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Abstract This paper presents an approach on whole-body
motion optimization for a humanoid robot to enter a ground
vehicle. Motion capture system (mocap) was used to plan an
initial suboptimal motion. Reinforcement learning was then
implemented to optimize the trajectorieswith respect to kine-
matic and torque limits at the both body and the joint level.
The cost functions in the body level calculated a robot’s static
balancing ability, collisions and validity of the end-effector
movement. Balancing and collision checks were computed
from kinematic models of the robot and the vehicle model.
Energy consumption such as torque limit obedience was
checked at the joint level. Energy cost was approximated
as joint torque, measured from a dynamic model. Various
penalties such as joint angle and velocity limits were also
computed in the joint level. Physical limits of each joint
ensured both spatial and temporal smoothness of the gen-
erated trajectories. Finally, experimental evaluations of the
presented approach were demonstrated through simulation
and physical platforms in a real environment.

Keywords Humanoids · Vehicle mounting · Whole body
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1 Introduction

Enabling humanoids to drive a ground vehicle differs from
the development of driverless cars. Efforts like the DARPA
Challenges [1] or the Google Car [2] focus on engineering
the vehicle. By contrast, there is merit and broader impacts
if humanoids can drive off-the-shelf unmodified cars. A big
picture is for future robots to operate human tools and also
locomote in human-centered environments. Vehicle driving
can be an example; the car is a tool which people use
to get around and its cockpit is human-centered. Today’s
humanoids, however, rarely have the range-of-motion, bal-
ance control andmotion planning algorithms to get inside the
car by themselves (ingress). Furthermore, such humanoids
often do not have the perception and cognition to drive a
vehicle. Therefore, programming a humanoid for vehicle
handling (ingress, drive, and egress) has intellectual merit.

This paper specifically describes humanoid whole-body
motion plans to ingress a doorless vehicle (Fig. 1). Ingress
is the first step towards the larger goal of humanoid vehicle
handling. Ingressing is difficult and an open research area
demanding perception, balancing, and handling both exter-
nal and self collisions. Observations of the elderly or the
physically impaired perhaps underscore these difficulties;
those with limited range-of-motion must carefully ingress by
constraining limb positions. Similarly robots with limbs of
limited force and torque may also have similar motion strat-
egy. As such, ingress requires coordinating a robot’s many
degree-of-freedom (DOF) and planning motions respect to
multiple time-varying constraints.

Robots, especially humanoids, involve large search spaces
due to their high DOF structures. To plan motions, search-
based sampling approaches like Rapidly Exploring Random
Trees (RRT) [4] and its variants IKBiRRT [5] and CBiRRT
[6] are often used. These search-based algorithms are well
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Fig. 1 Humanoid ingressing golf cart (Club Car DS IQ) [3]

suited for a humanoid structure because the its end-effector
can serve as the end-goal [7] in search spaces. Thesemethods
can generate a path in the humanoid’s configuration space
and can guarantee collision avoidance and static balance.
However, these algorithms do not consider factors like torque
and energy efficiency which are important for humanoid’s
safe ingress. Furthermore, these algorithms rarely yield robot
motions that mimic human ones. It is also difficult to check
the robot’s static balance, especially during foot-switching
while ingressing.

Another more direct approach for complex motion plan-
ning is to employ captured human motion data. Such
approaches are traditionally used in animation [8], but
have also been applied to generate humanoid’s whole-body
motions [9,10]. The captured data can be used to produce
human-like motions but such movements are rarely opti-
mized to be energy efficient. The optimal motions for a
person and a robot often differ; the multitude of muscles in
the human body often invoke different joints. Another lim-
itation of using pre-recorded human motions is that factors
like collision and static balance are not considered in those
planning approaches. However, ingress requires such factors
to be considered.

As such, initial planned motions from path planning
algorithms should be optimized with respect to various
time-varying constraints. Recently, a broad range of opti-
mization techniques also have been applied to humanoid
motion planning. For instance, [11] and [12] adopt Lagrange
multiplier to limit planned motions within joint constraints.
They re-express the unconstrained optimization problems by
non-linear least square (NLLS) model to include all defined
constraints. After converting the NLLS into linear model
by Gauss–Newton method, the optimization techniques gen-
erated a final trajectory by gradient descent updates. This
process generates a trajectory which is the closest to the best
solution under the defined constraints. The problem, how-
ever, is that such optimization minimizes an error which is
the sum of costs from all the different constraints. Therefore,
other candidate trajectories could exist for different static and

dynamic features. The errors in these candidate trajectories
may be slightly bigger than the one for the optimal solution.
However, these optimization techniques provides only the
single best trajectory under the given constraints.

This paper introduces another way of planning and
optimizing ingress motions for humanoids. Proposed is a
reinforcement learning agent-based optimization method.
Vehicle ingress demands optimizing planned trajectories
with various time-varying constraints. To meet this, in the
presented approach, the learning agent chooses an opti-
mal sequence of motion states from choices with respect
to given kinematic and dynamic constraints. This learning-
based method also exploits multiple solutions under defined
constraints with the graded state-action value table. For
experimental verification of the presented approach, the opti-
mized trajectory was tested and evaluated both in simulation
and in experiments with Hubo.1 The net result is that the
proposed approach combines several well-defined existent
techniques (such as Q-learning, mocap, RRT and ProPac) to
solve the challenging motion of vehicle ingress in a different
way from other humanoid trajectory optimization techniques
that often adopt Lagrangemultiplier or linear quadraticmeth-
ods [13].

Section 2 describes an overview of an optimization
framework using a reinforcement learning agent. Section 3
demonstrates a guideline path design using a motion capture
system (mocap) and post-processing. Sections 4 and 5 show
cost functions which define kinematic and dynamic con-
straints of the humanoid in body and joint levels respectively.
Section 6 presents final output trajectories design and a com-
putational complexity of the presented approach. Section 7
demonstrates experimental results with optimized trajecto-
ries in test-and-evaluation stage and presents future studies.
Section 8 concludes with future work.

2 Trajectory-optimization framework

2.1 Static motion

Enabling a full-sized humanoid to ingress an utility vehicle
is not trivial. There are many unknown factors for vehi-
cles, such as, suspension level or tire air pressure. Such
factors are difficult to model accurately. Also, each tire and
shock absorber for the vehicle may differ. Therefore, plan-
ning dynamic motion is not often realistic in designing of
ingressmotion.Motion planning should be updated statically
to be stable enough to offset unknown dynamic factors. It is
critical for the static motion to have the robot’s discrete con-

1 Specifically theHubo+ humanoid (released in 2010)was used.Hubo+
is the generation following the 2007 KHR-4 Hubo. The generic term
“Hubo” is used to refer to the humanoid used in this paper.
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figurationswhich satisfy static constraints on pre-determined
time frames. Each selected time frame can be determined
by its importance in performance, such as foot-switching or
center-of-mass (CoM) changes.

Such key frames can be generated with discrete time steps
based on output frames from various path planning algo-
rithms.However, discrete frameswhich are not enough dense
can make critical issues such as collisions or torque limit
obedience in generated trajectories. In this study, a 100 ms
time step was used for getting key frames from an initial
path-planned trajectory. The value was chosen based on the
maximum value which does not violate various time-varying
constraints such as collision avoidance and joint limits. Sec-
tion 6.2 describes more details of determining a sampling
frequency for key frames in the proposed framework.

2.2 Trajectory-optimization with reinforcement-
learning (inverse grading of Q value)

Though sampling method or mocap can generate input key
frames for humanoids, they often do not meet important con-
straints which should be considered for humanoid vehicle
mounting.2 Search-based sampling approaches [4–6] do not
consider energy efficiencies or static balance during foot-
switching. Mocap-based approaches [8–10] often do not
account for factors such as collisions, static balance and kine-
matic differences.

Therefore, key frames using any path planning algorithms
should be optimized with respect to all time-varying con-
straints. This paper presents a humanoidmotion optimization
framework for vehicle mounting. The optimizing process
follows this sequence: (1) guideline key frame trajectories
are designed initially using a selected path planner; (2) key
frames are then modified to meet multiple required static
constraints; (3) a humanoid’s smooth joint angle trajectories
are generated as a final output. The presented framework
has a limited number of states (i.e., key frames) which
should be optimized with constraints. In this study, rein-
forcement learning is applied to key frames to meet multiple
time-varying constraints. A reinforcement learning agent can
interact with its feedback values from penalty cost functions
and grade states efficiently in discrete time steps [14,15].

For the reinforcement learning agent, a Q algorithm is
used [16]. The trajectory used in the framework has a finite
set of states (key frames) over discrete time steps. A transi-
tion between one state and any of the states in the next time
step is defined as a possible action for the state. Therefore,
there are finite sets of actions in a learning agent. In sum,
states exist in discrete time steps and the decision maker

2 The paper uses the term “mounting” to refer to either ingressing or
egressing. These two tasks are the same if the motion plans are treated
statically. They differ if accelerations need to be considered.

Fig. 2 Example of state-action value inverse grading with Q learning
algorithm (one iteration)

can choose any action that is available in each state. There-
fore, it satisfies requirements of theMarkov decision process
(MDPs). Specifically,Q-learning can be used to find an opti-
mal action-selection policy for the MDPs [17].

Figure 2 demonstrates a simple example of state-action
value table (Q table) grading with Q learning algorithm. In
the example, there are two input trajectories and they have
three time steps. Each input trajectory generates individual
states. Also an action is defined as one of any transitions
between states in consecutive time steps. In this example,
there are two states and each state has two actions per time
frame. Therefore, four sets of state-and-action pairs are gen-
erated in each time step. Since states in the 1st and the 2nd
row of the table are generated from the same input trajectory
1, they both are denoted as Input Set 1. Same rule applies for
Input Set 2 in the 3rd and the 4th row of the table.

In this study, the Q value table has a limited number of
states. Each state is a key frame of the pre-designed initial tra-
jectory and each action is a transition between known states.
Therefore, a penalty value of each state-and-action pair in Q
table can be calculated based on kinematic and dynamic cost
of the pair. Such cost value of each bin is invariant over the
updates. In such deterministic environment (Q value table),
α (learning rate) is optimal with value 1. To balance between
current rewards and long term high rewards, γ (discount fac-
tor) is set to 0.5.

The bins in the last column of the table have the previously
known states. Therefore, the bins in the table can be graded
inversely from the last column to the first one. This inverse
grading accelerated the grading time of the Q value table.
Since all bins in the last column do not have future states,
their Q values are determined only by the current cost val-
ues. Furthermore, cost values of each bin are invariant over
the updates. Therefore, every bin in the preceding time step
has an invariant minimum future Q value regardless of num-
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Fig. 3 Iterations of state-action value inverse grading

ber of updates. In other words, future reward factors can not
diverge the Q values. The net result is that only one iteration
(update) of grading is required for the Q value table to get
the optimized trajectory. This acceleration of convergences
was possible since the all bins in the last column of the table
has previously known states and actions. Figure 2 demon-
strates such inverse grading process of the Q value table.
After grading, searching and marking process which has the
minimum Q value is iterated. The final output trajectory is
thus the optimal sequence of state-action pairs generated by
collecting marked states (S11 − S12 − S23). Figure 3 shows
that inverse grading does not diverge Q values with multiple
iterations. Previous studies [18] demonstrate more details of
grading process for a Q value table with given input trajec-
tories.

Trajectory optimization with reinforcement learning also
conveyed advantages over other trajectory optimization tech-
niques. Many optimization techniques, such as Lagrange
multiplier [11,12] or linear quadratic methods [13], provide
only the single best trajectory under the given constraints. By
contrast, reinforcement learning searches overmany possible
state-action pairs at each time step. Furthermore reinforce-
ment learning records every cost value in the state-action
table under given constraints. As such, penalty values of all
the bins in the state-action value table can then be re-used
as needed. Such re-use allows multiple solution trajectories
that have below-threshold costs to be simply produced at any
time. For example, in Fig. 2, if the cost threshold is set to
4, one more solution trajectory can be found additionally
(S21 − S12 − S23).

In this section, how a Q value table becomes graded with
the value iteration process was presented. Q value of each
state-and-action pair in the tablewas originally 0 and updated
with corresponding kinematic and dynamic penalty costs of
the pair. In this study, penalty values were chosen and defined
based on the time-varying constraints of ingress. Sections 4
and 5 describes all the defined penalty costs in a robot’s body
and joint level each. Section 2.4 presents more details with
how those penalty costs were integrated in the proposed tra-
jectory optimization framework.

The net effect is that various cost functions are added to
generate Q value of each bin in Q value table. Based on the

relative importance of each penalty costs, a different weight
on each cost was also determined [18].

2.3 System overview

Figure 4 illustrates the reinforcement learning-based trajec-
tory optimization framework for vehicle mounting. In this
framework, initial hip and end-effector trajectories were gen-
erated by the path planner module. The main purpose of the
planning is to achieve a guideline sequence of hip (close
to CoM) and expected contact positions for the given task.
Therefore, various planning algorithms can be applied to
design the trajectories in the module. Bouyarmane et al. [13]
used existing algorithms such as RRTs or PRMs to plan such
guide paths and to search multi contact positions in their
framework.Qiu et al. [19] reconstructedmotion based on real
human motion data recorded in motion capture experiments
and pre-defined an initial sequence of support configuration.

In this study, initial guideline trajectories are planned from
a recorded human movement in mocap. As underscored in
Sect. 1, a humanoid with limbs of limited force and torque
has similar difficulties with the elderly or the physically
impaired. Observation of humans who carefully ingress by
constraining limb positions can provide good reference tra-
jectory to those with limited range-of-motion. More details
with the capture system and how human movements were
recorded are in Sect. 3. With pre-determined frequency, dis-
crete frames were extracted from the initial trajectories and
they generated guideline key frame trajectories (both for hip
and end effectors).

When it is necessary, the guideline trajectories are post-
processed. There are kinematical differences between the
human skeleton and humanoid’s mechanical body structure.
As such, guideline trajectories can not simply mimic the
human’s raw trajectory. The guideline trajectory should be
post-processed to compensate for the differences. Section 3
demonstrates more details of guideline path design using
mocap and its post-processing.

After post-processing, both guideline hip and end-effector
trajectories searched their neighboring points within limited
bounds per time step. Sets of neighboring points were built
by combining each searched point from hip and end-effectors
at each time step. They became states in the corresponding
time step in the action value table (Q value table). All sets
in same time step become states in the same column in the
action value table. This process was repeated until the last
column of the table. The last column means the last time
step of the guideline trajectories. In this way, the guideline
hip and the end-effector trajectories could be assigned to
a reinforcement learning agent with neighboring points of
input hip and contact positions as input states.

For studies, a 100 ms time step was used for synchro-
nizing human motion capture. Figure 5 shows the Q value
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Fig. 4 Trajectory-optimization
framework based on Q learning
agent

Fig. 5 Q value table at the learning time t. Every bin in the each column
of the table become graded in the same learning time

table at learning time t in this case. Hip and feet position
points, R1 and R2, respectively, were considered fromguide-
line trajectories. This resulted in N× 100 ms to finish the
guideline trajectory and R1 × R2(left) × R2(right) × N
different states in the Q value table. As such, time dura-
tion of planned motions directly affects the dimensionality
of state-and-action domains. The selection of neighbor con-
figuration which is important factor defining the exploration
potential (of the presented approach) is also highly related
to dimensionality. More details with this feature is described
in Sect. 6. With analysis of trade-off between computational
cost and exploration power of the approach, the optimal sam-
pling frequency and neighboring bounds are determined in

the section. Experimental results with those values presented
that computation time of the approach can provide compat-
ible performance with other existing approached under the
system with similar specifications.

In this study, to decrease the size of the Q value table, just
foot movements were planned for contact trajectories of end-
effectors and used for the optimization system. Decreasing
the table size could reduce computation time for the opti-
mization process. Humanoid fingers lack gripping power and
the dexterity needed to grasp and hold onto complex shaped
objects in a vehicle [13]. Therefore, by not considering hand-
contacts in this analysis, the problem of finger gripping was
simplified. However, this does not mean that the presented
approach can not plan a optimal sequence of hand move-
ment which has safe contacts and assists ingress task. With
necessity, each hand position can be readily collected from
guideline trajectories and their neighboring points, R3 and
R4, respectively, can be collected from the trajectories. This
additional process results in R3(left) × R4(right) multiplier
to the existent dimension of Q value table. This issue is fur-
ther discussed in Sect. 4.3.

Figure 6 illustrates the state-building process from three
candidate points (position of the hip and feet). Each point is
extracted from their respective neighbors. The hip’s state is
defined by its position. In contrast, the state of each foot has
both position (3-DoFs) and rotation (1-DoF) to account for
leg rotation of the yaw axis. These sets of extracted neighbor-
ing points became input states for the reinforcement learning
algorithm. In other words, one set of guideline hip and end-
effector trajectories generated multiple input trajectories for
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Fig. 6 A state at time step i
which consist of three
neighboring points

the learning agent. This process made the Q table have states
which each has different humanoid configuration.

In theQ table of Fig. 5, state smnt is a set of hip and contact
positions from the time step n of the mth set of neighboring
points at learning t . The first point is hip position and others
are foot positions of one input trajectory at time step n. The
Q value table also shows that each state has its own set of
actions, at . When the current state is smnt , a possible action
for this state is defined as a transition between state smnt and
any of the states in time step n + 1.

For example, the current state is smn at the learning time
t . If aj is selected as an action for the state, the next state
becomes s jn + 1, which is a set of hip and foot positions at
time step n + 1 of the j th input trajectory.

Using Q value iteration equation, Q(smn, aj) is updated
based on its previous value and theminimumpredicted future
Q value.

At the learning time t , every other pair of state-and-action
in the column n of the Q table become also graded by the Q
learning algorithm. With the inverse grading rule (described
in Sect. 2.2), a set of state-and-action pair in the column
n − 1 repeats the whole process at the next learning time
t + 1. After grading bins in the first time step, the learning
process is terminated and the generated action value table
becomes fully graded.

2.4 Cost function modules

To update a Q value of each bin in the Q table, various
penalty cost functions were considered in the optimization
framework. The penalty values were largely divided into
two different groups. The first group of the penalty values
was measured in a robot body level. The cost functions in
this category calculated a robot’s static balancing ability and
internal and external collisions. Validity of the end-effector

movement was also checked in this level. More details of the
cost functions in the robot body level are given in Sect. 4. The
next group of penalty values was measured at the robot joint
level. For this, bins in the Q value table passed an inverse
kinematics (IK) process and joint angle values were calcu-
lated. Various penalties such as joint angle and velocity limits
were computed from these angle values. Energy consumption
such as torque limit obedience was also checked at the joint
level. Section 5 describes more details of the cost function
modules at the joint level.

As such, each cost function module assigned a penalty
value to a bin of the Q table if the bin has a pair of state
and action ((smn, aj))which violates the corresponding con-
straint. Every Q value of the table became updatedwith those
assigned penalty values. Different weights on each penalty
value can generate different output trajectories in the learn-
ing agent. Therefore, weighting factors on each cost function
were determined based on the relative importance of each
penalty [18].

2.5 Output trajectory generation and adaptive
components

After several iterations of grading all the bins in the Q table,
a search for the minimum penalty value for state-and-action
pairs was conducted at each time step. The selected pairs
became new key frames of the vehicle mounting motion.
The key frames were then integrated to generate a smooth
motion.

The trajectory optimization framework has several
adjustable components. Cost functionmodules, post process-
ing and the reinforcement learning algorithm are examples.
Those components can adaptively fit requirements of a given
task while keeping the overall structure of the framework.
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Fig. 7 Optitrack motion capture system

In a previous study [18], the authors presented an approach
to generate and optimize a humanoid’s object-reaching
motions. For penalty values, only joint level cost functions
were considered in the learning agent. However, in this study,
various cost functions are added for optimizing the vehicle
mounting motion; the framework’s overall structure is kept
and only cost functions in the robot body level are added.
Compared to the previous work which just focused on only
the upper body’s reaching motion, this extended framework
satisfies whole-body constraints such as static balancing and
collision-free trajectories. For post-processing and reinforce-
ment learning, specific algorithms can be chosen among
various candidate techniques based on the task’s charac-
teristics. The net effect is that the trajectory optimization
framework can adaptively generate an output trajectory that
has minimum penalty values for defined constraints.

3 Path planner

3.1 Motion-capture system

Initial hip and end-effector trajectories were generated by the
path planner module in the trajectory optimization frame-
work. A ground vehicle is designed for the human body. As
such, its structure is often optimized for the human driver’s
mounting [20]. Therefore, the human’s motion can provide
a good guideline trajectory for humanoids.

To record the mounting motion, the authors used mocap.
Figure 7 shows the mocap which consists of 18 Optitrack
FLEX:V100R2 cameras. The system can capture a 12 × 10
square foot area at a maximum sampling frequency of
100 Hz. Figure 8 demonstrates markers which were attached
on the humanbody (left) and themarker’s rigid bodies (right).

Fig. 8 Markers for recording ingress (left) and rigid bodies for hip and
each foot (right)

Fig. 9 Recorded human body during ingress (top) and rigid bodies of
the captured motion (bottom)

The movements were captured at a 100 ms sampling time.
Figure 9 demonstrates the recorded human body model and
its selected rigid bodies (hip and feet) during ingress.

With the pre-determined frequency (10 Hz), discrete
frames were extracted from the recorded human movement.
As such, guideline key frame trajectories (both for hip and
end-effectors) were designed as initial inputs of the frame-
work.

Themain purpose of the path planningmodule is to design
a sequence of initial hip and contact positions for a given
task. Therefore, other existing sampling algorithms such as
RRT also can be used in the presented framework depending
on necessities and characteristics of the task (with previ-
ously known dimension and kinematics of vehicles). Like
other optimization approaches [13,19], the objective of this
approach is to compensate kinematic, dynamic and collision
constraints of initial guideline paths.

3.2 Post-processing

After the capture, a post-processing stage was implemented
for kinematicmapping between the captured rigid bodies and
humanoid. A Hubo+ model is used in this study. This model
has 38-DoF in the body. Additionally both hands have 1-DoF
in each of the five fingers. Figure 10 shows a robot’s all links
and joints.

The process compensated for kinematic differences
between the human body and the robot’s mechanical struc-
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Fig. 10 Links and joints of the robot

ture. To achieve the goal, a calibration stage which a person
stands on the ground with an upright posture was conducted
in mocap area. A set of relative position values between the
rigid bodies was calculated first. The values were then com-
pared with the corresponding kinematic values of the robot.
Differences between those two sets were used for computing
offset values between the human body and the humanoid’s
structure. The offsets edited the end-effector’s guideline tra-
jectories (foot trajectories in this study).

The vehicle’s kinematic dimensions, like roof height
and seat position, also redesigned the guideline trajectories.
Based on such dimensions, hip and foot position values were
modified from the guideline trajectories. This process made
the guideline trajectories fit the vehicle’s kinematic features
more appropriately.

This process increased the probability of finding better
hip and foot positions in the given vehicle. In the optimiza-
tion framework, a collision check between the humanoid
and the vehicle is one of the cost value functions. There-
fore, post-processed guideline trajectories can provide states
which have smaller penalty values in the Q value table.

4 Penalty functions at the body level

4.1 Static balancing ability

Each bin (a set of a state and an action) in the Q value table
was checked whether it can generate a static balancing pos-
ture. For this, the robot’s CoM position was calculated first.

Each hip and foot point in the state has its own position
(3-Dofs) and rotation (1-Dof) values. Joint angleswere calcu-
lated from the values using an IK process. [21] demonstrates
the process in details. Figure 11 shows the robot’s body fixed

Fig. 11 Robot’s body fixed coordinate

coordinate and two necessary constants (LC = length calf,
LT = length thigh) for the analytical IK process.

CoM =
∑n

i=1 mi ∗ ri
M

(1)

(CoMx ,CoMy) ⊂ ( f (x, y)) (2)

For each link, its coordinate was calculated based on the
joint angles and the supporting foot’s position. The support-
ing foot is the one which is in contact with the ground. After
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the forward kinematics (FK) process, the robot’s CoM posi-
tion was computed. Equation 1 shows how the CoM position
can be computed when a humanoid consists of n rigid bodies
(links). Each body has mass mi and coordinate ri . M is total
mass of the humanoid. As mentioned in Sect. 2.3, only foot
movements were planned for the contact trajectories of end-
effectors in this study. Therefore, joint angles of the upper
body did not change. The net result is that the whole upper
body was treated as a single link for the CoM position cal-
culation.

The CoM position was then compared with a support
polygon to check whether the state satisfies a static balance
criterion. The CoM must lie in the polygon to achieve static
stability. Therefore, the bin which has a state that does not
meet the balance criterion was assigned a penalty. Equation 2
demonstrates the relationship between the CoM position and
the supporting polygon f (x, y). In a single support phase
(SSP), f (x, y) is a contact surface of one supporting foot.
In a double support phase (DSP), f (x, y) is a convex hull of
both feet on the horizontal surface.

4.2 Self and external collision checks

A collision checking process was also integrated in the opti-
mization framework as a cost function module. For each
bin in the Q value table, internal and external collisions
were checked. Each link’s position which was calculated
from the FK process (see Sect. 4.1) was used again for
this collision computation. For simple collision detection,
a bounding volume method is used in this study. When two
bounding volumes donot intersect, then the contained objects
cannot collide into each other. As can be seen in Fig. 12,
bounded spheres were serialized in the robot model and the
ground vehicle model (golf cart). To check external col-
lisions, Euclidean distances between two sampled spheres
(each from the robot and from the vehicle) was computed
for every possible pair. If the distance is bigger than the sum
of radii, the pair was assumed to be collision free. Inter-
nal (self) collision detection was implemented in the same
manner between the bounded spheres of the robot. The bin
which has a state that does not meet the collision criterion
was assigned a penalty.

4.3 End-effector movement checks

To produce valid states, the planner must ensure that a state
change does not violate contact constraints. Any chosen
action must not cause translational or rotational movements
of the supporting foot. On the physical robot, this constraint
is due to contact friction. Any attempted movement of a sup-
port foot could cause the foot to break contact prematurely.
Therefore, the bin in the Q table which has the supporting
foot movement was assigned a penalty. For the moving leg, a

Fig. 12 Bounding spheres in a robot and a golf cart for collision checks

Euclidean distance between the state (in the bin) and a future
contact position was used as the penalty. This penalty accel-
erated foot movement of the moving leg and convergence
to a tentative goal position. This future goal position was
determined from the initial contact trajectory (feet) which
was captured from mocap in Sect. 3. Figure 13 demonstrates
one example of non-valid foot movement of a supporting leg
which is contact with the ground.

As described in Sect. 2.3, each end-effector bring multi-
plier to the existent dimension of Q value table. Therefore,
including additional feet or hands can increase computational
time of this approach. However, this issue can be mitigated
by not computing penalty values of state-action pair only for
the supporting end-effector. Any action which caused move-
ments of the supporting foot got penalties as shown above.
It means that position and rotation of the supporting end-
effector do not need to be considered as an valid input state
in the Q value table in this approach. Therefore, Q values
of bins which have the supporting end-effector (as its input
state) do not need to calculate penalty values. In mounted
mobilities such as vehicle ingress or ladder climbing, at least
two end-effectors are fixed onto their contact spots. There-
fore, there aremultiple supporting end-effectors per time step
during motion. By not computing their penalty values, actual
size of Q value table can be determined with only hip and
flying end-effectors per time step. It results in reduction of
computation time for learning process.

5 Penalty functions at the joint level

5.1 Energy consumption and torque limit

To predict energy consumption of each bin in the Q value
table, itwas necessary to calculate torque values of every joint
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Fig. 13 Validity of end-effector
movements check

in a robot. To relate the joint torques and joint angles, ProPac
[22], a Mathematica package, was used. ProPac supports the
assembly of various simulation models for mechanical sys-
tems such as ground vehicles, aircraft, or robots. In this study,
it generated the full nonlinear model equations in explicit
form for modeling the robot.

To build the robot model, all necessary data for individual
joints and links were collected using Open Inventor, a CAD
toolkit. Mass, CoM or moment of inertia are examples of
the data collected. Then, a system interconnection structure
was created from a joint hierarchy of the robot. Figure 10
shows all defined links and joints for the robot. The ProPac
model needs one fixed ground body (reference frame) for
a modeling process. Therefore, a separate model which has
the left or right foot as the grounded body was made. The
model was then selected depending on the supporting leg of
the bin.

With the built model, ProPac calculated all components
of the Poincare’ equation [22]. The recursive multi body
dynamics equation for serial open and branched kinematic
chains was formulated using Lie group and Lie algebra.
First, the kinematics of an open chain was modeled as
a sequence of homogeneous transformation between con-
secutive joint frames. Spatial velocity of the branched
chains were then calculated. Last, the inward recursion of
forces and torques was calculated with the chosen exter-
nal forces. Suleiman et al. [11,12] provide more details
with how the Poincare’ equation can be formulated to relate
the joint torques and joint angles explicitly for humanoids
structure.

Equation 3 shows the generated dynamic equations for the
robot model. q is the generalized coordinate vector of a joint
angle and p is a quasi velocity of a joint.

M(q) ṗ + C(q, p)p + F(q) = Bp (3)

where

C(q, p) = −
[
∂M(q)p

∂q
V (q)

]

+ 1

2

[
∂M(q)p

∂q
V (q)

]T

+
[∑

m
j=1 p j X j

T
]
V−T

F(q) = V T(q)
∂u(q)

∂qT
, Bp = V T(q)B

u(q) is the potential energy function andM is a spatial inertia
matrix. Bp denotes the generalized forces represented in the
p-coordinate frames and B denotes the generalized forces in
the velocity of q coordinate frame. In combination with Eq.
4 which is the kinematic equations of each joint and link,
these equations provide a closed set of equations.

q̇ = V (q)p (4)

In Q table, each bin has all known values for the joint
angle, velocity and acceleration. Therefore, Bp which is a set
of generalized motor forces can be calculated for all joints in
the robot. The net result is that torque for each joint can be
calculated using this inverse dynamics method under a given
trajectory with the forward kinematic model. Every notation
in the Eqs. 3 and 4 are from [22].

After getting all joint torque values from the selected bins
in the Q table, they were compared with torque limits. In this
study, a continuous torque limit of the harmonic driver was
used for each joint’s torque limit. Then, the bin which has an
action that exceeds the limits got a penalty. This prevented the
generated motion from requiring too much torque or current.

5.2 Temporal and spatial smoothness

Any bins in the Q value table which have an action that
exceeds smoothness limits also received a penalty. A joint
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Fig. 14 Robot’s joint hierarchy and limits

Fig. 15 Robot’s joint torque limits

angle, velocity and torque’s temporal changes are examples
of such limits. The weighted sum of these penalties ensured
that the final output motion met the physical and dynamical
limits of the robot. Penalizing actions which exceed the joint
angle limit ensured a smooth trajectory over time. Limiting
the rate of torque change ensured spatial smoothness. Fig-
ures 14 and 15 illustrate the robot’s kinematic and torque
limits of each joint. In this study, a 100 ms time step was
used for getting key frames from an initial path-planned tra-
jectory. For joint limitations which are defined under fixed
time duration (10 ms), rescaling was implemented based on
the sampling time of key frames. Joint velocity, acceleration
and the rate of torque changes are the examples. Those values
were multiplied with 10 to integrate the time gap before use
in the cost function module.

6 Output trajectory generation and computational
complexity

6.1 Output trajectory generation process and analytic
verification

After grading all the bins in the Q table, a search for bins
with minimum penalty values was executed at each time step
(see Fig. 2). The selected bins were treated as new optimized
key frames. They were integrated to generate the smooth
trajectory. For this, the velocity and acceleration limits of
each joint were used again. Lastly, after the IK process, these
integrated key frames become the joint angle trajectory.

To test a validity of the proposed trajectory optimization
framework, the authors built an experimental scenario which
follows this sequence: (1) a robot lowers its pelvis with ver-
tical direction (Z axis) initially; (2) the robot then moves its
pelvis to the right side (Y axis) by swaying hip. The executed
motions are demonstrated in Fig. 16.

To design initial mocap trajectories for motions above, the
authors used mocap. The movements were captured at a 100
ms sampling time. Figure 17 demonstrates the CoM (Y axis)
and pelvis (Z axis) position of the recorded human move-
ment. The characteristics of the hip movement are: −125
mm in the Y axis and −150 mm in the Z axis. Figure 18
shows the joint angle trajectory which is calculated from the
mocap motion.

Mocap is a direct approach to implement motion plan-
ning in complex spaces. However, a kinematic difference
between the human body and the mechanical structure of
humanoids is a significant limitation. The motion-captured
trajectory does not guarantee static balancing of a robot and

Fig. 16 Swaying movement of a robot

Fig. 17 CoM and Pelvis trajectory from recorded human movement

Fig. 18 Joint angle trajectory for right leg (HY hip yaw, HP hip pitch,
HR hip roll, KP knee pitch, AP ankle pitch, AR ankle roll)
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also obeys angle limits of some joints. To overcome such lim-
its, capturedmotions should be scaledwith desired kinematic
and dynamic constraints.

When the selected constraints (joint and static balance
limits in this analysis) are given like Eq. 5, where

qt0 = q0, q̇t0 = 0, q̈t0 = 0

qt f = q0, q̇t f = 0, q̈t f = 0

q− <= qt <= q+

q̇− <= q̇t <= q̇+

y− <= CoM(qt )y <= y+

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Constraints (5)

the performance error of the recorded human movement is
measured by the R2 Norm method [23]. The error was then
averaged by sampling time (100 ms in this study). qt is the
joint positions of the robot. q−, q+, q̇− and q̇+ are chosen
according to Figs. 14 and 15. Bounds forCoM(qt )y is deter-
mined based on the position of supporting foot and the foot’s
width.

The average distance error between the recorded CoM
position and the balancing limits is calculated as 9.2321 mm.
The averaged joint angle error between the recorded move-
ment and the joint limits is calculated as 5.4362◦. When 0.5
mm and 0.1◦ are used for threshold values, the mocap trajec-
tory is not acceptable for the use in Hubo+. Peak values of
the hip pitch and ankle roll angle are below their minimum
limits (−40◦ and −20◦ respectively).

The input mocap trajectory is then processed with the
reinforcement learning agent-based trajectory optimization

Fig. 19 Trajectories after reinforcement-learning optimization

framework. Figure 19 presents the results which are gen-
erated from the framework. The averaged distance error
between the optimized pelvis position and the pelvis lim-
its is calculated as 0.261 mm. The averaged joint angle error
between the calculated movement and the joint limits is cal-
culated as 0.097◦.

The pelvis and the joint angle errors become decreased in
the generated trajectories. Both errors have below-threshold
costs. Peak values of the hip pitch and ankle roll angle also
meet their minimum limits. It resulted in less amounts of
the pelvis movement as can be shown in Z axis trajectory
of Fig. 19. The net result is that the proposed method can
optimize the input raw trajectory under a given set of various
constraints.

6.2 Computational complexity and processing time

In this study, the initial guideline trajectory was modified
during the post-processing stage for kinematic mapping. The
trajectory was then optimized with respect to all defined con-
straints in the optimization stage. For this, a systemwhich has
specifications of 1.8 GHz i-5 processors, 6 GB of memory
and Linux OS was used.

As described in Sect. 2.3, computation speed of the opti-
mization process was determined based on the number of
stateswhichwere to be optimized. Therefore, total time dura-
tion in the guideline trajectory affected computation time.
Neighboring bounds alsomade an effect in computation time
of the optimization process.

Though time duration of planned motions increase the
dimensionality of state-and-action domains, this could be
mitigated with sampling process. Figure 20 shows esti-
mated processing time based on various time durations and

Fig. 20 Effects of time duration (left) and sampling time (right) on
processing time
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sampling frequencies of planned motions. The right graph
of Fig. 20 demonstrates that the processing time become
decreased with higher sampling time of the guideline trajec-
tory. For this study, a 100 ms time step was used for getting
initial key frames from theguideline trajectory.Thevaluewas
chosen based on themaximum value which does not increase
performance errors which account for multiple time-varying
constrains of the robot such as joint limits and collision
avoidance. As described in Sect. 5.2, time duration-related
joint constraints were rescaled according to the sampling fre-
quency of initial key frames. Section 6 demonstrated that
the finally selected bins (after grading) were integrated to
generate the smooth trajectory considering the velocity and
acceleration limits of each joint. Therefore, temporal and spa-
tial smoothness of each joint are kept regardless of the initial
sampling time. However, performance errors from collision
constraints were dependent on the sampling frequency of ini-
tial key frames. Therefore, the frequency was tuned to find
themaximumvaluewhich does not increase the performance
error.

The selection of neighbor configuration is also highly
related to dimensionality. It is an important factor defining
the exploration potential of the presented approach. Figure 21
shows the estimated processing time and performance error
(in static balancing limits) based on various neighboring
bounds. With resolutions of 10 mm in transition and 1◦ in
rotation axis, 800 neighboring samples were optimized per
time step from the guideline trajectory in this study. With
the input ingress trajectory which has 30–32 s execution
time (with 10 Hz sampling frequency), whole optimization
process took about 4 min. The left graph of Fig. 21 demon-
strates the processing time linearly increaseswith the number
of neighbors. However, the right graph shows that the perfor-
mance error become converged below its threshold (0.5 mm
in this study) after 800.

Fig. 21 Effects of neighboring bounds on processing time (left) and
performance error (right)

Finally, thewhole processing time for bothpost-processing
and optimization was ranged between 210 and 250 s. 800
neighboring samples were optimized in each time step from
the guideline trajectory which has 30–32 s execution time
(with 10 Hz sampling frequency). The net result is that
it took about 4 min for the robot to have the optimized
vehicle mounting trajectory from the guideline motion. In
similar studies, [19] found paths for the ingress motion in
about 7 min (Xeon 3.4 GHz Processor and 8 GB of RAM)
and [13] took about 20 min for the computation time of
optimizing locomotive motions (Intel 1.70 GHz i5-2557M
Processor). Considering the fact that initial guideline tra-
jectory planning process took about 3 min, the approaches
took about 4–17 min for the optimization process. It presents
that computation time of the learning agent-based approach
can provide compatible performance with other existing
approaches under the system with similar specifications.

7 Experimentation result

There are two phases of ingress, which can be thought of
states. The robot should progress through each phase towards
task completion. First phase is Step: step up on a vehicle floor,
lower completely onto seats and move to the optimal driving
position. Second phase is Interface: put one foot on a brake
pedal and grasp a steering wheel with one or two hands. In
case of egress, phase Step can be replaced with Step down:
go from sitting to upright position and get feet from vehicle
floor down to ground.

In this study, the authors focused on planning and opti-
mization of motions for Step phase. The Step phase consists
of different parts which include Step up and Sit down and
Scoot motions. During the record in the capture system, the
human was asked to step on the floor of the given vehicle,
to lower onto seats and to scoot itself to the driver’s seat.
The captured motions become guideline trajectories for the
reinforcement learning-based trajectory optimization frame-
work.

The optimized trajectory was then tested using a virtual
robot model in a simulation environment, which is called,
OpenHubo. OpenHubo is anOpenRobotics AutomationVir-
tualEnvironment (RAVE) [24] based simulation toolwhich is
developed by Drexel University. It provides motion planning
and control of the robot model in a virtual environment [25]
featuring kinematic display, physics-based simulation and
simulated sensors. OpenHubo used Open Dynamics Engine
(ODE) for its physic and collision handling.

OpenHubo includes collision meshes, mass and inertia
properties for Hubo+ robots. The robot model was initially
built by deriving rigid bodymasses and inertia fromadetailed
CAD model in SolidWorks. The model was then exported to
Universal Robot Description Format (URDF) via the URDF
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Fig. 22 Guideline MoCap trajectory for Step up motion

exporter plugin (in SolidWorks). The URDFmodel was then
converted toOpenRAVEXMLformat using a pythonmodule
(in OpenHubo) for use in OpenHubo environment [26].

For the vehicle to be mounted, Club Car DS IQ (2008)
is used. The electric powered golf cart has a size of 87.6
cm × 97.8 cm. To model the vehicle in OpenHubo, the
KinFumodule in thePointCloudsLibrary (PCL) is used [27].
The module stitched multiple views from our depth cameras
together and created a high-resolution surface model of the
test vehicle. KinFu is an open source version of the original
Kinect Fusion algorithm [28].

7.1 Guideline MoCap trajectory

Figure 22 demonstrates the robot’s kinematic movement
with the guideline mocap trajectory (before the optimiza-
tion process) for Step upmotion. It is generated for an initial
part of Step phase during ingress.

The CoMposition often drifts outside the support polygon
as shown in Fig. 23.

Also, in many cases, the robot does not maintain its joint
limits. Such postures can result in high torque and unnatural
movement (Fig. 24).

Fig. 23 Comparison between the CoM position and the support poly-
gon

Fig. 24 Joint angle limit obedience due to non natural posture

Fig. 25 Simulation result with raw trajectory

Figure 25 shows the physics based simulation result when
the guideline trajectory is tested inOpenHubo. The trajectory
could not guarantee static balancing and collision avoidance.
It resulted in fall of the robot in beginning phase of ingress.

7.2 The optimized trajectory

The optimized ingress trajectories were then tested using a
robot model in OpenHubo with physics considered.

Figure 26 shows the robot’s Step upmotion during ingress
with the optimized trajectory (from the learning agent).

Figure 27 shows the robot’s Step upmotion from a differ-
ent camera view.

Unlike the guideline trajectory (see Fig. 23), the robot’s
CoM position lies in the support polygon with the optimized
trajectory (Fig. 28).

The robot often obeyed the joint limits with the guideline
mocap trajectory. In Fig. 24, the robot rotated its hip roll
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Fig. 26 The optimized ingress trajectory for Step up motion

Fig. 27 The optimized ingress trajectory for Step up motion from
canonical view point

joint more than the limit. It resulted in an unnatural posture
which requires high torque and current. However, with the
optimized trajectory, the robot changed the hip position and
the foot rotation to meet the joint limits. In Fig. 29, the robot
turned the right foot tomeet the hip joint limits while keeping
its balance.

Fig. 28 Comparison between the CoM position and the support poly-
gon

Fig. 29 Heading direction (yaw) change of left foot in optimized
motion

Fig. 30 Optimized trajectory for Sit down and Scoot motions

Using the optimization framework andmocap, other vehi-
cle mounting motions were also generated. Figure 30 shows
a robot sitting in the passenger-side of the golf cart (Sit down)
and moving itself to the driver-side (Scoot). As a result, the
robot completed the entire Step phase of ingress. Figure 31
demonstrates the samemotion from the canonical view point.

Figure 32 demonstrates the robot’s Step downmotion dur-
ing egress after driving and arrival to the goal.

Experimental testing and evaluation confirmed the effi-
cacy of the optimized trajectory approach. Figure 33 demon-
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Fig. 31 Optimized trajectory for Sit down and Scoot motions from
canonical view point

Fig. 32 Optimized trajectory for Step down motion during egress

strates the robot’s Step up motion during its first half phase.
Experiments raised a few challenges like self collisions and
over-heat issues. As can be seen in Fig. 33’s sub-figure 8,
the robot’s main power became shut down when its one leg
supported whole mass of the robot. Figure 34 shows the
addressed problems with more details.

Due to the heavy weights of each leg, a wrench effect was
applied to the movement of the robot. It worsen the rigidity
of each link pose and caused the unexpected self collisions
in some joints such as hip and ankle. Adjustment of the joint
angle limit can prevent the connected link fromcollidingwith
other parts. However, to climb the high vehicle floor, further
decrease of the joint is not possible considering the short leg
length of the robot.

High torques in some joints also generated over-heat
issues in the power management board of the robot. The
applied torques in each joint met the given threshold of
the used hardware like harmonic drivers and BLDC motors.

Fig. 33 Verification stage of optimized trajectory for Step up motion
during ingress [3]

Fig. 34 Practical issues from testing-and-evaluation process: self col-
lision (left) and over-heat (right)

However, high currents in the power control board accumu-
lated heats. It generated burnouts of the board. It especially
happened during the last half phase of the Step up motion
which requires the robot to have the knee-bent pose for long
time. This unnatural pose is also mainly resulted by the short
leg length of the robot.

To solve these problems, technical design requirements
which include increases of joint angle limits, torque limits
and leg lengths are addressed for the new robot model, called
DRC-Hubo. The author’s current studies focus on addressing
these challenges and further demonstrate the effectiveness of
this paper’s framework for vehicle handling with DRC-Hubo
model [29]. In preliminary results, the robot successfully
ingresses and egresses with two different vehicles (golf cart
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Fig. 35 Vehicle mounting of DRC-Hubo

Fig. 36 Step up from two different starting positions

and utility ground vehicle) via the planned trajectories from
the learning agent-based optimization framework [30]. Fig-
ure 35 demonstrates that DRC-Hubo finished Step up, Sit
Down and Scoot motions with the optimized trajectory.
Followed-up paper will describe how penalty function com-
ponents of the presented framework are modified to reflect
new kinematic and dynamic features of the robot. Further-
more, various vehicle mounting motions (ingress and egress)
will be designed and tested through different types of vehi-
cles to prove adaptivity of the presented approach.

Another critical part which should be further study is to
generalize the guideline trajectories. As described in Sect. 3,
input trajectories are designed by the path planner mod-
ule in the trajectory optimization framework. They can be
generated by motion capture or kinematic path planning
algorithms. Since both methods take significant capturing
or computation time, it is desirable to re-use initial guide-
line trajectories which were once designed for a given task.
They can be applied to various situations which each has
different task conditions such as kinematic change in vehi-
cles or task starting position. For this, path planner module
should extract key motion primitives from those initial tra-
jectory and should be adjusted to changes in a given task.
In Sect. 3.2, the authors presented that post-processing stage
can generate the optimized ingress motions for such different
task conditions. Figure 36 demonstrates that Hubo+ can step
on the vehicle floor from two initial positions which have
different height values. Using a guideline trajectory (which

was once designed), foot movements of the trajectory were
modified to the kinematic changes and they become opti-
mized through the presented framework. Future study will
address this approach further and will extend use of motion
primitives for various task conditions in a given task. The net
result is that initial path planning can be replaced with simple
kinematic processing of initial trajectories.

There are also works to be done for a better robustness
of the planning and optimization process in future studies.
Currently, a static balancing check based on CoM position is
used in the presented framework. Formore dynamicmotions,
other criterion factors such as zero moment point (ZMP) also
should be considered. Collision checking and contact-force
calculation are other works which also need to be advanced
for better performance of this optimization framework.

8 Conclusion

The paper began by underscoring the intellectual merits and
broader impacts of vehicle handling (mounting and driving)
by a humanoid. Towards this goal, this paper presented a
framework to plan and optimize humanoid motions under a
variety of internal and external constraints.With theguideline
mocap trajectory, the reinforcement learning agent generated
the output trajectory which minimizes the penalty values. At
the body level, the CoM position was computed for the sta-
tic balance check. For this, the Hubo+’s various kinematic
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and dynamic features were used for building a simplified
mathematical model. Internal and external collisions and
validity of the end-effector’s movement were also checked.
At the joint level, ProPac was used to build a torque model
of the robot to measure energy costs of each joint. Weight-
ing factors on each cost function were determined based on
the relative importance of each penalty. The converged Q
value table generated the optimized trajectory that satisfies
all the defined constraints at the body and joint level. The
net effect is a flexible framework towards humanoid vehicle
handling. Experiments with the full-sized humanoid verified
the approach. The framework has potential for extensions and
applications to other humanoids and vehicles. Current efforts
include the DRC-Hubo handling a Polaris utility vehicle.
The paper’s approach was used for DRC-Hubo in DRC-
Trials 2013 [31] and will be continuously applied to the 2015
DARPA Robotics Challenge Finals.
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