade-off between exploita-
tion and exploration can be achieved. In addition, compared
to e-greedy strategy, higher reward, more stability, more
robustness and faster convergence can been achieved.

10 Conclusion

In this paper, first a novel self-reconfigurable modular robot
called ACMoD was introduced. The path planning problem
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of such a robotic system, with emphasis on its capability
to reconfigure automatically, through an environment com-
prised of various terrains was defined. Then a multi criteria
objective function containing energy and time terms for both
traversal and reconfiguration was suggested, and five dif-
ferent algorithms including AGA, Dijkstra, DWA*, EAS
and Q-Learning were proposed to optimize that objective
function. It was shown that the path planning problem of
SRMRs can be simplified and mapped to well-known opti-
mization algorithms, though with some customizations in
each algorithm. Simulations were conducted to compare the
algorithms with respect to the quality of their solutions and
their execution time. Simulations revealed that the size of
the environment greatly affects algorithms execution time. A
choice among different algorithms is not an obvious decision,
rather it is application dependent. Some algorithms like EAS
and AGA require environment model as well as initial popu-
lation generation. Only Dijkstra can find the optimal solution,
but it is time-consuming in large environments. DWA* has
acceptable performance in all environment size. Q-Learning
is the only algorithm that does not require environment
model, but in large environment, the training phase becomes
time-consuming. Eventually, a comprehensive comparison
was drawn which helps a user in choosing among different
algorithms based on desirable criteria.
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