
Intel Serv Robotics (2016) 9:1–29
DOI 10.1007/s11370-015-0187-9

ORIGINAL RESEARCH PAPER

A tutorial on task-parameterized movement learning and retrieval

Sylvain Calinon1

Received: 5 May 2015 / Accepted: 7 September 2015 / Published online: 26 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Task-parameterizedmodels ofmovements aimat
automatically adaptingmovements to new situations encoun-
tered by a robot. The task parameters can, for example,
take the form of positions of objects in the environment or
landmark points that the robot should pass through. This tuto-
rial aims at reviewing existing approaches for task-adaptive
motion encoding. It then narrows down the scope to the spe-
cial case of task parameters that take the form of frames of
reference, coordinate systems or basis functions, which are
most commonly encountered in service robotics. Each sec-
tion of the paper is accompanied by source codes designed
as simple didactic examples implemented in Matlab with a
full compatibility with GNU Octave, closely following the
notation and equations of the article. It also presents ongo-
ing work and further challenges that remain to be addressed,
with examples provided in simulation and on a real robot
(transfer of manipulation behaviors to the Baxter bimanual
robot). The repository for the accompanying source codes is
available at http://www.idiap.ch/software/pbdlib/.

Keywords Probabilistic motion encoding ·
Task-parameterized movements · Task-adaptive models ·
Natural motion synthesis

This work was in part supported by the DexROV Project through the
EC Horizon 2020 programme (Grant #635491).

B Sylvain Calinon
sylvain.calinon@idiap.ch

1 Idiap Research Institute, Martigny, Switzerland

1 Introduction

In contrast to industrial robots in large factories, a wide
range of service robots are designed to move in uncon-
strained environments in which they should fulfill a series
of tasks while swiftly reacting to perturbations. The expecta-
tions and promises of service robotics applications are very
challenging and cannot be achieved without joint efforts
from different fields of robotics. This exploitation of vari-
ous methods can hardly be done serially and instead requires
closer interactions between learning, planning and control.
One of the prior requirement to face such challenge is to
design a versatile representation of what the robot should
do (how it should move, which behavior it should follow)
that is compatible with the above techniques and that can
be shared bilaterally. In particular, in continuously chang-
ing environments, the movements of service robots need
to be generated and adapted to the ongoing situation very
quickly.

This tutorial takes the perspective that the challenges of
recognizing, predicting and generating movements can be
achieved within the same encoding strategy. It will show
that simple probabilistic mixture models can be exploited to
model the natural variations in human and robot motions, as
well as to make links between learning, online planning and
optimal control. Gaussian mixture models provide a struc-
ture that is compatible with many robot learning approaches.
It is flexible to the requirements of service robotics, because
the representation can be easily adapted to the application
requirements while preserving the core probabilistic mix-
ture modeling strategy (addition of transition information
in the form of an HMM, subspace clustering with MFA or
MPPCA, etc.). Finally, themodel is not tied to a specific para-
meter estimation technique, which allows the movements to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-015-0187-9&domain=pdf
http://www.idiap.ch/software/pbdlib/

2 Intel Serv Robotics (2016) 9:1–29

be acquired by different interaction modalities and learning
strategies.

The tutorial will focus on task-parameterized Gaussian
mixture model (TP-GMM), by presenting a number of
extensions and ongoing challenges targeting applications in
unconstrained environment.

1.1 Organization of the paper

Section 2 discusses the importance of considering adaptive
models of movements in robotics. It introduces the proposed
approach from a high-level perspective andmotivates it using
a toy example with a single Gaussian.

Section 3 presents the core of the approach by taking
the example of a standard Gaussian mixture model (GMM)
modified as a task-parameterized GMM (TP-GMM). It also
discusses the practical use of regularization terms.

The next four sections present techniques that rely on
the core TP-GMM encoding strategy but that tackle dif-
ferent challenges, by moving progressively from encoding
issues to kinematic and dynamic retrieval of data. Section 4
addresses the challenge of handling high-dimensional data
with subspace clustering extensions of the model. Section 5
discusses the challenge of generating continuous movements
from task-parameterized models. It presents two distinct
approaches based on Gaussian mixture regression (Sect. 5.1)
or trajectory models encoding of dynamic features (Sect.
5.2).

Section 6 then extends the motion synthesis challenge to
the important problem of learning a controller for the robot,
by presenting a minimal intervention control strategy that
can exploit the proposed task parameterized model.

Section 7 gives an overview of more advanced forms of
task parameterization that can be considered, such as con-
straints in different data spaces (e.g., to handle constraints
at joint and end-effector levels simultaneously), as well as
priority and projection constraints.

Finally, Sect. 8 presents comparisons with other task-
adaptive approaches, and Sect. 9 discusses further work.

Each section of the paper is accompanied by source
codes designed as simple didactic examples implemented
inMatlab/GNUOctave. In order to facilitate reading, imple-
mentation details such as estimation update rules have been
gathered at the end of the paper in the form of Appendices.

2 Adaptive models of movements

Task-parameterized models of movements/behaviors refer
to representations that can automatically adapt to a set of
task parameters that can, for example, describe the current
context, situation, state of the environment or state of the
robot configuration. The task parameters refer to the vari-

ables that can be collected by the system and that describe
a situation, such as positions of objects in the environment.
The task parameters can be fixed during an execution trial
or they can vary while the motion is executed. The model
parameters refer to the variables learned by the system,
namely that are stored in memory (the internal representa-
tion of the movement). During reproduction, a new set of
task parameters (description of the present situation) is used
to produce new movements (e.g., adaptation to new posi-
tion of objects after having observed the skill in a different
situation).

Several denominations have been introduced in the liter-
ature to describe these models, such as task-parameterized
[20,64,91] (the denomination used here), parametric [52,
60,102], stylistic [13] or object-centric warping [57]. In
these models, the encoding of skills usually serve several
purposes, including classification, prediction, synthesis and
online adaptation.A taxonomyof task-parameterizedmodels
is presented in [14], with three broad categories, namely

1. approaches employing M models for the M demon-
strations, performed in M different situations, see, e.g.,
[21,29,44,48,51,60,97],

2. approaches employing P models for the P frames of
reference that are possibly relevant for the task, see, e.g.,
[3,25,66], and

3. approaches employing a single model whose parameters
are modulated by task parameters, see, e.g., [43,52,71,
72,80,102].

In the majority of these approaches, the retrieval of move-
ments from the model parameters and the task parameters
is viewed as a regression problem. This generality might
look appealing at first sight, but it also limits the generaliza-
tion scope of these models, see Fig. 1. Task-parameterized
Gaussian mixture models (TP-GMM) aim at increasing
this generalization capability by exploiting the functional
nature of task parameters. Indeed, in robotics applications,
task parameters can most of the time be related to frames
of reference, coordinate systems, basis functions or local
projections, whose structure can be exploited to speed up
learning and provide the system with better extrapolation
capability.

2.1 Proposed approach

The proposed approach uses a generative model to encode
the movement, where the variability and correlation infor-
mation is used to infer the impedance parameters of a virtual
spring–damper system. These parameters figuratively cor-
respond to the stiffness of a spring and to the damping
coefficient of a viscous damper, with the difference that they
can also be full stiffness and damping matrices.

123

Intel Serv Robotics (2016) 9:1–29 3

Fig. 1 Solving a task adaptation problemas a standard regression prob-
lem does not always provide satisfying generalization capability. Left 4
demonstrations where the task parameters are treated as inputs (position
and direction of the second object concatenated in a vector), and where
the motion model parameters are treated as outputs (GMM parameters
concatenated in a vector). Here, each demonstration is aligned by fitting
a single model to the concatenated set of demonstrations. Right 6 repro-
duction attempts by treating the problem of adapting the movement to
the new task parameters as standard regression, namely by relying on the
training set to regenerate newmodel parameters based on new task para-
meters and by using this model to generate a newmotion with Gaussian

mixture regression. Here, both inputs and outputs are treated as multi-
dimensional vectors. The 6 reproduction attempts consider situations of
increasing complexity. We can observe that the system provides good
interpolation results but cannot extrapolate well when faced with sit-
uations that are far from the regions covered by the demonstrations.
This example was implemented with Gaussian process regression, but
similar reproduction results are observed with other regression mech-
anisms. As expected, reproductions far outside the regions covered by
the demonstrations will tend to collapse to an average of the different
trajectory models, resulting in poor generalization capability

Fig. 2 Illustration of the overall approach (see main text for details).
a Observation of a task in different situations and generalization to
new contexts. Multiple demonstrations provide the opportunity to dis-
cern the structure of the task. b Probabilistic encoding of continuous
movements in multiple coordinate systems. c Exploitation of variability

and correlation information to adapt the motion to new situations. With
cross-situational observations of the same task, the robot can general-
ize the skill to new situations. d Computation of the underlying optimal
control strategy driving the observed behavior

In its task-parameterized version, the model uses several
frames of reference to describe the robot behavior inmultiple
coordinate systems. The variations and correlations observed
from the perspective of these different frames are exploited
to determine the impedance of the system with a linear
quadratic regulator. Figure 2 illustrates the overall approach,
which can be decomposed into multiple steps, involving sta-
tistical modeling, dynamical systems and optimal control.

This illustration will be used as a guiding thread to describe
throughout the article the different model components and
algorithms enabling learning, adaptation, synthesis and con-
trol of movement skills.

The proposed task-parameterized model is not new: pre-
liminary versions were investigated in [14,16,20] for the
special case of frames of reference representing rotations
and translations in Cartesian space. The current paper dis-

123

4 Intel Serv Robotics (2016) 9:1–29

cusses the potentials of the approach, and introduces several
routes for further investigation, which aim at applying the
proposed technique to awider range of affine transformations
(directly exploiting the robotics application domain), includ-
ing constraints in both configuration and operational spaces,
as well as priority constraints. It also shows that the proposed
method can be applied to different probabilistic encod-
ing strategies, including subspace clustering approaches
that enable the model to handle feature spaces of high
dimensions.

Table 1 will be used as a reference to the notation, dimen-
sions and names of variables employed in the paper. As a
general rule, lowercase and uppercase bold fonts, respec-
tively, indicate vectors and matrices, while normal fonts
indicate scalars. Table 2 lists all examples available as Mat-
lab/GNU Octave source codes.

2.2 Example with a single Gaussian

Before presenting the details of the task-parameterized
model, the approach is motivated by an introductory exam-
ple with a single Gaussian. Two frames are considered,
described respectively at each time step t by {bt,1, At,1} and
{bt,2, At,2}, representing the origin of the observer b and a set
of basis vectors {e1, e2, . . .} forming a transformation matrix
A = [e1e2 . . .].

A set of demonstrations is observed from the perspec-
tive of the two frames. During reproduction, each frame
expects the new datapoints to lie within the same range.

If N
(
μ(1),Σ (1)

)
and N

(
μ(2),Σ (2)

)
describe the obser-

vations in the first and second frames; the two observers,
respectively, expect the reproduction attempts to lie within

the distributions N
(
ξ̂

(1)
t , Σ̂

(1)
t

)
and N

(
ξ̂

(2)
t , Σ̂

(2)
t

)

with

ξ̂
(1)
t = At,1 μ(1) + bt,1 , Σ̂

(1)
t = At,1 Σ (1)A�

t,1 , (1)

ξ̂
(2)
t = At,2 μ(2) + bt,2 , Σ̂

(2)
t = At,2 Σ (2)A�

t,2 , (2)

computed with the linear transformation property of normal
distributions.

During reproduction, a trade-off needs to be determined to
concord with the distributions expected by each frame. The
underlying objective function is defined as the weighted sum
of the quadratic error terms

ξ̂ t = argmin
ξ t

2∑
j=1

(
ξ t − ξ̂

(j)
t
)�

Σ̂
(j)
t

−1(
ξ t − ξ̂

(j)
t
)
. (3)

The above objective can be solved easily by differenti-
ating and equating to zero the above equation, yielding a

Table 1 Notation and names of variables

Dimensions

T Number of datapoints in a trajectory (t will be used
as index)

N Number of datapoints in a training set (t will be used
as index)

M Number of demonstrated trajectories in a training set
(m will be used as index)

D Dimension of a datapoint

C Number of derivatives (including position) to
represent the state space (C = 2 for [x�, ẋ�]�)

d Dimension of the subspace in which datapoints are
projected

K Number of Gaussian components in a mixture model
(i and k will be used as indices)

P Number of candidate frames in a task-parameterized
mixture (j will be used as index/exponent)

Distributions

N (μ
(j)
i ,Σ

(j)
i) i th multivariate Gaussian distribution in frame j of a

TP-GMM

μ
(j)
i Center of the Gaussian

Σ
(j)
i Covariance matrix (σ 2

i
(j)

for unidimensional
Gaussian)

πi Prior probability

P(xI, xO) Joint probability of xI and xO

P(xO|xI) Conditional probability of xO given xI

N (x|μ,Σ) Likelihood of x to be sampled from the normal
distribution with parameters μ and Σ

Feature spaces

x Position in Cartesian space (operational space)

u Control command in operational space (acceleration
in Cartesian space)

q Position in joint space (configuration space)

ξ Used to describe a generic multidimensional vector
or matrix (e.g., ξ = [x�, ẋ�]�)

At, j Linear transformation matrix describing frame j at
time step t (e.g., orientation of object j)

bt, j Offset vector describing frame j at time step t (e.g.,
location of object j)

Linear algebra operators

ξ� Transpose of matrix/vector ξ

ξ−1 Inverse of a square matrix ξ

ξ† Pseudoinverse of matrix/vector ξ

ξ̇ Velocity (for corresponding position ξ)

ξ̈ Acceleration (for corresponding position ξ)

ξI Subset of a multidimensional vector/matrix that
spans input dimensions

ξO Subset of a multidimensional vector/matrix that
spans output dimensions

0 Matrix with all elements being zeros

I Identity matrix

123

Intel Serv Robotics (2016) 9:1–29 5

Table 2 List of Matlab/GNU Octave examples (by alphabetic order)

Filename Description

benchmark_DS_GP_GMM01 Benchmark of task-parameterized model based on Gaussian process regression, with trajectory model
(Gaussian mixture model encoding)

benchmark_DS_GP_raw01 Same as benchmark_DS_GP_GMM01 but with raw trajectory

benchmark_DS_PGMM01 Benchmark of task-parameterized model based on parametric Gaussian mixture model (PGMM)

benchmark_DS_TP_GMM01 Benchmark of task-parameterized Gaussian mixture model (TP-GMM)

benchmark_DS_TP_GP01 Benchmark of task-parameterized Gaussian process (nonparametric task-parameterized method)

benchmark_DS_TP_LWR01 Benchmark of task-parameterized locally weighted regression (nonparametric task-parameterized method)

benchmark_DS_TP_MFA01 Benchmark of task-parameterized mixture of factor analyzers (TP-MFA)

benchmark_DS_TP_trajGMM01 Benchmark of task-parameterized trajectory-GMM

demo_affineTransform01 Affine transformations of raw data as pre-processing step to train a task-parameterized model

demo_batchLQR01 Controller retrieval through a batch solution of linear quadratic optimal control (unconstrained linear
MPC), by relying on a Gaussian mixture model (GMM) encoding of position and velocity data (see also
demo_iterativeLQR01)

demo_batchLQR02 Same as demo_batchLQR01 but with only position data

demo_DMP_GMR01 Emulation of a standard dynamic movement primitive (DMP) by using a GMM with diagonal covariance
matrix, and retrieval computed through Gaussian mixture regression (GMR)

demo_DMP_GMR02 Same as demo_DMP_GMR01 but with full covariance matrices coordinating the different variables

demo_DMP_GMR03 Same as demo_DMP_GMR02 but with GMR used to regenerate the path of a spring–damper system
instead of encoding the nonlinear forcing term

demo_DMP_GMR04 Same as demo_DMP_GMR03 by using the task-parameterized model formalism

demo_DMP_GMR_LQR01 Same as demo_DMP_GMR04 but with LQR used to refine the parameters of the spring–damper system

demo_DMP_GMR_LQR02 Same as demo_DMP_GMR_LQR01 with perturbations added to show the benefit of full covariance to
coordinate disturbance rejection

demo_DSGMR01 Gaussian mixture model (GMM), with a dynamical system based on Gaussian mixture regression (GMR)
driven by a decay term (as in DMP)

demo_DTW01 Trajectory realignment through dynamic time warping (DTW)

demo_GMM01 Gaussian mixture model (GMM) parameters estimation

demo_GMR01 GMM with time-based Gaussian mixture regression (GMR) used for reproduction

demo_GPR01 Use of Gaussian process regression (GPR) as a task-parameterized model

demo_HDDC01 High Dimensional Data Clustering model (HDDC, HD-GMM)

demo_iterativeLQR01 Controller retrieval through an iterative solution of linear quadratic optimal control (finite horizon,
unconstrained linear MPC), by relying on a GMM encoding of position and velocity data (see also
demo_batchLQR01)

demo_iterativeLQR02 Same as demo_iterativeLQR01 with only position data

demo_MFA01 Mixture of factor analysers (MFA) parameters estimation

demo_MPPCA01 Mixture of probabilistic principal component analyzers (MPPCA) parameters estimation

demo_stdPGMM01 Parametric Gaussian mixture model (PGMM) used as a task-parameterized model, with DS-GMR
employed to retrieve continuous movements

demo_testDampingRatio01 Test with critically damped system and ideal underdamped system

demo_testLQR01 Test of linear quadratic regulation (LQR) with different variance in the data

demo_testLQR02 Test of LQR with evaluation of the damping ratio found by the system

demo_testLQR03 Comparison of LQR with finite and infinite time horizons

demo_testLQR04 Demonstration of the coordination capability of linear quadratic optimal control when combined with full
precision matrices

demo_TPbatchLQR01 Task-parameterized GMM encoding position and velocity data, combined with a batch solution of linear
quadratic optimal control

demo_TPbatchLQR02 Batch solution of a linear quadratic optimal control acting in multiple frames, which is equivalent to
TP-GMM combined with LQR

demo_TPGMM01 Task-parameterized Gaussian mixture model (TP-GMM) encoding

demo_TPGMR01 TP-GMM with GMR used for reproduction (without dynamical system)

123

6 Intel Serv Robotics (2016) 9:1–29

Table 2 continued

Filename Description

demo_TPGMR_DS01 Dynamical system with constant gains used with a task-parameterized model

demo_TPGMR_LQR01 Finite horizon LQR used with a task-parameterized model

demo_TPGMR_LQR02 Infinite horizon LQR used with a task-parameterized model

demo_TPGP01 Task-parameterized Gaussian process regression (TP-GPR)

demo_TPHDDC01 Task-parameterized high dimensional data clustering (TP-HDDC)

demo_TPMFA01 Task-parameterized mixture of factor analyzers (TP-MFA)

demo_TPMPC01 Task-parameterized model encoding position data, with MPC used to track the associated
stepwise reference path

demo_TPMPC02 Same as demo_TPMPC01 with a generalized version of MPC used to track associated stepwise
reference paths in multiple frames

demo_TPMPPCA01 Task-parameterized mixture of probabilistic principal component analyzers (TP-MPPCA)

demo_TPtrajGMM01 Task-parameterized model with trajectory-GMM encoding

demo_trajGMM01 Reproduction of trajectory with a GMM with dynamic features (trajectory-GMM)

demo_trajMFA01 Trajectory model with either a mixture of factor analysers (MFA), a mixture of probabilistic
principal component analyzers (MPPCA) or a high-dimensional data clustering approach
(HD-GMM)

demoIK_nullspace_TPGMM01 Inverse kinematics with nullspace treated with task-parameterized GMM (bimanual tracking
task, version with 4 frames)

demoIK_pointing_TPGMM01 Task-parameterized GMM to encode pointing direction by considering nullspace constraint (4
frames) (example with two objects and robot frame, starting from the same initial pose
(nullspace constraint), by using a single Euler orientation angle and 3 DOFs robot)

The repository for the accompanying source codes is available at http://www.idiap.ch/software/pbdlib/

Fig. 3 Minimization of the objective function in Eq. (3) composed of
a weighted sum of quadratic error terms, whose result corresponds to a
product of Gaussians

point ξ̂ t , with an estimation error defined by a covariance

Σ̂ t . It is easy to show that the resulting N
(
ξ̂ t , Σ̂ t

)
corre-

sponds to the product of the two Gaussians N
(
ξ̂

(1)
t , Σ̂

(1)
t

)

and N
(
ξ̂

(2)
t , Σ̂

(2)
t

)
, see [18] for details.

Figure 3 illustrates this process for one of the Gaussian in
Fig. 2.

3 Task-parameterized Gaussian mixture model
(TP-GMM)

The task-parameterizedGaussianmixturemodel (TP-GMM)
is a direct extension of the objective problem presented
above, by considering multiple frames and multiple clus-
ters of datapoints (soft clustering via mixture modeling). It
probabilistically encodes the relevance of candidate frames,
which can change during the task. In contrast to approaches
such as [71] that aim at extracting a single (most prominent)
coordinate system located at the end of a motion segment,
the proposed approach allows the superposition and tran-
sition of different coordinate systems that are relevant for
the task (parallel organization of behavior primitives, adap-
tation to multiple viapoints in the middle of the movement,
or modulation based on positions, orientations or geometries
of objects).

Each demonstration m ∈ {1, . . . , M} contains Tm dat-
apoints forming a dataset of N datapoints {ξ t }Nt=1 with

N = ∑M
m Tm .

The task parameters are represented by P coordinate sys-
tems, defined at time step t by {bt, j , At, j }Pj=1, representing,
respectively, the origin of the observer and a transformation
matrix.

123

http://www.idiap.ch/software/pbdlib/

Intel Serv Robotics (2016) 9:1–29 7

The demonstrations ξ ∈ R
D×N are observed from these

different viewpoints, forming P trajectory samples X (j) ∈
R

D×N . These samples can be collected from sensors located
at the frames or computed with

X(j)
t = A−1

t, j (ξ t − bt, j). (4)

The parameters of a TP-GMM with K components are
defined by

{
πi , {μ(j)

i ,Σ
(j)
i }Pj=1

}K
i=1 (πi are the mixing coef-

ficients, μ(j)
i and Σ

(j)
i are the center and covariance matrix

of the i th Gaussian component in frame j).
Learning of the parameters is achieved by log-likelihood

maximization subject to the constraint that the data in the
different frames arose from the same source, resulting in an
expectation-maximization (EM) algorithm [23] to iteratively
update the model parameters until convergence, see “Appen-
dix 1” for details. Other forms of learning for mixturemodels
are possible, including spectral clustering [53,69,84], online
learning [27,34,68,83,99] or self-refinement [19].

For a movement in Cartesian space with 10 demonstra-
tions and 3 candidate frames, the overall learning process
typically takes 1–3s on a standard laptop. The reproduction
is much faster and can be computed online (usually below
1ms).

The learnedmodel is then used to reproducemovements in
other situations (for newposition and orientation of candidate
frames). A newGMMwith parameters {πi , ξ̂ t,i , Σ̂ t,i }Ki=1 can
automatically be generated with

N
(
ξ̂ t,i , Σ̂ t,i

)
∝

P∏
j=1

N
(
ξ̂

(j)
t,i , Σ̂

(j)
t,i

)
, with

ξ̂
(j)
t,i = At, jμ

(j)
i + bt, j , Σ̂

(j)
t,i = At, jΣ

(j)
i A�

t, j , (5)

where the result of the Gaussian product is given by

Σ̂ t,i =
(P∑

j=1

Σ̂
(j)
t,i

−1
)−1

, ξ̂ t,i = Σ̂ t,i

P∑
j=1

Σ̂
(j)
t,i

−1
ξ̂

(j)
t,i .

(6)

For computational efficiency, the above equations can be
computed with precision matrices instead of covariances.
Figure 4 depicts the different steps of the above computa-
tion.

The proposed task-parameterized approach requires each
frame to evaluate the local variability of the demonstrations.
This section showed that a mixturemodel could be employed
to extract this variability. However, other encoding strategies
can be used as long as the local variations take the form of
full covariances aligned with the different frames. In par-
ticular, data-driven encoding strategies can alternatively be

employed. Thiswill be shown later in Sect. 8 using two exam-
ples with task-parameterized Gaussian process (TP-GP) and
task-parameterized locally weighted regression (TP-LWR).

A Matlab/GNU Octave implementation of TP-GMM
can be found in the demo_TPGMM01.m exam-
ple. An example with a standard mixture is also
provided in demo_GMM01.m. An example show-
ing the construction of frames and the collec-
tion of data in different frames is provided in
demo_affineTransform01.m.

3.1 Regularization of the TP-GMM parameters

In applications that are prone to overfitting, it is relevant to
introduce regularization terms. Regularization has the effect
of avoiding singularities and smoothing the solution space.
An option is to define a minimal admissible eigenvalue λmin

and adjust each covariance matrix Σ
(j)
i so that

Σ
(j)
i ← V (j)

i D̃
(j)
i V (j)

i

�
, (7)

with D̃
(j)
i =

⎡
⎢⎢⎢⎢⎣

λ̃
2(j)
i,1 0 · · · 0

0 λ̃
2(j)
i,2 · · · 0

...
...

. . .
...

0 0 · · · λ̃
2(j)
i,d

⎤
⎥⎥⎥⎥⎦

,

and λ̃
(j)
i,k = max(λ̃(j)

i,k , λmin) ∀k ∈ {1, . . . , d},

where V (j)
i is a matrix containing the stacked eigenvectors

of Σ
(j)
i , with λ

(j)
i,k the corresponding eigenvalues.

Another approach is to set a priori uncertainties on the
covariance parameters in the form of a diagonal isotropic
covariance Iρ (Tikhonov regularization), so that

Σ
(j)
i ← Σ

(j)
i + Iρ, (8)

with I an identity matrix and ρ a small scalar factor that can
be either set empirically or estimated from the data. The dif-
ference with Eq. (7) is that a value ρ is added to each λ

(j)
i,k

instead of truncating the eigenvalues. The same development
can be done with singular value decomposition, emphasiz-
ing the effect of the regularization on the condition number,
by forcing it to be higher than a threshold as in Eq. (7) or
by increasing the singular values as in Eq. (8). It is in some
applications convenient to apply small regularization terms
at different steps of the procedure (e.g., at each iteration
in the EM process and after convergence before computing
Gaussian products).

123

8 Intel Serv Robotics (2016) 9:1–29

Fig. 4 TP-GMM retrieval process and associated variables. a, b The
model parameters (TP-GMM with 3 Gaussians and 2 frames). c Tem-
porary GMM retrieved at time step t for a new configuration of the two

frames. d–f Details of computation, where each temporary Gaussian is
retrieved as a product of linearly transformed Gaussians

4 Extension to task-parameterized subspace
clustering

Classical Gaussian mixture models tend to perform poorly in
high-dimensional spaces if too few datapoints are available.
This is also true for robotics problems aiming at encoding
multivariate and multimodal signals from only few demon-
strations. Namely, if the training set is {ξ t }Nt=1 with ξ t ∈ R

D ,
the curse of dimensionality occurs if the dimension of the
data D is too large compared to the size of the training set
N . In particular, the problem can affect the full covariances
Σ

(j)
i ∈ R

D×D in (52) because the number of parameters to
be estimated quadratically grows with D.

Bouveyron and Brunet reviewed various ways of view-
ing the problem and coping with high-dimensional data in
clustering problems [11]. In practice, three viewpoints can
be considered:

1. Since D is too large compared to N , a global dimension-
ality reduction should be applied as a pre-processing step
to reduce D.

2. Since D is too large compared to N , the solution space
contains many poor local optima; the solution space
should be smoothed by introducing ridge or lasso reg-
ularization in the estimation of the covariance (avoiding
numerical problem and singular solutions when inverting
the covariances). As discussed in Sect. 3.1, a simple form
of regularization can be achieved after the maximization
step of each EM loop.

3. Since D is too large compared to N , the model is proba-
bly over-parametrized, and a more parsimonious model
should be used (thus estimating a fewer number of para-
meters).

One example falling in the last category would be to
consider spherical or diagonal covariances instead of full
matrices, corresponding to a separate treatment of each
variable. Although commonly employed in robotics, such
decoupling is a limiting factor to encode gestures and senso-
rimotor streams, because it does not fully exploit principles
underlying coordination, motor skill acquisition and action-
perception couplings [41,46,54,67,81,86,94,103].

123

Intel Serv Robotics (2016) 9:1–29 9

Our rationale is that diagonal constraints are too strong
for motor skill encoding, because it loses important syner-
gistic information among the variables. There are, however,
a wide range of alternatives in mixture modeling, which are
in-between the encoding of diagonal and full covariances
and that can readily be exploited in the context of robot
skills acquisition. These alternatives can be studied as a sub-
space clustering problem that aims at grouping the data such
that they can be locally projected in a subspace of reduced
dimensionality, thus helping the analysis of the local trend
of the movement, while reducing the number of parameters
to be estimated, and “locking” the most important synergies
to cope with perturbations.

Many possible constraints can be considered, grouped in
families such as parsimonious GMM [7,11,62], mixtures of
factor analyzers (MFA) [61] ormixtures of probabilistic prin-
cipal component analyzers (MPPCA) [93]. These techniques
will next be described in the context of task-parameterized
models.

4.1 Parsimonious TP-GMM

By following the perspective of Sect. 3.1, a parsimonious
TP-GMM can be defined by considering the spectral decom-
position of the covariances

Σ
(j)
i = V (j)

i D(j)
i V (j)

i

�
, (9)

with V (j)
i a matrix of ordered eigenvectors (determining

the orientation of the cluster) and D(j)
i a diagonal matrix

with ordered eigenvalues λ
(j)
i,k (determining the shape of the

cluster), where constraints are set by sharing some of these
elements among the clusters, and/or by keeping only the first
d eigenvectors and eigenvalues in the parameterization.

The high-dimensional data clustering (HDDC) approach
from [12] lies in this category of models addressing both
subspace clustering and regularization.An example of imple-
mentation is to consider that the subspace of each cluster i
is generated by the first di eigenvectors associated with the
first d(j)

i eigenvalues λ
(j)
i,k , and that outside of this subspace,

the variance is spherical, modeled by a single parameter

λ̄
(j)
i = 1

D − d(j)
i

D∑

k=d(j)
i +1

λ
(j)
i,k

= 1

D − d(j)
i

(
tr
(
Σ

(j)
i

)
−

d(j)
i∑

k=1

λ
(j)
i,k

)
, (10)

which is used to reconstruct a full covariance matrix by
replacing the last D − d(j)

i eigenvalues with λ̄
(j)
i .

AMatlab/GNUOctave implementation of HDDC in the
context of task-parameterized models can be found in
demo_TPHDDC01.m.
An example with a standard mixture models is also pro-
vided in demo_HDDC01.m.

4.2 Task-parameterized mixture of factor analyzers
(TP-MFA)

Factor analysis (FA) is an approach as old as principal com-
ponent analysis (PCA) to cope with dimension reduction,
often overshadowed by PCA although is has an equivalently
important literature on the topic [12]. The basic idea of fac-
tor analysis is to reduce the dimensionality of the data while
keeping the observed covariance structure, see [26] for an
example of application in robotics.

TheTP-GMMpresented in Sect. 3 is fully compatiblewith
subspace clustering approaches based on factor analysis. A
task-parameterized mixture of factor analyzers (TP-MFA)
assumes for each component i and frame j a covariance
structure of the form

Σ
(j)
i = Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i , (11)

where Λ
(j)
i ∈ R

D×d , known as the factor loadings matrix,
typically has d < D (providing a parsimonious representa-
tion of the data) and a diagonal noise matrix Ψ

(j)
i .

The factor loading and noise terms of the covariance
matrix can be constrained in different ways (e.g., such as
being shared across Gaussian components), yielding a col-
lection of eight parsimonious covariance structures [62].
For example, the task-parameterized mixture of probabilis-
tic principal component analyzers (TP-MPPCA) [93] is a
special case of TP-MFA with the distribution of the errors

assumed to be isotropic with Ψ
(j)
i = Iσ (j)

i

2
.

Figure 5 shows that the covariance structure in MFA can
span a wide range of covariances.

“Appendix 2” details the structure of TP-MFA and pro-
vides an EM algorithm to estimate the model parameters.

The hypothesis of TP-MFA models can be viewed as less
restrictive as TP-HDDC models based on eigendecomposi-

Fig. 5 Exploitation of the covariance structure in a mixture of factor
analyzers (MFA) to consider intermediary steps between the modeling
as diagonal covariances (left) and full covariances (right)

123

10 Intel Serv Robotics (2016) 9:1–29

tion (see Sect. 4.1), because the subspace of each class does
not need to be spanned by orthogonal vectors, whereas it is a
necessary condition in models based on eigendecomposition
[12].

Similarly to parsimonious GMM based on eigendecom-
position, the covariances in TP-MFA can be constrained by
fixing d or by sharing elements among the mixture compo-
nents. This encoding strategy can then be extended to variants
of MFA aiming at optimizing the sharing and re-use of sub-
spaces among the Gaussian components, such as in semi-tied
covariance [31]. These techniques can be exploited to extend
the concept of synergies to a wider range of rich motor skills,
with a simultaneous segmentation and re-use of previously
discovered synergies.

For each approach, a dedicated EM update can be derived
corresponding to the type of constraints considered [62].
They all reconstruct estimates of the full covariances, which
is an important characteristic that will be exploited in the next
sections of this article.

The TP-MFA extension of TP-GMM opens several roads
for further investigation.Bayesian nonparametric approaches
such as [101] can be used to simultaneously select the number
of clusters and the dimension of the subspace in each cluster.

Another extension is to use tied structures in the covariances
to enable the organization and reuse of previously acquired
synergies [31].

Another possible extension is to enable deep learning
strategies in task-parameterized models. As discussed in
[92], the prior of each FA can be replaced by a sepa-
rate second-level MFA that learns to model the aggregated
posterior of that FA (instead of the isotropic Gaussian), pro-
viding a hierarchical structure organization where one layer
of latent variables can be learned at a time. This can be
exploited as a link with deep learning strategies [9,40] for
real-valued high-dimensional data within directed graphical
models.

Figure 6 shows a kinematic example with TP-MFA used
for encoding and synthesis purposes.

Matlab/GNU Octave implementations of TP-MFA and
TP-MPPCA can be found in demo_TPMFA01.m and
demo_TPMPPCA01.m. The corresponding examples
for standard mixture models can also be found in
demo_MFA01.m and demo_MPPCA01.m.

Fig. 6 Example of TP-MFA to encode and retrieve full-body dancing
motion from [36]. Here, the motion of one of the two partners (D = 94)
is retrieved by adapting it online to themotion of the other partner. In the
model, the red stick figure (in thin line) is the frame of reference and the
gray stick figure (in thick line) is the motion encoded in TP-MFA. The
black stick figure (in thick line) shows the motion regenerated with TP-
MFA and Gaussian mixture regression, based on the observation of the

red stick figure. For 12 Gaussian components (K = 12) and a subspace
of 2 dimensions (d = 2) encoding a motion of 94 dimensions, the total
number of parameters in TP-MFA is 4511. The corresponding number
of parameters in a TP-GMMwith full covariances would be 54719. We
can see that TP-MFA generates a smooth and natural movement similar
to the original dance (color figure online)

123

Intel Serv Robotics (2016) 9:1–29 11

5 Extension to motion synthesis

While the previous sections focused only on TP-GMM as
an encoding strategy, this section addresses the problem of
generating movements from the model.

Several approaches can be used to retrieve continuous
movements from a TP-GMM. The next two subsections pro-
vide examples for two different synthesis techniques. The
first technique is to encode a decay term or a time variable as
an additional feature in the mixture and use Gaussian mix-
ture regression (GMR) [33] to retrieve movements adapted
to the current situations. The second technique is to encode
both static and dynamic features in the mixture model as in
trajectory-HMM [30,89,95,106]. These two techniques are
described next.

5.1 Gaussian mixture regression (GMR)

With a GMM representation, the reproduction of a move-
ment can be formalized as a regression problem [33]. We
showed in [17,18] that in robot learning, Gaussian mix-
ture regression (GMR) offers a simple solution to generate
continuous movements from a GMM. GMR relies on basic
properties of normal distributions (linear transformation and
conditioning). It provides a probabilistic retrieval of move-
ments or policies, in which the model can compute the
next actions on-the-fly, with a computation time that is
independent of the number of datapoints used to train the
model.

In contrast to other regression methods such as locally
weighted regression (LWR) [79], locally weighted projection
regression (LWPR) [100] or Gaussian process regression
(GPR) [35,70,75], GMRdoes not model the regression func-
tion directly. It models the joint probability density function
of the data and then derives the regression function from
the joint density model, see [88] for an excellent review of
regression approaches. The estimation of the model para-
meters is thus achieved in an offline phase that depends
linearly on the number of datapoints. Regression is then inde-
pendent of this number and can be computed very rapidly,
whichmakes the approach an interesting alternative to regres-
sion methods whose processing grows with the size of the
dataset. The other benefit is that both input and output vari-
ables can be multidimensional without modification of the
model.

GMR can, for example, be employed in robot applications
requiring input and output dimensions to be specified at run
time (e.g., to handlemissing sensory inputs or to react swiftly
by retrieving partial outputs).

The superscripts I and O will be further used to describe
the dimensions that span for input and output (used as expo-
nents for vectors and matrices). The general case of a GMM
encoding a dataset ξ with the joint distribution P(ξI, ξO) ∼

∑K
i=1 πi N (μi ,Σ i) will first be described, which will later

be extended to its task-parameterized version.
At each iteration step t , the datapoint ξ t can be decom-

posed as two subvectors ξI
t and ξO

t spanning for the input
and output dimensions. For trajectory encoding in task space,
I corresponds to the time input dimension (e.g., value of
a decay term), and O corresponds to the output dimen-
sions describing a path (e.g., end-effector position in task
space).

With this notation, a block decomposition of the datapoint
ξ t , vectors μi and matrices Σ i can be written as

ξ t =
[
ξI
t

ξO
t

]
, μi =

[
μI
i

μO
i

]
, Σ i =

[
ΣI

i ΣIO
i

ΣOI
i ΣO

i

]
. (12)

At each time step t during reproduction,P(ξO
t |ξI

t) is com-
puted as the conditional distribution

P(ξO
t |ξI

t) ∼
K∑
i=1

hi (ξ
I
t) N

(
μ̂

O
i (ξI

t), Σ̂
O
i

)
, (13)

with μ̂
O
i (ξI

t) = μO
i + ΣOI

i ΣI
i

−1
(ξI

t − μI
i), (14)

Σ̂
O
i = ΣO

i − ΣOI
i ΣI

i
−1

ΣIO
i , (15)

and hi (ξ
I
t) = πiN (ξI

t | μI
i ,ΣI

i)∑K
k πkN (ξI

t | μI
k ,ΣI

k)
. (16)

Note that Eq. (13) represents a multimodal distribution.
For problems in which a single peaked output distribution is
preferred, Eq. (13) can be approximated by a normal distri-
bution (see “Appendix 3” for details of computation)

P(ξO
t |ξI

t) = N
(
ξO
t | μ̂O

t , Σ̂O
t

)
, with (17)

μ̂O
t =

K∑
i=1

hi (ξ
I
t) μ̂

O
i (ξI

t), (18)

Σ̂O
t =

K∑
i=1

hi (ξ
I
t)
(
Σ̂

O
i + μ̂

O
i (ξI

t) μ̂
O
i (ξI

t)
�)− μ̂

O
t μ̂

O
t

�
.

(19)

The retrieved signal in Eq. (17) encapsulates variation and
correlation information in the form of full covariance matri-
ces. GMR has so far mostly been used in three manners:

1. as an autonomous system with ξ = [x�, ẋ�]�, by learn-
ing P(x, ẋ) with a GMM, with x and ẋ representing
position and velocity of the system (either in task space
or joint space), and by retrieving iteratively during repro-
duction a series of velocity commands by estimating
P(ẋ|x) with GMR [17,38,39,47];

123

12 Intel Serv Robotics (2016) 9:1–29

Fig. 7 Illustration of the encoding ofP(ξI, ξO) as aGaussianmixture
model (GMM)with two components, and estimation ofP(ξO|ξI)with
Gaussianmixture regression (GMR),where both ξI and ξO can bemul-
tidimensional. The model can emulate a large spectrum of regression

mechanisms, from standard linear regression (when a single component
K = 1 is used), to non-linear kernel regression (with K = N and a
Gaussian centered on each datapoint)

2. as time-indexed trajectories with ξ = [t, x�]�, by learn-
ingP(t, x)with aGMMand retrievingP(x|t)withGMR
for each time step to reproduce smooth trajectories (infi-
nitely differentiable) [18].

3. as a probabilistic formulation of dynamic movement
primitives (DMP) [20].

Alternatively, any subset of input–output dimensions can
be selected, which can change, if required, at each iteration
during reproduction. It can, for example, handle different
sources of missing data, as the system is able to consider
any combination ofmultidimensional input/output mappings
during the retrieval phase. Expectations on the remaining
dimensions can be computed within the control loop of the
robot, corresponding to a convex sum of linear approxima-
tions (with weights varying non-linearly).

Figure 7 depicts the use of GMR in the case of time-
indexed trajectories.

GMR can be viewed as a trade-off between a global
and local approach in the sense that the placement and
spread of the basis functions are learned, together with
their responses, as a soft partitioning problem through
expectation-maximization (EM),1 while the prediction is a
weighted superposition of locally linear systems. It pro-

1 Competition/collaboration arises due to the weighting term ht,i in Eq.
(49) summing over the influence of the other Gaussian components.

vides variation and correlation information for the retrieved
multidimensional output, enabling the extraction of local
coordination patterns in the movement.

Note that if the application requires the encoding of high-
dimension data from few observations, subspace learning
techniques such asMFA (see Sect. 4) can be used jointly with
GMR to locally reduce the dimensionalitywithoutmodifying
the regression process.

The combination of TP-GMM and GMR is simply
achieved by augmenting the dataset in each frame with an
input dimension and defining all task parameters At, j and
bt, j so that the input is not modulated by the task parameter-
ization. Compared to an initial TP-GMM encoding ξO with
task parameters AO

t, j and bOt, j , the combination of TP-GMM

and GMR instead encodes ξ = [
ξI�

, ξO�]� with task para-
meters

At, j =
[
I 0
0 AO

t, j

]
, bt, j =

[
0
bOt, j

]
, (20)

where in the case of a decay term (or an explicit time variable
driving the system), the identity matrix I collapses to 1.2

2 Possible extensions are possible here for a local modulation of move-
ment duration.

123

Intel Serv Robotics (2016) 9:1–29 13

A Matlab/GNU Octave implementation of TP-GMM
with GMR can be found in demo_TPGMR01.m. The
corresponding example for standard mixture mod-
els can also be found in demo_GMR01.m. Exam-
ples of DMP learning with GMR can be found in
demo_DMP_GMR*.m.

5.2 GMM with dynamic features (trajectory-GMM)

In the field of speech processing, the extraction of statis-
tics from both static and dynamic features within a hidden
Markov model (HMM) has a long history [30,95,106]. In
particular, it can be used in speech synthesis to avoid discon-
tinuities in the generated speech spectra. The synthesized
speech then becomes natural and smooth even when a small
number of Gaussians is used. This is achieved by coordi-
nating the distributions of both static and dynamic features
(the dynamic features are often called delta and delta-delta
parameters). In speech processing, these parameters usually
correspond to the evolution of mel-frequency cepstral coeffi-
cients characterizing the power spectrum of a sound, but the
same trajectory-HMM approach can be used with any form
of continuous signals. In robotics, this approach has rarely
been exploited, at the exception of the work from Sugiura et
al. employing it to represent object manipulation movements
[89].

For the encoding of movements, velocity and acceleration
can alternatively be used as dynamic features. By considering
an Euler approximation, the velocity is computed as

ẋt = xt+1 − xt
�t

, (21)

where xt is a multivariate position vector. The acceleration
is similarly computed as

ẍt = ẋt+1 − ẋt
�t

= xt+2 − 2xt+1 + xt
�t2

. (22)

Byusing (21) and (22), a vector ζ t will be used to represent
the concatenated position, velocity and acceleration vectors
at time step t , namely3

3 To simplify the notation, the number of derivatives will be set up to
acceleration (C = 3), but the results can easy be generalized to a higher
or lower number of derivatives (in the provided source codes, a para-
meter automatically sets the number of derivatives to be considered).

ζ t =
⎡
⎢⎣
xt
ẋt
ẍt

⎤
⎥⎦ =

⎡
⎢⎣

I 0 0

− 1
�t I

1
�t I 0

1
�t2

I − 2
�t2

I 1
�t2

I

⎤
⎥⎦
⎡
⎣

xt
xt+1

xt+2

⎤
⎦ . (23)

ζ and x are then defined as large vectors concatenating ζ t
and xt for all time steps, namely

ζ =

⎡
⎢⎢⎢⎣

ζ 1
ζ 2
...

ζ T

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1
x2
...

xT

⎤
⎥⎥⎥⎦ . (24)

Similarly to the matrix operator (23) defined for a single
time step, a large sparse matrix Φ can be defined so that
ζ = Φx, namely4

ζ︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

xt
ẋt
ẍt
xt+1

ẋt+1

ẍt+1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

Φ︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · I 0 0 · · ·
· · · − 1

�t I
1

�t I 0 · · ·
· · · 1

�t2
I − 2

�t2
I 1

�t2
I · · ·

· · · I 0 0
· · · − 1

�t I
1

�t I 0
· · · 1

�t2
I − 2

�t2
I 1

�t2
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

xt
xt+1

xt+2

xt+3
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

The dataset {ζ t }Nt=1 with N = ∑M
m Tm is composed of

M trajectory samples, where the mth trajectory sample has
Tm datapoints. It can be encoded in a Gaussian mixture
model (GMM), hidden Markov model (HMM) or hidden
semi-Markov model (HSMM) [73]. The example of a GMM
encoding P(ζ) ∼ ∑K

i=1 πi N (μi ,Σ i) will be described
here, which will later be extended to its task-parameterized
version.

After training, for a given sequence of states s =
{s1, s2, . . . , sT } of T time steps, with discrete states st ∈
{1, . . . , K },5 the likelihood of a movement ζ is given by

P(ζ |s) =
T∏
t=1

N (ζ t |μst ,Σ st), (26)

where μst and Σ st are the center and covariance of state st at
time step t . This product can be rewritten as the conditional
distribution

4 Note that a similar operator is defined to handle border conditions and
that Φ can automatically be constructed through the use of Kronecker
products, see source codes for details.
5 The use of an HSMM encoding can autonomously regenerate such
sequence in a stochastic manner, which is not described here due to
space constraints.

123

14 Intel Serv Robotics (2016) 9:1–29

Fig. 8 Example of trajectory-GMM encoding and retrieval. The pla-
nar motion contains multiple options and is learned from a set of partial
demonstrations that can be provided in any order. Left four demon-
strations (represented with different shades of gray), corresponding to
different subparts of a longer movement, where a part in the move-
ment contains two optional paths. Center the four demonstrations are

used to train a trajectory-GMM with K = 18 components. Right two
movements retrieved from the trajectory-GMM by stochastic sampling
(with equal chance to take one or the other path). We can see that the
movements are smooth, with an average position and full covariance
estimated at each time step (represented as a light red flow tube of one
standard deviation)

P(ζ |s) = N (ζ |μs,Σ s), (27)

with μs =

⎡
⎢⎢⎢⎣

μs1
μs2
...

μsT

⎤
⎥⎥⎥⎦ and Σ s =

⎡
⎢⎢⎢⎣

Σ s1 0 · · · 0
0 Σ s2 · · · 0
...

...
. . .

...

0 0 · · · Σ sT

⎤
⎥⎥⎥⎦ .

By using the relation ζ = Φx, we then seek during repro-
duction for a trajectory x maximizing (27), namely

x̂ = argmax
x

log P(Φx | s). (28)

The part of log P(Φx | s) dependent on x takes the
quadratic error form

c = (μs − ζ)�Σ−1
s (μs − ζ) (29)

= (μs − Φx)�Σ−1
s (μs − Φx).

Asolution can be found by differentiating the above objec-
tive function with respect to x and equating to 0, providing
the trajectory (in vector form)

x̂ =
(
Φ�Σ s

−1Φ
)−1

Φ�Σ s
−1μs, (30)

with the covariance error of the weighted least squares esti-
mate given by

Σ̂
x = σ

(
Φ�Σ s

−1Φ
)−1

, (31)

where σ is a scale factor.6

The resulting Gaussian N (x̂, Σ̂
x
) forms a trajectory dis-

tribution. Other forms of trajectory distributions can be
employed, where the main differences lie in the structure
given to Σ̂

x
and in the way the basis functions are defined.

A relevant example is the probabilistic movement primitives
approach proposed by Paraschos et al. [72]. The structure
of the trajectory distribution defined in [72] requires mul-
tiple trajectory demonstrations to avoid overfitting, but the
problemcan be circumvented by employing factorization and
variational inference techniques [77].

In trajectory-GMM, the problem of setting the shape and
spread of the basis functions, as well as the problem of deter-
mining the sparse structure of Σ̂

x
, is directly framed within

the GMM likelihood maximization problem, allowing the
use of an EM algorithm to automatically organize the basis
functions and find an appropriate structure for Σ̂

x
, which

will, for example, result in a sparse band-diagonal structure
when the components are sufficiently decoupled, and which
will account for the correlations within ζ t .

An illustration of the trajectory-GMM properties that are
of interest in robotics are shown in Fig. 8.

6 Equations (30) and (31) describe a trajectory distribution and can
be computed efficiently with Cholesky and/or QR decompositions by
exploiting the positive definite symmetric band structure of thematrices,
see for example [87]. With the Cholesky decomposition (Σ s)−1 =
T�T , the objective function is maximized when TΦx = Tμs . With a
QR decomposition TΦ = QR, the equation becomes QRx = Tμs

with a solution efficiently computed with x = R−1Q�Tμs . When
using Matlab, x̂ and Σ̂

x
in Eqs. (30) and (31) can, for example, be

computed with the lscov function.

123

Intel Serv Robotics (2016) 9:1–29 15

The combination of TP-GMM and trajectory-GMM is
achieved by augmenting the position data with its derivatives
(e.g., with velocity and acceleration) and defining all task
parameters At, j and bt, j so that they also apply to the deriv-
atives. Compared to an initial TP-GMMencoding x with task
parameters AO

t, j and bOt, j , the combination of TP-GMM and

trajectory-GMM instead encodes ζ = [
x�, ẋ�, ẍ�]� with

task parameters

At, j =
⎡
⎣
AO
t, j 0 0
0 AO

t, j 0
0 0 AO

t, j

⎤
⎦ , bt, j =

⎡
⎣
bOt, j
0
0

⎤
⎦ . (32)

A Matlab/GNU Octave implementation of TP-GMM
with trajectory-GMM can be found in the example
demo_TPtrajGMM01.m.
The corresponding example for standard mixture mod-
els can also be found in demo_trajGMM01.m and
demo_trajMFA01.m.

5.3 Dynamic-based versus time-based features in GMM

GMRwith time-indexed trajectories (Sect. 5.1) offers a sim-
ple solution for the generation of trajectories from a GMM,
with the disadvantage that time-based GMR often requires in
practice a preprocessing step such as dynamic time warping
(DTW) to re-align multiple demonstrations in time.

For the same reason, time-based GMR may also reduce
the applicability of motion synthesis to more complex forms
of teaching interactions, such as learning recurring patterns
(combination of discrete and periodic motions) or demon-
strating different options in a movement. This is not the case
for trajectory-GMM that can handle these two issues with-
out further modification of the model (see Sect. 5.2). This is
achieved at the expense of increasing the GMM dimension-
ality (by encoding position, velocity and acceleration instead
of position and time as in time-based GMR).

Another advantage of encoding dynamic features over
time features is that partial demonstrations can easily be used
in the training set, see Fig. 8. In service robotics applications,
it can sometimes be difficult and inefficient to demonstrate
a complex manipulation task in a single shot. A more user-
friendly way would be to provide incremental corrections or
piecewise demonstrations of whole body movements, where
the models can be trained with partial chunks of the whole
movement, see, e.g., [55]. This is also required in kinesthetic
teaching with robots endowed with a high number of articu-
lations (since the user cannot control all degrees of freedom
at the same time with two hands). Trajectory-GMMprovides
here a way to handle partial demonstrations without further
modification of the model.

6 Extension to minimal intervention control

Previous sections discussed the problem of generating a ref-
erence trajectory that can adapt to the current situation, by
assuming that a controller is available to track the retrieved
reference trajectory. In this section, the problem is extended
to that of directly finding a controller to reproduce the move-
ment.

Section 2.2 showed that the objective function (3) under-
lying TP-GMM aims at finding points ξ t minimizing a
weighted sum of quadratic error terms, whose result cor-
responds to a product of Gaussians. A similar function can
be defined for the search of a controller, whose objective is
to find a feedforward and feedback policy (instead of finding
a reference trajectory).

This section depicts the canonical problem of searching a
controller ut for the discrete linear dynamical system (double
integrator)

[
xt+1

ẋt+1

]

︸ ︷︷ ︸
ξ t+1

=
[
I I�t
0 I

]

︸ ︷︷ ︸
A

[
xt
ẋt

]

︸︷︷︸
ξ t

+
[

0
I�t

]

︸ ︷︷ ︸
B

ut . (33)

minimizing the cost

C = (
ξ̂ T − ξ T

)�
Σ−1

sT

(
ξ̂ T − ξ T

)

+
T−1∑
t=1

((
ξ̂ t − ξ t

)�
Σ−1

st

(
ξ̂ t − ξ t

) + u�
t Rt ut

)

= (
μs − ζ

)�
Σ−1

s
(
μs − ζ

) + U� R̃U, (34)

with μs ∈ R
TCD and Σ s = blockdiag(Σ s1 ,Σ s2 , . . . ,Σ sT)

with Σ s ∈ R
TCD×TCD defined as in Eq. (27), and R̃ =

blockdiag(R, R, . . . , R) with R̃ ∈ R
(T−1)D×(T−1)D an

additional cost on the control inputs. The problem corre-
sponds to an unconstrained linear model predictive control
(MPC) problem.

It is worth noting that the objective function (29) used in
the context of GMMwith dynamic features (see Sect. 5.2) is
a special case of (34) with R̃ = 0.

We showed in [16] that TP-GMMcanbeused tofind a con-
troller autonomously regulating the stiffness and damping
behavior of the robot, see also Fig. 2d. Themodel shares links
with optimal feedback control strategies in which deviations
froman average trajectory are corrected onlywhen they inter-
ferewith task performance, resulting in a controller satisfying
minimal intervention principle [94,103]. The approach also
shares similarities with the solution proposed by Medina et
al. in the context of risk-sensitive control for haptic assis-
tance [63], by exploiting the predicted variability to form
a minimal intervention controller (in task space or in joint
space). The retrieved variability and correlation information

123

16 Intel Serv Robotics (2016) 9:1–29

is exploited to generate safe and natural movements within
an optimal control strategy, in accordance with the predicted
range of motion that could correctly reproduce the task in
the current situation. Indeed, we demonstrated in [16] that
TP-GMM is fully compatible with linear quadratic regula-
tion (LQR) strategies, providing a controller adapted to the
current situation with both impedance gains and reference
trajectories varying with respect to external task parameters.

The tracking problem can be solved by different tech-
niques, either exploiting tools from physics, dynamic pro-
gramming or linear algebra [6,10]. It can, for example, be
solved with a batch approach by expressing all future states
xt as explicit function of the state x1. By writing

ξ2 = Aξ1 + Bu1,

ξ3 = Aξ2 + Bu2 = A(Aξ1 + Bu1) + Bu2,
...

ξ T = AT ξ1 + AT−1Bu1 + AT−2Bu2 + · · · + BuT

in a matrix form, we get

⎡
⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
...

ξ T

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ζ

=

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...

AT

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Sξ

ξ1 +

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
B 0 · · · 0
AB B · · · 0
...

...
. . .

...

AT−1B AT−2B · · · B

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Su

⎡
⎢⎢⎢⎣

u1
u2
...

uT−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

,

(35)

with ζ ∈ R
TCD , Sξ ∈ R

TCD×CD , ξ1 ∈ R
CD , Su ∈

R
TCD×(T−1)D and U ∈ R

(T−1)D .
Substituting (35) into (34), we get the cost function

C = (
μs − Sξ ξ1 − SuU

)�
Σ−1

s
(
μs − Sξ ξ1 − SuU

)

+ U� R̃U . (36)

Differentiating with respect to U and equating to zero
yields the sequence of control inputs

Û = (
Su�

Σ−1
s Su + R̃

)−1
Su�

Σ−1
s
(
μs − Sξ ξ1

)
, (37)

corresponding to a damped weighted least squares estimate
(ridge regression).

The sequence of acceleration commands (37) can either
be used as a planning technique to reconstruct a trajectory
with (35) or as a control technique to estimate feedforward
and feedback terms for the current iteration.

The same controller can also be found iteratively with a
Riccati equation, see [16] for details.

It is worth noting that the constraint (33) defines the
same set of relations as (21) and (22) used in trajectory-
GMM (GMM with dynamic features). The main difference
between the two problems is that trajectory-GMM seeks for
a reference trajectory, while the above problem seeks for a
controller. Both problems result in a weighted least squares
solution, with the difference that (37) uses a Tikhonov reg-
ularization term corresponding to the cost R that we set on
the control inputs.

Matlab/GNU Octave implementations of GMM com-
bined with LQR can be found in the examples
demo_batchLQR01.m and
demo_iterativeLQR01.m. Additional examples
can be found in
demo_testLQR01.m - demo_testLQR04.m.

Extension to multiple coordinate systems
The above optimal control problem can be extended to ref-
erence trajectories expressed in P coordinate systems. By
extending the cost in (34) to

C̃ =
P∑
j=1

(
μ

(j)
s − ζ

)�
Σ

(j)
s

−1(
μ

(j)
s − ζ

)
+ U� R̃U, (38)

the sequence of control inputs becomes

Û = (
Su�

Σ−1
s Su + R̃

)−1
Su�

Σ−1
s
(
μs − Sξ ξ1

)
,

with Σ−1
s =

P∑
j=1

Σ
(j)
s

−1
, μs = Σ s

P∑
j=1

Σ
(j)
s

−1
μ

(j)
s ,

whose intermediary variables μs and Σ s corresponds to the
Gaussian resulting from the product of Gaussians with cen-
ters μ

(j)
s and covariances Σ

(j)
s . Namely, solving

Û = argmin
U

P∑
j=1

(
μ

(j)
s − ζ

)�
Σ

(j)
s

−1(
μ

(j)
s − ζ

)
+ U� R̃U

is equivalent to the two step optimization process

μs = argmin
ζ

P∑
j=1

(
μ

(j)
s − ζ

)�
Σ

(j)
s

−1(
μ

(j)
s − ζ

)
,

Û = argmin
U

(
μs − ζ

)�
Σ−1

s
(
μs − ζ

) + U� R̃U,

showing that the combination of TP-GMMwith LQR corre-
sponds to an optimal controller acting in multiple coordinate
systems.

The problem can be viewed as a form of inverse optimal
control (IOC) [1,2,24], or more precisely, as a rudimentary

123

Intel Serv Robotics (2016) 9:1–29 17

Demonstration: holding a cup horizontally

Demonstration: holding a sugar cube above the cup

Reproduction with perturbation: holding a sugar cube above the cup

Reproduction with perturbation: holding a cup horizontally + holding a sugar cube above the cup

Fig. 9 Learning of two behaviors with the Baxter robot at Idiap. The
taught tasks consist of holding a cup horizontally with one hand and
holding a sugar cube above the cup with the other hand. The demon-
strations are provided in two steps by kinesthetic teaching, namely by
holding the arms of the robot and moving them through the task while
the robot compensates for the effect of gravity on its limbs. This pro-
cedure allows the user to move the robot arms without feeling their
weight and without feeling the motors in the articulations, while the
sensors are used to record the movement. Here, the data are recorded in
several frames of reference (top image). During reproduction, the robot
is controlled by following a minimal intervention principle, where the
impedance parameters of the robot (stiffness and damping of a virtual

spring pulling the robot arms) are automatically set in accordance to
the extracted variation and coordination patterns. First sequence brief
demonstration to show the robot how to hold a cup horizontally. Second
sequence brief demonstration to show how to hold a sugar cube above
the cup. Third sequence manual displacement of the left arm to test
the learned behavior (the coordination of the two hands is successfully
retrieved). Last sequence combination of the two learned tasks within a
minimal intervention controller. Here, the user pushes the robot to show
that the robot remains soft for perturbations that do not conflict with
the acquired task constraints (automatic exploitation of the redundant
degrees of freedom that do not conflict with the task)

123

18 Intel Serv Robotics (2016) 9:1–29

Table 3 Task parameters as
candidate projection operators
(with affine transformations
defined by At, j and bt, j)

q̂(j)
t,i = I μ

(j)
i + 0 (39)

q̂(j)
t,i = J†(qt−1) μ

(j)
i + qt−1 − J†(qt−1)xt−1 (40)

q̂(j)
t,i = J†(qt−1)A

O
t μ

(j)
i + qt−1 + J†(qt−1)

[
bOt − xt−1

]
(41)

q̂(j)
t,i = N(qt−1) μ

(j)
i + J†(qt−1)J(qt−1)qt−1 (42)

q̂(j)
t,i = N(qt−1) J̃

†
(qt−1) μ

(j)
i + qt−1 − N(qt−1) J̃

†
(qt−1) xt−1 (43)

q̂(j)
t,i = N(qt−1) J̃

†
(qt−1)A

O
t︸ ︷︷ ︸

At, j

μ
(j)
i + qt−1 + N(qt−1) J̃

†
(qt−1)

[
bOt − xt−1

]
︸ ︷︷ ︸

bt, j

, (44)

form of IOC which can be solved analytically. Namely, it
can provide a controller without exploratory search, at the
expense of being restricted to simple forms of objectives
(weighted sumsof quadratic errorswhoseweights are learned
from the demonstrations). This dual view can be exploited
in further research to bridge action-level and goal-level imi-
tation or to provide better initial estimates in IOC problems.

Figure 9 shows that a TP-GMM with a single Gaussian,
combined with a minimal intervention controller based on
LQR, can be used to encode and retrieve various behaviors.

Matlab/GNU Octave implementations of TP-GMM
combined with linear quadratic optimal control can be
found in demo_TPbatchLQR01.m and
demo_TPbatchLQR02.m.
Additional examples with iterative computation (with
finite or infinite horizon) instead of batch computation
can be found in demo_TPGMR_LQR01.m and
demo_TPGMR_LQR02.m, with as baseline compari-
son in demo_TPGMR_DS01.m (controller with prede-
fined gains).

7 Extension to task parameters in the form of
projection constraints

Thus far, this tutorial considered problems in which the task
parameters were related to position, orientation or shape of
objects in a Cartesian space. However, the use of TP-GMM
is not limited can be extended to other forms of locally
linear transformations or projections. The consideration of
non square At, j matrices is, for example, relevant for the
consideration of soft constraints in both configuration and
operational spaces (through Jacobian operators), see [15] for
a preliminary work in this direction.

It can also provide a principled way to learn nullspace
constraints in a probabilistic form. The different frames cor-
respond in this case to various candidate subspace projections
of the movement, with statistical information extracted from
the different projections.

An important and challenging category of applications
includes the problems requiring priority constraints [37,58,
78,96,104]. Such constraints can be learned and encoded
within aTP-GMMfroman initial set of task hierarchies given
as potential candidates to describe the observed skill. The
probabilistic encoding is exploited here to discover in which
manner the subtasks are prioritized.

For a controller handling constraints both in configuration
and operational spaces, some of the most common candidate
projection operators are presented in Table 3, covering a very
wide range of robotics applications.

Note here that the Gaussian product is computed in con-
figuration space (q and x represent, respectively, poses in
joint space and task space). Equation (39) describes joint
space constraints in a fixed frame. It corresponds to the
canonical frame defined by At, j = I (identity matrix) and
bt, j = 0. Equation (40) describes absolute position con-
straints (in operational space), where J† is the Jacobian
pseudoinverse used as least-norm inverse kinematics solu-
tion. Note that Eq. (40) describes a moving frame, where
the task parameters change at each iteration (observation
of a changing pose in configuration space). Equation (41)
describes relative position constraints, where the constraint
in task space is related to an object described at each time step
t by a position bOt and an orientationmatrix AO

t in task space.
Equation (42) describes nullspace/priority constraints in joint
space, with N = I − J† J a nullspace projection operator.
Equation (43) describes absolute position nullspace/priority
constraints, where the secondary objective is described in
task space (for a point in the kinematic chain with corre-
sponding Jacobian J̃). Finally, Eq. (44) describes relative
position nullspace/priority constraints.

The above equations can be retrieved without much effort
by discretizing (with an Euler approximation) the standard
inverse kinematics and nullspace control relations that can
be found in most robotics textbooks, see, e.g., [5].

Figure 10 shows an example of constraints in configura-
tion and operational spaces. The task requires the robot to
consider, in parallel and in series, constraints in task space
(pointing to objects) and in joint space (maintaining a pre-
ferred posture). The frame in joint space is defined by Eq.

123

Intel Serv Robotics (2016) 9:1–29 19

Fig. 10 Example of TP-GMM with constraints in both joint space
(frame 1) and task space (frames 2–4). The task consists of pointing
at two objects (red and blue) and then coming back to a neutral pose.
Left the demonstrations show a preferred posture employed to com-
plete the task (first robot link oriented to the right and the other two
links oriented upwards). Right reproduction attempts by synthesizing
a motion for the newly encountered situations (new position of blue
and red objects), which is achieved through GMR. Each row in the
graph shows the configuration at a different time step of the movement.
We can see that the generated motion satisfies the demonstrated con-
straints (pointing sequentially at the two objectswhile trying tomaintain
a preferred configuration in joint space). Note here that the motion is
generated in an online manner, which allows the robot to handle objects
that are moving during the execution of the pointing gestures (color
figure online)

(42), and the frames in task space are defined by Eq. (41) for
the two objects and by Eq. (40) for the motion in the robot
frame, with x encoding Euler angles and J describing the
orientation part of the end-effector Jacobian.

Figure 11 presents a TP-GMM example with task para-
meters taking the form of nullspace bases. The frames are
defined by Eqs. (41) and (44) with two different combina-

tions of nullspaces and Jacobians corresponding to the left
and right arm.

Matlab/GNU Octave implementations of TP-GMM
with task parameters in both operational and configura-
tion spaces (including priority constraints) are provided
in demoIK_pointing_TPGMM01.m and
demoIK_nullspace_TPGMM01.m.

8 Comparisons with other task-adaptive
approaches

This section aims at comparing different techniques to adapt
movements to new situations, using the task adaptation prob-
lem depicted in Figs. 1 and 2.

Qualitative comparisons for the task-parameterized
approaches presented throughout the article are presented
in Figs. 12 and 13.

Figure 12 shows that GMM/GMR MFA/GMR and
trajectory-GMM could all retrieve suitable trajectories for
each of the new situations.

Figure 13 shows that the proposed task-parameterized
approach can also be employed with data-driven encoding
strategies, at the expense of a slower reproduction process
that depends on the number of demonstrations. For this sim-
ple dataset, a kernel-based approach (first row) generated
new trajectories that are similar to the trajectories generated
by the weighted least-squares approach (second row).

A Matlab/GNU Octave implementation of data-driven
task-parameterized approach is provided in
demo_TPGP01.m.

The same task adaptation problem was also tested with
two baseline approaches that are described next.

8.1 Gaussian process regression (GPR) with trajectory
models

An alternative way of handling task-parameterized move-
ments is to fit a model to each demonstration and associate it
with a task-specific feature, goal, style variable or perceptual
feedback, see, for example, [21,29,44,48,51,60,97].

Such approach is typically better suited for task parame-
ters that do not change during the demonstration. It can be
achieved in a non-parametric or parametric way, by either
encoding the relationships between the raw trajectory vari-
ables and the task parameters (first row in Fig. 14) or by
encoding the relationships between the trajectory model

123

20 Intel Serv Robotics (2016) 9:1–29

Fig. 11 Illustration of the encoding of priority constraints in a TP-
GMM. The top row shows 3 demonstrations with a bimanual robot
composed of 5 articulations (the color goes from light gray to black
to show the evolution of the movement). The task consists of track-
ing two objects with the left and right end-effectors (the path of the
objects are depicted in red). In some parts of the demonstrations, the

two objects could not be reached, and the demonstrator either made a
compromise (left graph) or gave priority to the left or right hand (mid-
dle and right graphs). The bottom row shows reproduction attempts for
new trajectories of the two objects.We can see that, although faced with
different situations, the priority constraints are reproduced similarly to
the corresponding demonstrations (color figure online)

parameters and the task parameters (second row in Fig. 14,
see also Fig. 1).

In this second approach, the output variables Θ are the
model parameters and the query points Q are the task para-
meters. The reproduction step consists of retrieving new
model parameters Θd from new task parameters Qd , which
can, for example, be achieved withGaussian process regres-
sion (GPR) [75]. After centering the training data, the joint
distribution of the demonstrated and new outputs can be esti-
mated as

[
Θ

Θd

]
= N

(
0,
[
K (Q, Q) + σ 2 I K (Q, Qd)

K (Qd , Q) K (Qd , Qd)

])
, (45)

where Q is the concatenation of query points qm , and Θ the
concatenation of outputs θm , withm ∈ {1, . . . , M} (M is the
number of demonstrations). Squared exponential covariance
functions K are considered here.

By using the conditional probability property of normal
distributions, the expected outputs Θ̂ associatedwith the new
query points Qd are given by

Θ̂ = K (Qd , Q) [K (Q, Q) + σ 2 I]−1Θ, (46)

with the covariance of the prediction given by

Σ̂
Θ = K (Qd , Qd) − K (Qd , Q)[K (Q, Q)

+ σ 2 I]−1K (Q, Qd). (47)

The above formulation can be used with various trajectory
models. For a fair comparison,GMMencoding of trajectories
was considered, with GMR used to regenerate the trajec-
tories. Thus, a GMM θm = {πi,m,μi,m,Σ i,m}Ki=1 is fit to

each demonstration ξm , with associate query point qm =
{Am, j , bm, j }Pj=1 describing the demonstration context. After

all demonstrations are collected, [K (Q, Q) + σ 2 I]−1Θ in
Eqs. (45), (46) can be precomputed.

During reproduction, a new query point Qd with Qd =
{A j , b j }Pj=1 is used to retrieve a new GMM using Eq. (46),
which is then used to retrieve a new trajectory through GMR.

The first and second row of Fig. 14 show generalization
results for the use of GPR with a non-parametric (first row)
and parametric (second row) encoding of the data. Although
GPR can easily handle situations within the range of the
demonstrations, its generalization capability can degrade if
the query points are too far from the demonstrations (it col-
lapses to an average of the models), which is confirmed by
the results of the experiment.

A Matlab/GNU Octave implementation of GPR with
trajectory models is provided in demo_GPR01.m.

8.2 Parametric HMM/GMM (PHMM/PGMM)

Another approach to handle task-parameterized movements
is to encode all demonstrations in a single mixture model,
where each cluster in themixture learns the relations between
the task parameters and the motion. The parametric hid-
den Markov model (PHMM) is a representative approach
in this category. It was originally introduced for recognition
and prediction of gestures [102] and extended in robotics to
movement generation [52,105]. We will refer to a paramet-
ric Gaussian mixture model (PGMM) when the transition

123

Intel Serv Robotics (2016) 9:1–29 21

Fig. 12 Generalization capability of three model-based task-
parameterized approaches. Each row shows the results for a different
approach, and each column shows a different situation (with increas-

ing generalization complexity). In each graph, the four demonstrations
and the associated adapted model parameters are depicted in semi-
transparent colors

and initial state probabilities are not taken into account in the
likelihood estimation.7

The original model modulates in each cluster the center of
aGaussian distribution through an affine relationshipwith the
task parameters. This is achieved by concatenating the task
parameters in a vector Qt as in the above, and defining the
centers of the Gaussians in a task-adaptive manner with

μt,i = Zi
[
Q�

t , 1
]�

, (48)

7 Note here that the term parametric in PGMM/PHMM (referring to
task parameters) is ambiguous because a standard GMM can also be
described as being parametric (referring to model parameters).

where Z̃i describe the model parameters to be estimated. In
the case of affine relationships, this can be done with EM, see
“Appendix 4” for details. The other parameters of the model
are estimated as the standard GMM formulation.

After having trained the model, each new set of task para-
meters concatenated in Qt will provide newGaussian centers
μt,i in theGMMusingEq. (48),whereGMRcan then be used
to retrieve a new trajectory.

The last row of Fig. 14 shows generalization results with
PGMM. The main drawback of this model is that only the
centers of the Gaussians are adapted to the current situa-
tion. The covariances are estimated as constant matrices Σ i ,
estimated with the standard EM procedure for GMM. This

123

22 Intel Serv Robotics (2016) 9:1–29

Fig. 13 Generalization capability of two data-driven task-
parameterized approaches. Each row shows the results for a different
approach, and each column shows a different situation (with increasing

generalization complexity). In each graph, the four demonstrations
and the associated adapted model parameters are depicted in semi-
transparent colors

limitation is confirmed in the experiment, where EM often
converged to local optima that were unable to extract the
underlying structures of the task for the encoding of contin-
uous movements.

A Matlab/GNU Octave implementation of parametric
GMM is provided in demo_stdPGMM01.m. Figures
12, 13 and 14 were generated using the Matlab/GNU
Octave codes benchmark_DS_*.m, with * to be
replaced by the corresponding method.

9 Discussion and future work

Recent service robots are provided with numerous and/or
high-resolution sensors and actuators. This increase of
dimensionality is problematic in applications where the
sample size remains bounded by the cost of data acquisi-
tion. There is a non-negligible number of applications that
would require models capable of targeting wide-ranging
data. Namely, models that could start learning from a small
number of demonstrations, while still being able to continue
learning once more data become available. Robot learn-

ing from demonstration is one such field, whose learning
challenge often requires the design of appropriate domain-
specific priors to ensure that generalization can be achieved
from small training sets.

We showed throughout this article that an efficient and
versatile prior knowledge for task adaptation is to consider
that the task parameters describing the current situation (body
and workspace configuration that the robot encounters) can
be represented as affine transformations (including frames of
reference, coordinate systems or projections).

The above prior requires the experimenter to provide the
robot with a set of candidate frames that could potentially
be relevant for the task. We showed that the representation
as affine transformations has a simple interpretation, can be
easily implemented and remains valid for a wide range of
skills that a service robot can encounter. It was shown in [4]
thatwhen frames aremissing during reproduction (e.g., when
occlusions occur or when frames are collected at different
rates), the system is still able to reproduce an appropriate
behavior for the current circumstance.

A limitation of the current TP-GMM approach is that it
requires the experimenter to provide an initial set of frames
that will act as candidate projections/transformations of the
data that might potentially be relevant for the task. The num-

123

Intel Serv Robotics (2016) 9:1–29 23

Fig. 14 Generalization capability of three alternative approaches to
task parameterization. Each row shows the results for a different
approach, and each column shows a different situation (with increas-

ing generalization complexity). In each graph, the four demonstrations
and the associated adapted model parameters are depicted in semi-
transparent colors

ber of frames can be overspecified by the experimenter (e.g.,
by providing an exhaustive list), but it comes at the expense
of requiring more demonstrations to obtain sufficient statis-
tics to discard the frames that have no role in the task. The
problem is not different from the problem of selecting the
variables that will form the feature vectors fed to a learning
process. The only difference lies in the selection of frames in
the form of affine transformations that are most often asso-
ciated with easily interpretable behaviors.

In practice, the experimenter selects objects and loca-
tions in the robot kinematic chain that might be relevant for
the task, which are typically the end-effectors of the robot,
where tools, grippers or parts in contact with the environ-

ment are mounted, see also discussion in [45].8 The issue
of predefining an initial set of frames is not restrictive when
the number of frames remains reasonably low (e.g., when
they come from a set of predefined objects tracked with
visual markers in a lab setting). However, for perception
in unconstrained environment, the number of frames could
grow quickly (e.g., detection of phantom objects), while the
number of demonstrations remains low. Further work is thus
required to detect redundant frames or remove irrelevant
frames, as well as to automatically determine in which man-

8 Full end-effector poses or decoupled position and orientation can be
considered here.

123

24 Intel Serv Robotics (2016) 9:1–29

ner the frames are coordinated with each other and locally
contribute to the achievement of the task. A promising route
for further investigation is to exploit the recent developments
inmultilinear algebra and tensor analysis [49,85] that exploit
the multivariate structure of the data for statistical analysis
and compression,without transforming it to amatrix form (by
processing data jointly in spatial and spectral ways, instead
of flattening the higher-order tensor dataset).

In service robotics, movements often need to be expressed
simultaneously inmultiple coordinate systems and are stored
as multidimensional arrays (tensor-variate data). Multilinear
algebra could thus provide a principled method to simultane-
ously extract eigenframes, eigenposes and eigentrajectories.
Multiway analysis of tensor-variate data offers a rich set
of data decomposition techniques, whose advantage has
been demonstrated in computer imaging fields such as face
processing [98], video analysis [107], geoscience [76] or neu-
roimaging [8], but which remains an uncharted territory in
robotics and motor skills learning.

Another open route for further investigation concerns the
use of a richer set of task parameters. A wide range of motor
skills could potentially be adapted to this framework, by
exploiting the functional nature of task parameters to build
models that learn the local structure of the task from a low
number of demonstrations. Indeed, most task parameteriza-
tion in robot control can be related to some form of frames
of reference, coordinate systems, projections or basis func-
tions, where the involvement of the frames can change during
the execution of the task, with transformations represented as
locally linear projection operators (e.g., Jacobians for inverse
kinematics, kernel matrix for nullspace projections, etc.). A
wider range of robot skills could be defined in such way, see,
e.g., the possible tasks described in §6.2.1 of [5].

The potential applications are diverse, with an objective in
line with the original purpose of motor primitives to be com-
posed together serially or in parallel [28]. TP-GMM could
potentially be employed as a tool to revisit existing robotics
techniques in a probabilistic form.This includes the consider-
ation of soft constraints in both configuration and operational
spaces, where the frames would correspond to different sub-
space projections of the same movement, with the extracted
regularities employed to learn bimanual tasks or whole-body
movements.

One of the important next challenges in robot learning
will be to extend the concept of movement primitives to a
broader range of behaviors including impedance, reaction
and collaboration primitives.

10 Conclusion

In service robotics, movements often need to be modulated
by external parameters describing the current situation (body

and workspace configuration that the robot encounters). This
tutorial showed that in many cases, the task parameters can
be represented as affine transformations. Based on this prior
assumption, a task-parameterized model was presented by
exploiting this structure to learn a skill from a small number
of demonstrations.

The proposed approach was implemented and tested with
various statistical encoding strategies, including standard
mixture models, kernel approaches and subspace clustering
methods. It was shown that a wide variety of problems in
robotics can be reinterpreted by introducing such relation
between the task parameters and the model parameters. The
approach was demonstrated in a series of control and plan-
ning problems in operational and configuration spaces. Each
section of the article was accompanied by source codes to
help the practitioners study, test and extend the proposed
approach.

Appendix 1: Expectation-maximization for
TP-GMM parameters estimation

In order to estimate the parameters of a TP-GMM, the fol-
lowing two steps are repeated until convergence:
E-step:

ht,i =
πi
∏P

j=1N
(
X(j)
t

∣∣∣ μ
(j)
i ,Σ

(j)
i

)

∑K
k=1 πk

∏P
j=1N

(
X(j)
t

∣∣∣ μ
(j)
k ,Σ

(j)
k

) . (49)

M-step:

πi ←
∑N

t=1 ht,i
N

, (50)

μ
(j)
i ←

∑N
t=1 ht,i X

(j)
t∑N

t=1 ht,i
, (51)

Σ
(j)
i ←

∑N
t=1 ht,i

(
X(j)
t − μ

(j)
i

)(
X(j)
t − μ

(j)
i

)�

∑N
t=1 ht,i

. (52)

In practice, it is recommended to start EM from a coarse
estimate of the parameters. For example, based on an equal
split in time of motion segments, based on a geometric seg-
mentation with k-means [59], based on moments or spectral
approaches with circular covariances [42,53,84] or based on
an iterative clustering algorithm [83].

Model selection (i.e., determining the number of Gaus-
sians in the GMM) is compatible with the techniques
employed in standard GMM, such as the use of a Bayesian
information criterion [82], Dirichlet process [22,50,65,74],
iterative pairwise replacement [83], spectral clustering [53,
69,84] or based on segmentation points [56]. Model selec-

123

Intel Serv Robotics (2016) 9:1–29 25

tion in mixture modeling shares a similar core challenge as
that of data-driven sparse kernel regression techniques,which
requires to find the right bandwidth parameters to select a
subset of existing/new datapoints that are the most represen-
tatives of the dataset.

Appendix2:Expectation-maximization forTP-MFA
and TP-MPPCA parameters estimation

In TP-MFA, the generative model for the j th frame and
i th mixture component assumes that a D-dimension random
vector X(j) is modeled using a d-dimension vector of latent
(unobserved) factors z(j)

X(j) = Λ
(j)
i z(j) + μ

(j)
i + ε

(j)
i , (53)

whereμ
(j)
i ∈ R

D is themeanvector of the i th factor analyzer,
z(j) ∼ N (0, I) (the factors are assumed to be distributed
according to a zero-mean normal with unit variance), and
ε
(j)
i ∼ N (0,Ψ (j)

i) is a centered normal noise with diagonal

covariance Ψ
(j)
i .

This diagonality is a key assumption in factor analysis.
Namely, the observed variables are independent given the
factors, and the goal of TP-MFA is to best model the covari-
ance structure of X(j). It follows from this model that the
marginal distribution of X(j) for the i th component is

X(j) ∼ N
(
μ

(j)
i , Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i

)
, (54)

and the joint distribution of X(j) and z(j) is

[
X(j)

z(j)

]
∼ N

([
μ

(j)
i
0

]
,

[
Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i Λi

Λ
(j)
i

�
I

])
.

(55)

The above can be used to show that the d factors are infor-
mative projections of the data, which can be computed by
Gaussian conditioning, corresponding to the affine projec-
tion

z(j)|X(j) ∼

B(j)
i︷ ︸︸ ︷

Λ
(j)
i

�(
Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i

)−1 (
μ

(j)
i − X (j)

)
.

(56)

As highlighted by [32], the same process can be used to

estimate the secondmoment of the factorsE
(
z(j)z(j)

�|X(j)
)
,

which provides a measure of uncertainty in the factors that
has no analogue in PCA. This relation can be exploited to
derive an EM algorithm (see for example [32] or [62]) to

train a TP-MFA model of K components with parameters{
πi , {μ(j)

i ,Λ
(j)
i ,Ψ

(j)
i }Pj=1

}K
i=1, yielding an EM parameters

estimation strategy.
The following two steps are repeated until convergence:

E-step:

ht,i =
πi
∏P

j=1N
(
X(j)
t

∣∣∣ μ
(j)
i , Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i

)

∑K
k=1 πk

∏P
j=1N

(
X(j)
t

∣∣∣ μ
(j)
k , Λ

(j)
k Λ

(j)
k

� + Ψ
(j)
k

) .

(57)

M-step:

πi ←
∑N

t=1 ht,i
N

, (58)

μ
(j)
i ←

∑N
t=1 ht,iX

(j)
t∑N

t=1 ht,i
, (59)

Λ
(j)
i ← S(j)

i B(j)
i

�(
I − B(j)

i Λ
(j)
i + B(j)

i S(j)
i B(j)

i

�)−1
,

(60)

Ψ
(j)
i ← diag

(
diag

(
S(j)
i − Λ

(j)
i B(j)

i S(j)
i

))
, (61)

computed with the help of the intermediary variables

S(j)
i =

∑N
t=1 ht,i

(
X(j)
t − μ

(j)
i

)(
X(j)
t − μ

(j)
i

)�

∑N
t=1 ht,i

, (62)

B(j)
i = Λ

(j)
i

�(
Λ

(j)
i Λ

(j)
i

� + Ψ
(j)
i

)−1
. (63)

Alternatively, an update step simultaneously computing
μ

(j)
i and Λ

(j)
i can be derived, see [32] for details.

Similarly, the M-step in TP-MPPCA is given by

Λ̃
(j)
i ← S(j)

i Λ
(j)
i

(
Iσ (j)

i

2 + M(j)
i

−1
Λ

(j)
i

�
S(j)
i Λ

(j)
i

)−1
,

(64)

Ψ
(j)
i ← Iσ (j)

i

2
, (65)

computed with the help of the intermediary variables

S(j)
i =

∑N
t=1 ht,i

(
ξ

(j)
t − μ

(j)
i

)(
ξ

(j)
t − μ

(j)
i

)�

∑N
t=1 ht,i

, (66)

M(j)
i = Λ

(j)
i

�
Λ

(j)
i + Iσ (j)

i

2
, (67)

σ
(j)
i

2 = 1

D
tr
(
S(j)
i − S(j)

i Λ
(j)
i M(j)

i

−1
Λ̃

(j)
i

�)
, (68)

where Λ
(j)
i is replaced by Λ̃

(j)
i at each iteration, see [93] for

details.

123

26 Intel Serv Robotics (2016) 9:1–29

Appendix 3: Gaussian mixture regression approxi-
mated by a single normal distribution

Let us consider a datapoint ξ t distributed as in Eq. (6), with
P(ξ t) = P(ξI

t , ξO
t) being the joint distribution describing

the data. The conditional probability of an output given an
input is

P(ξO
t |ξI

t) = P(ξI
t , ξO

t)

P(ξI
t)

=
∑K

i=1 P(ξI
t , ξO

t |zi)P(zi)

P(ξI
t)

,

(69)

where zi represents the i th component of the GMM.Namely,

P(ξO
t |ξI

t) =
K∑
i=1

P(ξO
t |ξI

t , zi)
P(ξI

t |zi)P(zi)

P(ξI
t)

=
K∑
i=1

hi (ξ
I
t) N

(
μ̂

O
i (ξI

t), Σ̂
O
i

)
. (70)

The conditional mean can be computed as

μ̂O
t = E(ξO

t |ξI
t) =

∫
ξO
t P(ξO

t |ξI
t) dξO

t

=
∫

ξO
t

K∑
i=1

hi (ξ
I
t) N

(
μ̂

O
i (ξI

t), Σ̂
O
i

)

=
K∑
i=1

hi (ξ
I
t) μ̂

O
i (ξI

t). (71)

In order to evaluate the covariance, we calculate

cov(ξO
t |ξI

t) = E(ξO
t ξO

t
�|ξI

t) − E(ξO
t |ξI

t)E(ξO
t

�|ξI
t). (72)

We have that

E(ξO
t ξO

t
�|ξI

t) =
∫

ξO
t ξO

t
�P(ξO

t |ξI
t) dξO

t

=
∫ K∑

i=1

hi (ξ
I
t) ξO

t ξO
t

�N
(
μ̂

O
i (ξI

t), Σ̂
O
i

)
dξO

t

=
K∑
i=1

hi (ξ
I
t)

∫
ξO
t ξO

t
�N

(
μ̂

O
i (ξI

t), Σ̂
O
i

)
dξO

t .

(73)

By using Eq. (72) with a Gaussian distribution, we obtain

E(ξO
t ξO

t
�|ξI

t) =
K∑
i=1

hi (ξ
I
t)Σ̂

O
i

+
K∑
i=1

hi (ξ
I
t) μ̂

O
i (ξI

t)
(
μ̂

O
i (ξI

t)
)�

. (74)

Combining (72) with (74) we finally have that (see also
[90])

Σ̂O
t = cov(ξO

t |ξI
t) =

K∑
i=1

hi (ξ
I
t)
(
Σ̂

O
i + μ̂

O
i (ξI

t) μ̂
O
i (ξI

t)
�)

− μ̂
O
t μ̂

O
t

�
. (75)

Appendix 4: Expectation-maximization for para-
metric GMM parameters estimation

The following two steps are repeated until convergence, see
[102] for details:
E-step:

ht,i = πiN
(
ξ t
∣∣ μt,i ,Σ i

)
∑K

k=1 πkN
(
ξ t
∣∣ μt,k,Σk

) . (76)

M-step:

πi ←
∑N

t=1 ht,i
N

, (77)

Zi ←
(

N∑
t=1

ht,i ξ t
[
Q�

t , 1
])(N∑

t=1

ht,i
[
Q�

t , 1
]�[Q�

t , 1
])−1

,

(78)

Σ i ←
∑N

t=1 ht,i (ξ t − μt,i)(ξ t − μt,i)
�

∑N
t=1 ht,i

, (79)

where μt,i = Zi
[
Q�

t , 1
]�

. (80)

References

1. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse rein-
forcement learning. In: Proceedings of international conference
on machine learning (ICML)

2. Akgun B, Thomaz A (2015) Simultaneously learning actions and
goals from demonstration. Autono Robots 1–17. doi:10.1007/
s10514-015-9448-x

3. Alissandrakis A, Nehaniv CL, Dautenhahn K (2006) Action, state
and effect metrics for robot imitation. In: Proceedings of IEEE
international symposium on robot and human interactive commu-
nication (Ro-Man), pp 232–237. Hatfield, UK

4. Alizadeh T, Calinon S, Caldwell DG (2014) Learning from
demonstrations with partially observable task parameters. In:
Proceedings of IEEE international conference on robotics and
automation (ICRA), pp 3309–3314. Hong Kong, China

5. Antonelli G (2014) Underwater robots, 3rd edn. Springer, Berlin
6. AstromKJ,MurrayRM(2008)Feedback systems: an introduction

for scientists and engineers. Princeton University Press, Princeton
7. Baek J, McLachlan GJ, Flack LK (2010) Mixtures of factor ana-

lyzers with common factor loadings: applications to the clustering
and visualization of high-dimensional data. IEEE Trans Pattern
Anal Mach Intell 32(7):1298–1309

123

http://dx.doi.org/10.1007/s10514-015-9448-x
http://dx.doi.org/10.1007/s10514-015-9448-x

Intel Serv Robotics (2016) 9:1–29 27

8. Basser PJ, Pajevic S (2003) A normal distribution for tensor-
valued random variables: applications to diffusion tensor MRI.
IEEE Trans Med Imaging 22(7):785–794

9. Bengio Y (2009) Learning deep architectures for AI. Found
Trends Mach Learn 2(1):1–127

10. Borrelli F, Bemporad A, Morari M (2015) Predictive control for
linear and hybrid systems. Cambridge University Press, Cam-
bridge In preparation

11. Bouveyron C, Brunet C (2014) Model-based clustering of high-
dimensional data: a review. Comput Stat Data Anal 71:52–78

12. Bouveyron C, Girard S, Schmid C (2007) High-dimensional data
clustering. Comput Stat Data Anal 52(1):502–519

13. Brand M, Hertzmann A (2000) Style machines. In: Proceed-
ings of ACM international conference on computer graphics and
interactive techniques (SIGGRAPH), pp 183–192. New Orleans,
Louisiana, USA

14. Calinon S, Alizadeh T, Caldwell DG (2013) On improving the
extrapolation capability of task-parameterizedmovementmodels.
In: Proceedings of IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), pp 610–616. Tokyo, Japan

15. Calinon S, Billard AG (2009) Statistical learning by imitation of
competing constraints in joint space and task space. Adv Robot
23(15):2059–2076

16. Calinon S, Bruno D, Caldwell DG (2014) A task-parameterized
probabilistic model with minimal intervention control. In: Pro-
ceedings of IEEE international conference on robotics and
automation (ICRA), pp 3339–3344. Hong Kong, China

17. Calinon S, D’halluin F, Sauser EL, Caldwell DG, Billard AG
(2010) Learning and reproduction of gestures by imitation: an
approach based on hidden Markov model and Gaussian mixture
regression. IEEE Robot Autom Mag 17(2):44–54

18. CalinonS,Guenter F,BillardAG (2007)On learning, representing
and generalizing a task in a humanoid robot. IEEETrans SystMan
Cybern B 37(2):286–298

19. Calinon S, Kormushev P, Caldwell DG (2013) Compliant skills
acquisition and multi-optima policy search with EM-based rein-
forcement learning. Robot Auton Sys 61(4):369–379

20. Calinon S, Li Z, Alizadeh T, Tsagarakis NG, Caldwell DG (2012)
Statistical dynamical systems for skills acquisition in humanoids.
In: Proceedings of IEEE international conference on humanoid
robots (humanoids), pp 323–329. Osaka, Japan

21. Campbell CL, Peters RA, Bodenheimer RE, Bluethmann WJ,
Huber E, Ambrose RO (2006) Superpositioning of behav-
iors learned through teleoperation. IEEE Trans Robot 22(1):
79–91

22. Chatzis SP, Korkinof D, Demiris Y (2012) A nonparamet-
ric Bayesian approach toward robot learning by demonstration.
Robot Auton Syst 60(6):789–802

23. Dempster AP, Laird NM, Rubin DB (1977) Maximum likeli-
hood from incomplete data via the EM algorithm. J R Stat Soc B
39(1):1–38

24. Doerr A, Ratliff N, Bohg J, Toussaint M, Schaal S (2015) Direct
loss minimization inverse optimal control. In: Proceedings of
robotics: science and systems (R:SS), pp 1–9. Rome, Italy

25. Dong S, Williams B (2012) Learning and recognition of hybrid
manipulation motions in variable environments using probabilis-
tic flow tubes. Int J Soc Robot 4(4):357–368

26. Field M, Stirling D, Pan Z, Naghdy F (2015) Learning trajecto-
ries for robot programing by demonstration using a coordinated
mixture of factor analyzers. IEEE Trans Cybern (in press)

27. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite
mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–
396

28. Flash T, Hochner B (2005) Motor primitives in vertebrates and
invertebrates. Curr Opin Neurobiol 15(6):660–666

29. Forte D, Gams A, Morimoto J, Ude A (2012) On-line motion
synthesis and adaptation using a trajectory database. Robot Auton
Syst 60(10):1327–1339

30. Furui S (1986) Speaker-independent isolated word recognition
using dynamic features of speech spectrum. IEEE Trans Acoust
Speech Signal Process 34(1):52–59

31. Gales MJF (1999) Semi-tied covariance matrices for hidden
Markovmodels. IEEE Trans SpeechAudio Process 7(3):272–281

32. Ghahramani Z, Hinton GE (1997) The EM algorithm for mixtures
of factor analyzers. Tech. rep., University of Toronto

33. Ghahramani Z, Jordan MI (1994) Supervised learning from
incomplete data via an EM approach. In: Cowan JD, Tesauro
G, Alspector J (eds) Advances in neural information process-
ing systems (NIPS), vol 6. Morgan Kaufmann, San Francisco,
pp 120–127

34. Greggio N, Bernardino A, Dario P, Santos-Victor J (2014) Effi-
cient greedy estimation of mixture models through a binary tree
search. Robot Auton Syst 62(10):1440–1452

35. GrimesDB,ChalodhornR,RaoRPN(2006)Dynamic imitation in
a humanoid robot through nonparametric probabilistic inference.
In: Proceedings of robotics: science and systems (R:SS), pp 1–8

36. Gross R, Shi J (2001) The CMU motion of body (MoBo) data-
base. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA

37. Hak S, Mansard N, Stasse O, Laumond JP (2012) Reverse con-
trol for humanoid robot task recognition. IEEE Trans Syst Man
Cybern B Cybern 42(6):1524–1537

38. Hersch M, Guenter F, Calinon S, Billard AG (2006) Learning
dynamical system modulation for constrained reaching tasks.
In: Proceedings of IEEE international conference on humanoid
eobots (humanoids), pp 444–449. Genova, Italy

39. Hersch M, Guenter F, Calinon S, Billard AG (2008) Dynamical
system modulation for robot learning via kinesthetic demonstra-
tions. IEEE Trans Robot 24(6):1463–1467

40. Hinton GE (2007) Learning multiple layers of representation.
Trends Cogn Sci 11(10):428–434

41. Hogan N, Sternad D (2012) Dynamic primitives of motor behav-
ior. Biol Cybern 106(11–12):727–739

42. Hsu D, Kakade SM (2013) Learning mixtures of spherical
Gaussians: moment methods and spectral decompositions. In:
Conference on innovations in theoretical computer science, pp
11–20

43. Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013)
Dynamical movement primitives: learning attractor models for
motor behaviors. Neural Comput 25(2):328–373

44. Inamura T, Toshima I, Tanie H, Nakamura Y (2004) Embodied
symbol emergence basedonmimesis theory. Int JRobotRes 23(4–
5):363–377

45. Jetchev N, Toussaint M (2014) Discovering relevant task spaces
using inverse feedback control. Auton Robot 37(2):169–189

46. Kelso JAS (2009) Synergies: atoms of brain and behavior. In:
Sternad D (ed) A multidisciplinary approach to motor con-
trol. Advances in Experimental Medicine and Biology, vol 629.
Springer, Heidelberg, pp 83–91

47. Khansari-Zadeh SM, Billard A (2011) Learning stable non-linear
dynamical systems with Gaussian mixture models. IEEE Trans
Robot 27(5):943–957

48. Kober J, Wilhelm A, Oztop E, Peters J (2012) Reinforcement
learning to adjust parametrizedmotor primitives to new situations.
Auton Robot 33(4):361–379

49. Kolda T, Bader B (2009) Tensor decompositions and applications.
SIAM Rev 51(3):455–500

50. Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg
K (2015) Unsupervised surgical task segmentationwithmilestone
learning. In: Proceedings of international symposium on robotics
research (ISRR)

123

28 Intel Serv Robotics (2016) 9:1–29

51. Kronander K, Khansari-Zadeh MSM, Billard A (2011) Learn-
ing to control planar hitting motions in a minigolf-like task. In:
Proceedings of IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp 710–717

52. Krueger V, HerzogDL, Baby S, UdeA, Kragic D (2010) Learning
actions from observations: primitive-based modeling and gram-
mar. IEEE Robot Autom Mag 17(2):30–43

53. KulisB, JordanMI (2012)Revisiting k-means: newalgorithmsvia
Bayesian nonparametrics. In: Proceedings of international confer-
ence on machine learning (ICML)

54. LatashML, Scholz JP, SchoenerG (2002)Motor control strategies
revealed in the structure of motor variability. Exerc Sport Sci Rev
30(1):26–31

55. Lee D, Ott C (2011) Incremental kinesthetic teaching of motion
primitives using the motion refinement tube. Auton Robots
31(2):115–131

56. Lee SH, Suh IH, Calinon S, Johansson R (2015) Autonomous
framework for segmenting robot trajectories ofmanipulation task.
Auton Robots 38(2):107–141

57. Levine S, Wagener N, Abbeel P (2015) Learning contact-rich
manipulation skills with guided policy search. In: Proceedings
of IEEE international conference on robotics and automation
(ICRA), pp 156–163

58. Lober R, Padois V, Sigaud O (2014) Multiple task optimization
using dynamical movement primitives for whole-body reactive
control. In: Proceedings of IEEE international conference on
humanoid robots (humanoids). Madrid, Spain

59. MacQueen JB (1967) Some methods for classification and analy-
sis of multivariate observations. In: Proceedings of of the 5th
Berkeley symposium on mathematical statistics and probability,
pp 281–297

60. Matsubara T, Hyon SH, Morimoto J (2011) Learning paramet-
ric dynamic movement primitives from multiple demonstrations.
Neural Netw 24(5):493–500

61. McLachlan GJ, Peel D, Bean RW (2003) Modelling high-
dimensional data by mixtures of factor analyzers. Comput Stat
Data Anal 41(3–4):379–388

62. McNicholas PD,Murphy TB (2008) Parsimonious Gaussianmix-
ture models. Stat Comput 18(3):285–296

63. Medina JR, Lee D, Hirche S (2012) Risk-sensitive optimal feed-
back control for haptic assistance. In: Proceedings of IEEE
international conference on robotics and automation (ICRA), pp
1025–1031

64. Miller S, Fritz M, Darrell T, Abbeel P (2011) Parametrized shape
models for clothing. In: Proceedings of IEEE international con-
ference on robotics and automation (ICRA), pp 4861–4868

65. Moldovan TM, Levine S, Jordan MI, Abbeel P (2015) Optimism-
driven exploration for nonlinear systems. In: Proceedings of IEEE
international conference on robotics and automation (ICRA), pp
3239–3246. Seattle, WA, USA

66. MühligM,GiengerM, Steil J (2012) Interactive imitation learning
of object movement skills. Auton Robots 32(2):97–114

67. Mussa-Ivaldi FA (1992) From basis functions to basis fields: vec-
tor field approximation from sparse data. Biol Cybern 67(6):479–
489

68. Neal RM, Hinton GE (1999) A view of the EM algorithm that
justifies incremental, sparse, and other variants. In: Jordan MI
(ed) Learning in graphical models. MIT Press, Cambridge, pp
355–368

69. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis
and an algorithm. In: Dietterich T, Becker S, Ghahramani Z (eds)
Advances in neural information processing systems (NIPS). MIT
Press, Cambridge, pp 849–856

70. Nguyen-Tuong D, Peters J (2008) Local Gaussian process regres-
sion for real-time model-based robot control. In: Proceedings of

IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS), pp 380–385

71. Niekum S, Osentoski S, Konidaris G, Chitta S, Marthi B, Barto
AG (2015) Learning grounded finite-state representations from
unstructured demonstrations. Int J Robot Res 34(2):131–157

72. Paraschos A, Daniel C, Peters J, Neumann G (2013) Probabilis-
tic movement primitives. In: Burges CJC, Bottou L, Welling M,
Ghahramani Z, Weinberger KQ (eds) Advances in neural infor-
mation processing systems (NIPS). CurranAssociates, RedHook,
pp 2616–2624

73. Rabiner LR (1989) A tutorial on hidden Markov models and
selected applications in speech recognition. Proc IEEE77(2):257–
285

74. Rasmussen CE (2000) The infinite Gaussian mixture model. In:
Solla SA, Leen TK, Mueller K-R (eds) Advances in neural infor-
mation processing systems (NIPS). MIT Press, Cambridge, pp
554–560

75. Rasmussen CE, Williams CKI (2006) Gaussian processes for
machine learning. MIT Press, Cambridge

76. Renard N, Bourennane S, Blanc-Talon J (2008) Denoising and
dimensionality reduction usingmultilinear tools for hyperspectral
images. IEEE Geosci Remote Sens Lett 5(2):138–142

77. Rueckert E, Mundo J, Paraschos A, Peters J, Neumann G (2015)
Extracting low-dimensional control variables formovement prim-
itives. In: Proceedings of IEEE international conference on
robotics and automation (ICRA), pp 1511–1518. Seattle, WA,
USA

78. SaverianoM,AnS,LeeD (2015) Incremental kinesthetic teaching
of end-effector and null-space motion primitives. In: Proceed-
ings of IEEE international conference on robotics and automation
(ICRA), pp 3570–3575

79. Schaal S, Atkeson CG (1998) Constructive incremental learning
from only local information. Neural Comput 10(8):2047–2084

80. Schaal S, Mohajerian P, Ijspeert AJ (2007) Dynamics systems vs.
optimal control: a unifying view. Prog Brain Res 165:425–445

81. Scholz JP, SchoenerG (1999) The uncontrolledmanifold concept:
identifying control variables for a functional task. Exp Brain Res
126(3):289–306

82. Schwarz G (1978) Estimating the dimension of a model. Ann Stat
6(2):461–464

83. Scott DW, Szewczyk WF (2001) From kernels to mixtures. Tech-
nometrics 43(3):323–335

84. Shi T, Belkin M, Yu B (2009) Data spectroscopy: eigenspace
of convolution operators and clustering. Ann Stat 37(6B):3960–
3984

85. Signoretto M, Van de Plas R, De Moor B, Suykens JAK (2011)
Tensor versus matrix completion: a comparison with application
to spectral data. IEEE Signal Process Lett 18(7):403–406

86. Sternad D, Park SW, Mueller H, Hogan N (2010) Coordinate
dependence of variability analysis. PLoS Comput Biol 6(4):1–16

87. Strang G (1986) Introduction to applied mathematics. Wellesley-
Cambridge Press, Wellesley

88. Stulp F, Sigaud O (2015)Many regression algorithms, one unified
model—a review. Neural Netw 69:60–79

89. Sugiura K, Iwahashi N, Kashioka H, Nakamura S (2011) Learn-
ing, generation, and recognition of motions by reference-point-
dependent probabilistic models. Adv Robot 25(6–7):825–848

90. Sung HG (2004) Gaussian mixture regression and classification.
PhD thesis, Rice University, Houston, Texas

91. Tang J, Singh A, Goehausen N, Abbeel P (2010) Parameterized
maneuver learning for autonomous helicopter flight. In: Proceed-
ings of IEEE international conference on robotics and automation
(ICRA), pp 1142–1148

92. Tang Y, Salakhutdinov R, Hinton G (2012) Deep mixtures of
factor analysers. In: Proceedings of international conference on
machine learning (ICML). Edinburgh, Scotland

123

Intel Serv Robotics (2016) 9:1–29 29

93. Tipping ME, Bishop CM (1999) Mixtures of probabilistic princi-
pal component analyzers. Neural Comput 11(2):443–482

94. TodorovE, JordanMI (2002)Optimal feedback control as a theory
of motor coordination. Nat Neurosci 5:1226–1235

95. Tokuda K, Masuko T, Yamada T, Kobayashi T, Imai S (1995)
An algorithm for speech parameter generation from continu-
ous mixture HMMs with dynamic features. In: Proceedings of
European conference on speech communication and technology
(EUROSPEECH), pp 757–760

96. Towell C, Howard M, Vijayakumar S (2010) Learning nullspace
policies. In: Proceedings of IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp 241–248

97. Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific gen-
eralization of discrete and periodic dynamicmovement primitives.
IEEE Trans Robot 26(5):800–815

98. Vasilescu MAO, Terzopoulos D (2002) Multilinear analysis of
image ensembles: TensorFaces. In: Computer vision (ECCV),
Lecture Notes in Computer Science, vol 2350. Springer, Berlin,
pp 447–460

99. Verbeek JJ, Vlassis N, Kroese B (2003) Efficient greedy learning
of Gaussian mixture models. Neural Comput 15(2):469–485

100. Vijayakumar S, D’souza A, Schaal S (2005) Incremental online
learning in high dimensions. Neural Comput 17(12):2602–2634

101. Wang Y, Zhu J (2015) DP-space: Bayesian nonparametric sub-
space clusteringwith small-variance asymptotics. In: Proceedings
of international conference on machine learning (ICML), pp 1–9.
Lille, France

102. Wilson AD, Bobick AF (1999) Parametric hidden Markov mod-
els for gesture recognition. IEEE Trans Pattern Anal Mach Intell
21(9):884–900

103. Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of
sensorimotor learning. Nat Rev 12:739–751

104. Wrede S, EmmerichC,RicardaR,NordmannA, SwadzbaA, Steil
JJ (2013) A user study on kinesthetic teaching of redundant robots
in task and configuration space. J Hum Robot Interact 2:56–81

105. Yamazaki T, Niwase N, Yamagishi J, Kobayashi T (2005) Human
walking motion synthesis based on multiple regression hidden
semi-Markov model. In: Proceedings of international conference
on cyberworlds, pp 445–452

106. Zen H, Tokuda K, Kitamura T (2007) Reformulating the HMM as
a trajectorymodel by imposing explicit relationships between sta-
tic and dynamic feature vector sequences. Comput Speech Lang
21(1):153–173

107. Zhao Q, Zhou G, Adali T, Zhang L, Cichocki A (2013) Kerneliza-
tionof tensor-basedmodels formultiwaydata analysis: processing
of multidimensional structured data. IEEE Signal Process Mag
30(4):137–148

123

	A tutorial on task-parameterized movement learning and retrieval
	Abstract
	1 Introduction
	1.1 Organization of the paper

	2 Adaptive models of movements
	2.1 Proposed approach
	2.2 Example with a single Gaussian

	3 Task-parameterized Gaussian mixture model (TP-GMM)
	3.1 Regularization of the TP-GMM parameters

	4 Extension to task-parameterized subspace clustering
	4.1 Parsimonious TP-GMM
	4.2 Task-parameterized mixture of factor analyzers (TP-MFA)

	5 Extension to motion synthesis
	5.1 Gaussian mixture regression (GMR)
	5.2 GMM with dynamic features (trajectory-GMM)
	5.3 Dynamic-based versus time-based features in GMM

	6 Extension to minimal intervention control
	7 Extension to task parameters in the form of projection constraints
	8 Comparisons with other task-adaptive approaches
	8.1 Gaussian process regression (GPR) with trajectory models
	8.2 Parametric HMM/GMM (PHMM/PGMM)

	9 Discussion and future work
	10 Conclusion
	Appendix 1: Expectation-maximization for TP-GMM parameters estimation
	Appendix 2: Expectation-maximization for TP-MFA and TP-MPPCA parameters estimation
	Appendix 3: Gaussian mixture regression approximated by a single normal distribution
	Appendix 4: Expectation-maximization for parametric GMM parameters estimation
	References

