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Abstract In this paper a Non-Monotonic Knowledge-Base
(KB) for practical applications in service robots is presented.
The KB is defined as a conceptual hierarchy with inheritance
that supports the expression of defaults and exceptions. All
classes and individuals, with their properties and relations,
can be updated dynamically and the KB-System supports
non-monotonic behavior. Non-monotonicity is handled on
the basis of a specificity criteria, such thatmore specific prop-
erties and relations have precedence over more general ones.
The system supports the expression of conceptual (or termi-
nological) and factual (or assertional) knowledge, which are
used in inference in a coherent and consistent way. The KB-
System is embedded within the IOCA Architecture, where
knowledge about how to communicate and interact with the
world, and also knowledge of the particular interpretation
situation are represented. The cognitive architecture is struc-
tured around a main communication cycle, and queries and
conceptual inferences are performed on demand during the
interaction of the robot with other agents or the world. The
overall structure of the KB with its main interpreter and sup-
porting utilities aswell as the embedding of theKB-system in
the robot’s architecture are also presented. The KB-System
is illustrated with a case study in service robots scenarios,
where a practical non-monotonic KB is required. Finally, the
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1 Knowledge representation in service robots

1.1 Conceptual hierarchies and terminological
knowledge

Service robots need to deploy different kinds of knowledge
and perform inferences in order to assist people in daily life
chores successfully. One kind is conceptual knowledge, like
natural taxonomies, which is commonly expressed through
conceptual or class hierarchies. This knowledge structure
consists of a partition of the set of objects in the universe
of discourse (i.e., the top class) into a number of mutually
exclusive subsets or more specific classes, which in turn can
be partitioned into a further more specific classes and so on.
Individuals of classes can have a number of properties and
stand in a number of relations with individuals of the same
or other classes. For instance, eagles are birds, penguins are
birds, birds are animals and fish are animals are branches of
a class hierarchy, and fly and eat are the names of a prop-
erty of birds and a relation standing between eagles and fish,
respectively (i.e., birds fly and eagles eat fish). In this knowl-
edge structure, subordinated classes inherit the properties and
relations of their superordinates classes, allowing conceptual
inferences, like eagles are animals, eagles fly and some ani-
mals eat fish.

Conceptual hierarchies may be defined in terms of general
concepts or classes only, but they can also include specific
individuals, with their particular properties and relations; for
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instance, it can be stated that Pete is a large eagle and Arthur
a clever penguin, and that Pete and Arthur are not friends. In
this case, properties and relations are determinate and hold
only for the individuals involved. Individuals stand in a set
membership relation with the classes they belong to, and, in
addition to their particular properties and relations, inherit
all properties and relations of their superordinate classes.

Conceptual hierarchies may represent complete or incom-
plete knowledge, depending on the interpretation conven-
tions. The case of complete knowledge is exemplified by
the so-called Closed-World Assumption, used in Prolog and
many other representational systems; under this assumption
the known facts and relations about the domain are rep-
resented in the KB, and if something is not represented
explicitly it is simply because it is false. Under this interpre-
tation, for instance, the question of whether fish eat animals
in relation to the taxonomy above would be answered no;
although this assumption is useful in many settings, it is
nevertheless a limitation of the expressive power of the rep-
resentation system which can yield false inferences, as in the
present case. However, if the taxonomy is interpreted under
the assumption that the knowledge expressed is incomplete,
the answer to the samequestionwould be that the systemdoes
not know,whichwould be the correct answer. Conversely, the
expression of incomplete knowledge requires the capability
to express that something is false; for this the not operator
is required, and a system with such expressive power should
be able to answer both no and I don’t know.

The statement of properties and relations of the conceptual
classes in a taxonomy corresponds implicitly to the expres-
sion of a set of definitions, and a taxonomy corresponds to a
dictionary with possibly more than one entry for every class;
for this reason this kind of knowledge is often referred to as
“terminological”. For instance, the taxonomy above grants
the definitions eagles are carnivorous birds or eagles are
birds that eat fish, among a set, possibly large, of definitions
for all classes, including alternative less specific definitions
for the same class.

Terminological knowledge is very stable and is shared by
a linguistic community as reflected in common dictionaries,
and this body of knowledge consists of the things that one
knows or can conclude from the knowledge of the language
only or in relation to a given conceptual structure. Termi-
nological knowledge resembles also the kind of information
stored in semantic networks (e.g. [2]) and more generally
in semantic memory [45]. For all these reasons, this kind of
knowledge is kept in a modular structure in the KB, which
has been called the T-Box since the KL-ONE system [5], and
the distinction is kept to the date in description logics [3].

Conceptual hierarchies with classes and instances are
commonly expressed in object-based programming lan-
guages like Java, C++ and related paradigms, that support
inheritance, but these approaches adopt the closed-world

assumption implicitly and cannot express incomplete infor-
mation, depend on the interpretation strategy and have a
very limited inferential power; in addition, the KB needs
to be compiled in advance and cannot be updated easily. For
these reasons KB-Systems that overcome these limitations
are required for supporting inference in intelligent service
robots.

1.2 Non-monotonic inference and the principle of
specificity

Although conceptual knowledge is very stable and readily
accessible on demand, the expression of defaults and excep-
tions make conceptual inferences defeasible, and hence its
representational system needs to be non-monotonic [40]. For
instance, using Reiter’s classic example [33], if we learn that
penguins do not fly, and state such negative property in the
conceptual hierarchy, the question ofwhether birds fly should
be answered yes butwhether penguins fly should be answered
no, despite that penguins are birds. The non-monotonicity of
the taxonomy translates into the terminological knowledge,
and dictionary entries become contradictory, and dictionar-
ies become inconsistent. For instance, the entry birds are
animals that fly is inconsistent with the entry penguins are
birds that do not fly.

In the present paper, we introduce a simple and intu-
itive mechanism which is capable of dealing with non-
monotonicity in conceptual hierarchies expressing incom-
plete knowledge. This mechanism is based on the principle
of specificity as follows: in case of conflict between the con-
tents of a knowledge structure, more specific knowledge has
precedence or supersedes less specific or more general one
[40]. In the current example, birds fly but penguins do not,
and as penguins is a more specific class than birds, its neg-
ative property has precedence in the interpretation, and the
question of whether penguins fly is answered no. As can be
seen the more general or less specific property is the default
and the more specific one is the exception; however, defaults
can have a negative nature and exceptions a positive one. For
instance, if we extend our example with the classes mam-
mals and platypus, and state the properties that mammals do
not lay eggs but platypus do, the default is the negative and
the exception the positive. We also consider that particular
individuals are more specific to the classes they belong to
(i.e., the set membership relation is more specific than the
subset relation), and the principle of specificity also holds
for particular individuals with their properties and relations.
So, following with the example above Pete, the eagle, flies,
but Arthur, the penguin, does not.

The principle of specificity is illustrated with the concep-
tual hierarchy of our current example in Fig. 1, where the
defaults and exceptions with both positive and negative char-
acter can be appreciated directly. In this diagram, classes are
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Fig. 1 Class hierarchy with defaults and exceptions

represented by ovals and particular instances by dots within
their most specific classes pointing to squares holding the
information of the corresponding specific objects. The sym-
bol => relates a property or a relation of the corresponding
class or individual with its value (e.g., eagles eat fish, size of
Pete is large, Pete is not a friend of Arthur), where the value
can be underspecified, like the color of penguins which is left
undetermined.

In the present KB-System, the principle of specificity is
used under the presupposition that the conceptual hierarchy
expresses incomplete knowledge, and the KB can be modi-
fied by extending, changing or eliminating classes, properties
and relations dynamically, and the interpretation renders,
nevertheless, the right conceptual inferences. The principle
of specificity is also independent of the interpretation strat-
egy, and both top-down and bottom-up interpreters of the
conceptual hierarchy that use this principle can be built, as
discussed in Sect. 3.2.

The representation of non-monotonic knowledge and
performing non-monotonic inference are very important
problems in AI, and there is a very large body of litera-
ture on the subject, since the so-called Truth-Maintenance
Systems or TMS [10], including the tradition of default
and non-monotonic logics started by Reiter [33] and, more
recently, Answer Set Programming [6], but the application
of this body of work to service robots is still limited, as
discussed in Sect. 2. Object-based programming languages
and related paradigms use an implicit specificity criteria to

resolve defaults and exceptions too, but these approaches
have strong limitations for representation and inference, as
discussed above.

1.3 Factual or assertional knowledge

Service robots need also represent factual knowledge about
specific scenes in the world, consisting of a set of concrete
individuals, with their properties and relations, including
states, events and processes,whichmay extend through space
and time. This kind of knowledge is often referred to as asser-
tional, alluding to the kind of speech acts through which
statements about the world are expressed and interpreted in
spoken conversation.

For instance, Pete in front of Arthur, who is sitting on an
ice cube, is a concrete scene or state of the world at a par-
ticular point in time. The scene can undergo events, like the
penguin standing up, or processes, like the penguin running
and the eagle chasing it, and the representation of these events
and processes constitutes factual knowledge too. If we also
learn that Arthur throw a stone to Pete and broke his wing, so
Arthur fell to the ground, the knowledge of such action, event
and process, with their causal and temporal relations, con-
stitute assertional knowledge as well. Although the present
example may suggest that factual knowledge corresponds to
knowledge acquired by visual perception, the notion is much
more general and corresponds to observational or empirical
knowledge acquired by the different modalities of perception
or other sensory devices, and consists of the facts of arbitrary
problems in arbitrary domains.

Factual knowledge is commonly involved in deliberative
inferences, like diagnosis, decision making, planning and,
more generally, in problem solving. These kinds of infer-
ences are carried on by the application of valid inference
schemes upon factual information and can be construed as a
symbolic search process on a problem space,whose states are
representations of potential states of the world. For all these
reasons, factual or assertional knowledge is commonly stored
in an independent memory module which is often referred
to as the assertional box or A-Box, specially in the tradition
of description logics. Terminological and factual knowledge
are of course related in representation and inference, and the
symbols in the A-Box need to point to or be associated with
the corresponding symbols in the T-Box.

In the KB-system presented in this paper, we take advan-
tage of the capability of the conceptual hierarchy to express
concrete individuals with their corresponding properties and
relations for all classes, in conjunction with the specificity
of set membership (between individuals and classes) and the
subset relation (between classes), for the expression of asser-
tional knowledge, as illustrated by the eagle and the penguin
story. Spatial scenes can be represented explicitly by stat-
ing the concrete spatial properties and relations of concrete
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objects in relation to the robot. In this way, the demarcation
between the T-Box and the A-Box is a matter of the degree
of specificity from the abstract to the concrete. Also, as the
concrete objects are more specific than their classes, their
particular properties and relations become exceptions that
take precedence over defaults, and the specificity principle
handles factual and terminological knowledge in a simple
and coherent way.

1.4 The interaction-oriented cognitive architecture

The KB-system presented in this paper supports the func-
tionality described above and is implemented as a module
or service of the IOCA cognitive architecture, that we have
developed in the context of the Golem project [30,31]. This
architecture is illustrated in Fig. 2.

The architecture has three main functional levels, that we
call reactive, perceptual and representational or deliberative
from the bottom to the top. The bottom level involves the
recognition devices (e.g., the visual object recognition sys-
tem, the speech recognition system, etc.), the autonomous
reactive agent for each modality, and the rendering devices
which are also modality specific. The middle level involves
the perceptual interpretation processes on the input side, and
the specification of the external actions on the output. The
top-level is constituted by the interpreter of the SitLog pro-
gramming language [32] for the definition of the dialogue
models, through which the context, interaction and commu-

Fig. 2 KB and the interaction-oriented cognitive architecture

nication knowledge is expressed; this language is also used to
define and interpret the services of the KB-System as well as
the deliberative inferential resources, like diagnosis, decision
making and planning systems, which are used opportunis-
tically during the main flow of the communication cycle,
although the details of these latter systems are beyond the
scope of the present paper.

2 Related work

In this section, we summarize some related work on knowl-
edge bases for service robots; see [21] for a thorough review
on the topic. Knowledge in service robots can be acquired
either manually before the execution of the task, dynami-
cally through interaction with people and the environment
or by making inferences from the available knowledge and
the current context. In service robotics there has been a
considerable amount of work on knowledge acquisition
from the interaction with humans (e.g. through natural lan-
guage [20,23,24,35], multimedia interaction [7,23]) and the
robot’s environment (e.g. locations [20,34], people’s loca-
tion [19,41], objects [1]).Another important bodyof research
has been devoted to finding ways of integrating declarative
domainknowledge andprobabilistic reasoning (e.g. [36,46]).
The use of fuzzy knowledge bases have been also widely
investigated in other areas of robotics such as navigation and
control [15,17,28,29,38].

To the best of our knowledge, most of the proposed
systems for knowledge representation and reasoning in ser-
vice robots are monotonic, including logic oriented systems,
and, in particular Description Logic (e.g. [12,22,43]). Other
approaches use a combination of monotonic logic for con-
ceptual inferences although allow non-monotonic behavior
in deliberative inference, for instance, for spatial reason-
ing (e.g. [25]). Among the most popular instances of these
is KnowRob [42,43], which is written in Prolog and uses
the Web Ontology Language (OWL) (based on Description
Logic). The KnowRob system allows the specification of dif-
ferent knowledge types, includes various inference schemes
and knowledge acquisition and grounding methods and pro-
vides close integration with control programs. KnowRob
has been widely used in different complex service robot
tasks such as helping set a breakfast table [27], manipulating
tools [4], performing actions cooperatively [11] and semantic
mapping [44]. Another popular instance is the OpenRobots
Ontology [22], written in Java and also built on the OWL,
which has been used for different tasks such as object learn-
ing [18] and interactive object manipulation [39].

For non-monotonic systems, on its part, Answer Set Pro-
gramming (ASP) (e.g. [8,47]) is perhaps the most popular
approach. A representative instance of its use in non-
monotonic knowledge representation and reasoning is Ke
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Jia’s robot task planning system [8,9] built on the Causal
Calculator [14], which implements a type of non-monotonic
causal logic (a form of ASP). The task planning system has
also been equipped with a mechanism to take advantage
of open-knowledge [9] and has been demonstrated in the
RoboCup@Home competition where it is coupled with nat-
ural language processing, motion planning and robot control.
In semanticmapping, the frame-based languageLOOM[26],
which is capable of non-monotonic reasoning, has been used
for representing semantic knowledge and integrating it with
spatial knowledge [13]. The semantic maps produced by this
system have been further exploited for task planning in ser-
vice robots applications. Some non-monotonic OWL-DL (a
sublanguage of OWL) reasoners have been also integrated in
service robots systems and exploited for learning anunknown
environment after an incomplete tour [16] and for learning
to make decisions from human demonstrations [37].

The approach described in this paper represents knowl-
edge by maintaining an explicit ontology and supporting
conceptual inferences with clear regimented classes, individ-
uals, properties and relations, resembling description logics;
however, as opposed to most of these approaches, the present
KB-system enables non-monotonic reasoning via a simple
and efficient computational mechanism based on the princi-
ple of specificity, integrates the expression of complete and
incomplete knowledge in a simple and transparent way, and
supports questions and updates of both terminological and
assertional or factual knowledge along the execution of the
task and the interaction with the user in real-time, offering
a very good compromise between efficiency and expressive-
ness for KB-Systems in service robots.

3 Structure and functionality of the KB-system

3.1 Structure of the knowledge-base

In this section we present the structure and interpretation
of the KB and survey its supporting utilities. The main KB
object is the class such that every class is represented through
a standard Prolog’s predicate with six arguments, as follows:

class(Name, Mother, Props, Rels,
Instances)

where Name and Mother are the identifiers (i.e., constants
or atoms) of the corresponding objects, and Props, Rels

and Instances are lists, possibly empty, with one entry
for each property, relation or instance of the class. There is
a most general class (i.e., the top) whose mother is none and
the list of descendants of the more specific classes is empty.
The KB itself is a list of classes and all types of objects (i.e.,
classes, properties, relations and instances) are independent
of the order in which they are declared, and although they
are represented as Prolog lists, they are interpreted as bags.
Hence, all these objects can be easily consulted and updated
at any level of granularity, and there is a set of utilities to
handle all list operations on the KB. The full Prolog code for
all the KB-Services is available at http://golem.iimas.unam.
mx/lightkb.

Properties and relations are named with positive or
negative atoms (e.g., constant and not(constant)
respectively), and terms are of the form atom, attribute
=> value or not(attribute => value), where
value is a positive atom or a list of atoms, predicates or
attribute value structures, and the operator => states a relation
between an attribute and its value, where the value can also
be underspecified, as discussed above in relation to Fig. 1.

Each individual is represented through a list with three
elements: the individual’s name or list of names, the list of
its specific or concrete properties and the list of its concrete
relations with other individuals (i.e., [Id, Props, Rels]),
whereId is an attribute value pair of the form id => Name
and Name is the actual name of the corresponding individual
or a list with the alternative names of such an individual. This
value can also be underspecified and the system supports the
representation of anonymous individuals.

In this notation the properties and relations are specified in
relation to the class or the individual having them, and the =>
operator is interpreted within the scope of the corresponding
class or individual, so eat => fish within the scope of
the class of eagles is interpreted as eagles eat fish, and size
=> large and not(friend => arthur) within the
scope of Pete are interpreted as Pete is large and Pete is not
a friend of Arthur respectively. The notation also permits the
underspecification of the object of relations, when these are
indeterminate; for instance, the atom eat can be included in
the list of relations of eagles, and interpreted as stating that
all eagles stand in an eating relation with individuals of an
unspecified class, although the relation can also be reified as
a property, and included in the corresponding list, meaning
that eagles have the property of eating. For instance, the class
hierarchy depicted in Fig. 1 is represented in Listing 1.
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class(top, none, [], [], []).
class(animals, top, [], [], []).
class(birds, animals, [fly], [], []).
class(fish, animals, [], [],[]).
class(mammals, animals, [not(lay-eggs)], [], []).
class(eagles, birds, [carnivorous], [eat=>fish], [[id=>pete, [size=>large],

[not(friend=>arthur)]]]).
class(penguin, birds, [not(fly), color=>_], [], [[id=>arthur, [clever], [not(friend=>pete)]]]).
class(platypus, mammals, [lay-eggs], [], []).

Listing 1: Representation of Terminological and Factual Knowledge

The conceptual hierarchy can be extended for the explicit
representation of states, processes, actions carried on by
intentional agentes, and natural events occurring in theworld.
These conceptual objects can be included as classes in the
taxonomy. Classes have the same structure as before and
are interpreted by the same KB-Services exactly. The only
extension is that we add a compulsory attribute in the list
of properties of particular instances of these classes, whose
value is a list of grounded predicates with the actual descrip-
tion of the particular state, process, action or event, from the
point of view of the external observer (i.e., description
=> List_of_Predicates). The list of relations of the
instances of these classes, on its part, includes only tempo-
ral and causal relations between states, processes and events
that can be used formodeling temporal and causal inferences,
although the description of such functionality is beyond the
scope of the present paper. These additions are illustrated
with the descriptions of the states, processes, actions and
events of the eagle and the penguin story in Listing 2.

class(top, none, [], [], []).
class(states, top, [], [], [[id=>s1, [description=>[in_front(pete, arthur),

has_broken_wing(pete),
sitting_on(arthur, ’ice cube’)]],
[after=>p2]]]).

class(processes, top, [], [], [[id=>p1, [description=>[flying(pete)]], []],
[id=>p2, [description=>[falling(pete)]], []],
[id=>p3, [description=>[chasing(pete, arthur), running(pete),

running(arthur), behind(pete, arthur)]],
[after=>a2]]]).

class(actions, top, [], [], [[id=>a1, [description=>[throws(arthur, stone)]],
[during=>p1, cause=>e1]],

[id=>a2, [description=>[stands(arthur)]],
[after=>s1]]]).

class(events, top, [], [], [[id=>e1,[description=>[hit(stone,wing),part-of(wing,pete)]],
[after=>a1,cause=>p2]]]).

Listing 2: Representation of States, Processes, Actions and Events

3.2 Basic KB-system services and conceptual inferences

Conceptual inferences are supported by six main services
provided by the KB, as follows:

1. class_extension: it provides the extension of a referent
class under the closure of the inheritance relation. In par-
ticular, class-extension(top, Extension)
returns the whole set of individuals in the KB.

2. property_extension: it provides the extension of a refer-
ent property under the closure of the inheritance rela-
tion; this is, property-extension(property,
Extension) returns the whole set of individuals that
have such property in the KB.

3. relation_extension: it provides the extension of a refer-
ent relation under the closure of the inheritance rela-
tion. This is, relation-extension(relation,
Extension) returns the whole set of individuals that
stand as subjects in such relation in the KB.
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4. classes_of : it provides the whole set of classes including
the referent class or individual, under the closure of the
inheritance relation.

5. properties_of : it provides the whole set of properties that
the referent class or individual has under the closure of
the inheritance relation.

6. relations_of : it provides the whole set of relations in
which the referent class or individual stands as subject
under the closure of the inheritance relation.

These services are implemented as Prolog predicates with
one input and one output arguments: the reference class,
property or relation, and the list with the corresponding
extension respectively or the corresponding set of classes,
properties or relations. With this set of services it is possible
to compute the set of classes or individuals, properties and
relations that satisfy an arbitrary description or condition,
which can be programmed as standard Prolog’s predicates
directly, and defined as a user function within the SitLog’s
environment. As was mentioned, the KB is fully declarative
and all these services have a top-down and a bottom-up pro-
cedure which produce exactly the same result, and can be
used indistinctly by the user or the application, although the
bottom-up is usually more efficient.

The principle of specificity is implemented by building a
list of classes, properties or relations of the referenced indi-
vidual instances making sure that more specific objects are
placed in front of the list, and when the KB is queried the
object closest to the beginning of the list is selected. In the
top-down procedure, the less specific objects are placed at
the end of the list along the inspection of the conceptual hier-
archy, and, conversely, in the bottom-up procedure, the more
specific objects are placed at the front of the list during the
traversal of the tree. Although a property or a relation can
have more than one value within the list, possibly different,
the selected value will be the right one at the current state
of the KB. The specification of the representational struc-
ture and the full code in Prolog of both the top-down and
the bottom-up interpreters and supporting utilities, which are
also fully coded in Prolog, are also available at http://golem.
iimas.unam.mx/lightkb.

Standard queries involving conceptual inferences are
implemented with the six predicates in conjunction with
standard Prolog programs, taking into account that the KB
expresses incomplete information. These programs need to
consider that both properties or their negation can be included
in theKB, and also that queries can be phrased in positive and
negative terms; so, querying whether eagles fly and penguins
do not fly should be answered yes, and queryingwhether pen-
guins fly and eagles do not fly should be answered no.

The procedure takes into account whether the queried
property is positive or negative. For the positive case, it needs
to be verified that the property is included in the list of proper-
ties of the class, or that its negation is included in such list, so
the answer can be affirmative or negative in the strong sense.
Conversely, if the question is phrased in negative terms, it has
to be checked out that such negative property is in the class,
so the answer is yes, or that the non-negated property is in
the class, and the answer is no. If neither the property or its
negation, for both positive or negative atoms, are included in
the list, or the list of properties of the class is empty, the infor-
mation is incomplete and the system answers unknown. For
instance, if the question is whether penguins are carnivorous
the answer is that the systemdoes not know.ThePrologpredi-
cateshas_property and has_relation that check the
corresponding condition are given directly in Listing 3. The
predicate incomplete_information verifies the four
possible conditions, or whether the list of properties or rela-
tions is empty, and check_front_atom inspects the list
from the front to the back to verifywhether the atom (positive
or negative) is included, and fails otherwise. In addition to the
services available for classes, similar services are defined for
asking whether a concrete individual has a property or stands
in a concrete relation with another individual.

3.3 Multiple extensions and preferences

Non-monotonic reasoning systems face also the problem
that default rules that can be potentially contradictory. For
instance, suppose that it is asserted in the KB that the place of
birth of penguins is the same as its predators, the eagles, and,
at the same time, that penguins live where they were born.
Then, if it is asserted that the birth place of Pete, the eagle,
is Patagonia, then it follows that Patagonia is also where
Arthur, the penguin, lives. However, suppose that Arthur is
captured andmoved to SanDiego’s Zoo, and this information
is asserted in the KB. Then, it follows that Arthur lives both
in Patagonia and in San Diego’s Zoo. Suppose further that it
is also stated that predators live where their preys live. Then,
it would follow that Pete lives in San Diego’s Zoo too! Fur-
thermore, suppose that the constraint that the place where
a particular individual lives must be only one is somehow
added in the KB. Hence, the KB becomes inconsistent.

The present KB-system can be easily extended to express
inferential default rules but the principle of specificity cannot
handle these kinds of scenarios appropriately when conflict-
ing defaults are expressed, and rendering the right result in a
particular inference involving this kind of situation is a very
hard logical problem.
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has_property(Class, Property, Answer) :-
properties_of(Class, Properties),
incomplete_information(Property, Properties, Answer).

has_relation(Class, Relation, Answer) :-
relations_of(Class, Relations),
incomplete_information(Relation, Relations, Answer).

% The class has no properties or relations
incomplete_information(Atom, [], unknown).

% The atom is positive or negative
incomplete_information(Atom, List, yes) :- check_front_atom(Atom, List).

% The atom is negative
incomplete_information(not(Atom), List, no) :- check_front_atom(Atom, List).

% The atom is positive
incomplete_information(Atom, List, no) :- check_front_atom(not(Atom), List).

% The list contains neither the atom nor its negation
incomplete_information(_, _ , unknown).

Listing 3: Interpretation of the KB with Incomplete Information

However, this kind of rules aremuchweaker than standard
defaults, like all birds fly, that are based on ontological facts,
and for that reason can be handled as preferences rather than
as properties and relations. For instance, a list of preferences,
including such weaker defaults with an associated weight, in
addition to the lists or properties and relations of classes and
individuals, can be included in the structure of the KB, such
that the defaultswith the highestweight are placed at the front
in the extension of properties and relations lists, of classes
and individuals, at each particular state of the KB. However,
such functionality is left for further research.

3.4 Conceptual hierarchies versus lattice or
multi-hierarchies

The KB-System described in this section supports a strict
hierarchy of classes, but at the same time has the expres-
sive power corresponding to a lattice structure or a multi-
hierarchy although with a much simpler and transparent
semantics and a very reasonable computational cost. This is
achieved by adopting a modeling constraint such that classes
are defined solely on the basis of ontological criteria, a par-
ticular interpretation perspective and a naming convention,
as opposed to sets or “classes” defined on the basis of a par-
ticular property or relation that all individuals of the set have
necessarily.

For instance, if the set of individuals “having-lungs” were
introduced in our example in Fig. 1 as a “class” dominated
by top and dominating mammals and birds (i.e., a sister of
“animals”), the structure would be a lattice instead of a hier-

archy. Then if it is asserted in such KB that animals cannot
sing while the members of class “having-lungs” can, then
birds and mammals would inherit such artistic property and
its negation, and the system would become inconsistent for
this additional reason.

Reasoning about this kind of structures requires to enrich
the inferential machinery with a preference mechanism to
resolve the inconsistencies for this additional reason,with the
corresponding increase in the complexity of the semantics
and the computational cost. Otherwise, there is no way to
guarantee that the system is consistent with large potential
interpretation and computational problems.

However, in the present framework properties and rela-
tions “hang” from classes in the whole of the hierarchy, and
the same property or relation can hold of any class with-
out structural implications. For instance, following up with
our example, it can be stated directly in the taxonomy in
Fig. 1 that animals do sing as a default but fish do not as an
exception, preserving the strict hierarchy with a simple and
clear interpretation. For this, the present approach shows a
very good compromise between its structural properties and
expressive power on the one hand, and its transparent seman-
tics and computational properties on the other.

Nevertheless, it has to be taken into account that a com-
prehensive view of the world may involve partitioning the
domain in different forms at the same time, like parallel
copies of the universe of discourse, each defining a particular
conceptual hierarchy, and representing and reasoning about
such knowledge in an integrated and systematic way would
indeed require a lattice structure, but such study is beyond
the scope of the present paper.
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Fig. 3 A diagram of how the environment is setup

4 The KB-system in the robot Golem-III

4.1 An application of service robots using the KB

Todemonstrate the applicability of the proposedKB,we have
implemented and tested its full functionality in our service
robot Golem-III. For this the scenario shown in Fig. 3, where
the robot acts as a shop clerk that brings the objects a user
asks for from their respective shelves, was setup.

To carry out the demonstration, semantic mapping is
required. For the purpose of navigation, two locations are
labeled and their coordinates are stored in the knowledge
base: (1) a starting position, where the customer interaction
takes place; and (2) a shelf, where all the products are stored
and can be manipulated by Golem-III. The semantic map-
ping and the code used to describe it are shown in Fig. 4
and Listing 4, respectively. It is important to note that we

Fig. 4 The semantic mapping of the scenario

defined a location class for each location (one for storage
and another for human interaction) to be able to add more
locations in each class in a future version of this application,
since the KB is able to provide such flexibility. In addition,
the starting position has an additional height property that can
be used so that Golem-III delivers objects at an appropriate
height.

TheKB thatGolem-III has at the start of the demonstration
and its corresponding code are shown in Fig. 5 and Listing 5,
respectively. The top node is the same shown in Listing 4
as the two pieces of code are parts of the same KB, so it
is specified only once. This class hierarchy is similar to the
one presented in Fig. 1, as to show how such structure can
be useful in a typical service robotics task. A video showing
the full demonstration as well as the full source code can be
accessed at http://golem.iimas.unam.mx/lightkb.

% Defining the class tree, and the location class
class(top,none,[],[],[]),
class(entity, top, [], [], []),
class(location, entity, [], [], []),

% Defining a class of locations for storage
% and in it, the shelf location
class(storage, location, [], [], [[id => shelf,[coordinate=>[0,1.30,0]],[]]]),

% Defining a class of locations for human interaction
% and in it, the starting_position location
class(interaction, location, [], [], [

[id => starting_position,[coordinate=>[0.5,0,0],height=>80.0],[]],
])

Listing 4: Code for the Semantic Mapping for the Scenario.
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Fig. 5 The knowledge base used in the demonstration

This demo was presented life as the Open Challenge test
of the Golem team in the @Home competition at RoboCup
Leipzig 20161, obtaining the second highest score in such
test.

In the start of the demonstration, there is an initial inter-
action where the user asks for several objects:

– Cereal: It is not in inventory, so Golem-III cannot bring
it.

– Toilet paper: It is not in the KB, so Golem-III responds
that it does not have enough information about it.

1 http://www.robocup2016.org/en/

– Beer: In this case is Heineken, but it has the restriction
that it can only be sold to 18-year-olds or older, which
the user is not.

– An non-alcoholic beverage: In this case it is a coke,
which Golem can deliver.

Once Golem-III reaches the shelf to grab the coke, it also
recognizes that: (1) there is cereal in the inventory, and (2) the
cream is tipped over, making it non-graspable, and updates
these facts in the KB. Thus, once Golem-III comes back to
the user, it announces that there is cereal in the inventory and
asks if the user wants the robot to bring it.

The user at a later point also asks for a diary product that
is on sale. All comestibles are not on sale, which is a negative
default, but cream is an exception. The graspable property on
its part is a default for all objects under the comestible tree,
however, when an object is observed as not being graspable
(as is the case of the cream in the scenario described), the
not(graspable) property can be asserted of such particular
object, and, thus, provide a much fuller description of its
inventory.

The not operator, used to state negative defaults like
not(on_sale) or negative properties of specific objects, is
interpreted in the strong sense: that the referred objects do not
have the corresponding property or do not stand in a negated
relation. This contrast with the weak sense of the negation in
which the system replies nowhenever it does not really know.
For instance, when being asked if there was any toilet paper,
an object not in the KB, the answer based on the close-world
assumption would be that there is not, which may be false
in case a human clerk would have added it into the inven-
tory without Golem-III being notified. In this case, because
of the nature of the KB, Golem-III is able to provide a more
grounded answer: it does not have enough information.

%Defining the comestible class
class(comestible, top,[graspable,not(on_sale)],[],[]),

%Defining the food branch
class(food, comestible,[],[],[]),
class(cereal, food,[inv=>0],[],[[id => c1,[brand=>kellogs],[]]]),

%Defining the drinks branch
class(drink, comestible, [age=>all],[],[]),
class(soda, drink,[inv=>1],[],[[id => s1,[brand=>coke],[]]]),
class(beer, drink,[age=>18,inv=>1],[],[[id => b1,[brand=>heineken],[]]]),

%Defining the dairy branch
class(dairy, comestible,[inv=>1],[],[[id => d1,[brand=>cream,on_sale],[]]])

Listing 5: Code describing the object class hierarchy from Figure 5.
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As it can be seen, the flexibility the KB provides is an
important asset for the description of the scenario, in both
the objects in the inventory as well as its surroundings. The
properties shown here (of both locations and objects) were
only an example of what can be stored in the KB, of which
there is no limitation. In fact, everything relevant to the task
cannot only be stored in the KB, but can be accessed and
modified as the task is being carried out. This accounts for an
important accomplishment in the interactionwith the human.

4.2 The robot Golem-III

The robot Golem-III is shown in Fig. 6. Its lower half, which
houses the hardware used for navigational purposes, is an
Adept MobileRobot’s Research PatrolBot robotic base. Its
upper half, which houses the rest of its hardware, is an in-
house-built robotic torso. In Table 1, a brief summary is
presented of its hardware and the software libraries used.

5 Discussion

In this paper a light KB-System for service robots, with its
associated inferential machinery has been presented. Termi-
nological and factual knowledge is represented through strict
class hierarchies with their corresponding individuals, but a
propositional or logical representation is used for express-
ing properties and relations, with a very good compromise

Fig. 6 The Golem-III service robot

Table 1 Software libraries and hardware used by the Golem-III mod-
ules

Module Hardware Software libraries

Dialogue manager – SitLog

Vision Microsoft Kinect 2,
Point Grey Flea
Camera

MOPED, Kinect for
Windows SDK

Navigation Adept MobileRobot
Research PatrolBot

OpenSLAM, AMCL,
Trajectory Rollout,
Dynamic Window

Speech recognition RODE VideoMic Windows Speech API

Speech synthesis Infinity 3.5-Inch
Two-Way Speaker

Windows Speech API

Robot audition 8SoundsUSB JACK

Object manipulation In-house Built Robotic
Torso, Arms and
Grippers

Dynamixel RoboPlus

Camera/Mic.
movement

In-house Built Robotic
Neck

Dynamixel RoboPlus

between expressivity and effective computation. Like first
order logic and description logics, the present formalism per-
mits the expression of incomplete information and supports
the expression of strong and weak negation, and like default
logics permits the expression of defaults and exceptions, in
a coherent, natural and simple way. Also, like conceptual
hierarchies and semantic networks, the present KB-System
supports conceptual inference through the graph connectivity
very efficiently. However, instead of using conceptual lattices
or multi-hierarchies, that need to add preferences to handle
inconsistencies due to inheritance through different paths,
the present approach transfers such expressive burden to the
propositional representation of properties and relations of
all classes and individuals. For this, the present approach
exhibits a very good trade-off between propositional and
graphical formalisms for representing knowledge.

Service robots require a cognitive architecture that uses
different kinds of knowledge. The present approach, imple-
mented in the IOCA architecture, has a main communication
cycle characterized by speech act protocols that use oppor-
tunistically the terminological and factual knowledge. These
protocols, specified with the SitLog programming language,
define an explicit task structure, which in turn consists on
the situations that the robots visits along the interaction with
the user. Perceptual and action algorithms enabling the robot
behavior are contextualized in relation to situations, simpli-
fying greatly the interpretation and grounding of external
information. Conceptual knowledge and inference are best
thought of as modular resources that can be used on demand
according to the context. In particular, ontologies represent-
ing knowledge of particular domains are powerful resources
to support the robot’s flexible behavior.
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