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Abstract Support for separation of roles is decisive
towards a successful business ecosystem where various
stakeholders with dedicated expertises network and collabo-
rate. However, it depends on means for composition(system
of systems, reuse of black boxes). This paper proposes
Dynamic State Charts as an extension of state charts for com-
position and coordination of complex robot behavior which is
one of the challenges in service robotics. Their states allow
to refine their content by choosing from a set of alterna-
tive matching state instances for robust task execution and to
manage the complexity of real-world tasks. Dynamic State
Charts allow reuse and can be bundled with software com-
ponents and are provided in a repository (idea of an “robot
app store”) as a step towards composition and separation of
roles as necessary for a business ecosystem in service robot-
ics. The approach is demonstrated in a practical application
with a service robot.

Keywords Service robotics · Task coordination ·
Model-driven software development · Robotic software
development · State charts

1 Introduction

Impressive algorithms and abilities for service robots have
been developed in recent years and the challenge is to inte-
grate them. This requires mechanisms for their control and
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coordination to perform tasks. Tasks should be composable
to more complex tasks.

Technically, a task (e.g., grasp cup) requires knowledge
about the coordination of the abilities of a robot, e.g., para-
metrization of components (e.g., object recognition, manipu-
lation planning), further subtasks (first determine object pose,
then grasp it, …) and handling of deviations in executing the
task (e.g., object slipped out of gripper). A sequence of such
tasks is called an action plot. An expert in a particular appli-
cation domain (task expert) should be able to encode new
action plots in his domain by (re)using provided action plots
from other experts but should not need to know about their
internal details. This is necessary to separate responsibilities
and roles.

Hierarchical state charts [8] are adequate for robot behav-
ior coordination in many applications. Entry- and exit-actions
can reconfigure system components (parameters, data flow,
control flow) according to the progress of task execution
as reported by events. State charts are convenient due to
their hierarchies, parallelism, event-driven nature, defined
semantics and existing (graphical) tools. Nevertheless, state
charts so far lack a mechanism for instantiation: if an action
plot described as state chart (e.g., determine the pose of an
object) is needed within a different more complex action
plot (e.g., approach shelf and fetch object, approach table
and fetch object), it needs to be copy-pasted as nested
state chart (including code adaptions and parameterization)
into all action plots using it. This makes their reuse nearly
impossible.

Reuse of algorithms and components that wrap the robot’s
abilities (and algorithms) is state of the art [28,31]. Even
more, task coordination is an active research field. However,
task coordination (action plots) must also be reusable and get
more attention in the overall development process: i.e., reuse
of the description and method for coordinating components
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Fig. 1 Until now, the development of robotic applications is mostly
technically driven and must be extended with a more use-case driven
perspective. We exploit model-driven software development (MDSD)
for separation of roles and support of different perspectives

to perform complex tasks. This enables the separation of
different roles that are involved in the development process.

To achieve this separation, according views must be estab-
lished for every role. The available views so far were foremost
technically driven and related to specific problem solutions.
To get matured applications that “do” something useful to a
customer or user, the use-case view becomes more important
(Fig. 1). It is therefore necessary to complement the techni-
cal perspective at some point in the development process
by a more use-case driven perspective. Having reusable
software components and action plots available as building
blocks, allows to focus on the use case rather than technical
details. Model-driven software development (MDSD) can be
exploited to realize this.

All stakeholders can benefit from existing and matured
building blocks where reuse improves quality. They do not
any longer need to be an expert in every field and can focus on
their contributions. This speeds up the development process
and decreases time-to-market. At the same time, it increases
return-on-investment by amortization of development costs
by multiple reuse. Finally, this enables evolvement of a mar-
ket for building blocks.

We propose Dynamic State Charts which support instanti-
ation of dynamic states as a special kind of a state [32]. They
extend regular event-driven state charts, most importantly
with dynamic states which only consists of the hull of a state.
Alternatives and variations can be defined at design time but
its internals are selected from a set of matching instantia-
tions from a library at runtime. Dynamic State Charts sup-
port reuse of action plots as building blocks for composing
complex behaviors and publishing them following the idea of
the “robot app store”. They increase maintainability through
onetime representation of repetitive state chart blocks and

support robustness by context and situation dependent selec-
tion of alternative instantiations of states (e.g., following a
person based on a laser ranger or following a person based on
vision). They further reuse the knowledge of how to perform
complete tasks independently of the refinements: for exam-
ple, a state chart describing the action plot of cleaning up the
table is independent from which kind of object recognition
is being used in the sub-steps.

The foundation of this approach is based on insights and
experience gained by implementing and operating a variety
of real-world and complex robotics applications like e.g., the
robot butler scenario [22]. This article presents an extension
of [33].

2 Related work

To deal with the growing complexity of robotic systems,
the robotics community has established concepts to improve
robustness, interoperability, maintainability and reusability
by means of component-based architectures and model-
driven software development. This resulted in robotic frame-
works and architectures such as ROS [20], SmartSoft
[24,31] and Orocos [2].

Current activities focus on composition towards reuse as
black boxes and configuration at runtime for both, parame-
ters and the component’s lifecycle. The BRICS component
model (BCM) [3] focuses on separation of concerns. It intro-
duces the concept of composition with components grouped
or nested together. They include a lifecycle coordinator to
form a new reusable component (e.g., components for local-
ization, mapping, path planning as a navigation component).

Restricted finite state machines (rFSM) [12] were devel-
oped in the context of BRICS/BCM. rFSM are a minimal
variant of Harel state charts and integrate into the robotic
framework OROCOS/RTT. It was developed with a focus on
component coordination for robotics. It is not intended to
coordinate a whole system of components in the sense of a
sequencer since it misses a generic component configuration
interface.

BCM and rFSM make valuable progress towards reuse
and composition of components. However, coordination is
too closely linked to the component level. rFSM Coordina-
tors inside composite components control the component’s
lifecycle rather than the component’s skills at task level (in
our approach, such lifecycle automatons are a part of every
component [25] and are used by but not for task coordi-
nation). Therefore, their coordination is technically driven
rather than use case driven. Furthermore, rFSM does not sup-
port dynamic states as introduced in this paper.

Even though the separation of concerns in component-
based architectures (e.g., as in BCM) is a valuable step
towards real applications, we believe that the separation
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in this functional part is insufficient: separation must be
applied at all levels and to all stakeholders in the development
process. SmartSoft and SmartMDSD already support sep-
aration of roles as needed in a robotics business ecosystem
[26].

In this article, we go a step further in reuse and composi-
tion of parts related to computation and functionality (com-
ponents). We make reuse at a task level / use-case level: reuse
and composition of action plots.

With respect to robot control, first developments resulted
in languages like the reactive action packages (RAPs) [5].
RAPs implement situation-driven execution and expand a
sketchy plan to concrete actions at runtime.

State charts [8] are since their invention accepted and they
are in widespread use in computer science. Even though state
charts have been used for robot applications [7,10], only few
approaches such as XABSL, SHSM and SMACH use them
for generic robot control.

The extensible agent behavior specification language
(XABSL) [21] supports hierarchical decomposition of behav-
ior and provides mechanisms for action selection with finite
state machines. It is well suited for highly reactive applica-
tions such as RoboCup soccer. The execution mechanism
is based on the cyclic traversal of finite state machines
expressed as decision trees. However, it does not follow the
idea of event-based systems and situation-driven execution.

Skill hybrid state machine (SHSM) [15] is a behavior
engine implemented in the Lua Programming Language [19].
It was mainly developed for the Humanoid Robot Nao and
RoboCup. It allows hierarchical composition of hybrid state
machines with two final states success and failure. However,
the restriction to these two final states is limiting (cf. [6]).
The decision about success or failure of a task must be the
decision of the caller as only it has the knowledge about the
context in which the call has been issued. It is therefore the
only one that can decide whether the result of an action is
to be interpreted as success or failure. SHSM is also used to
coordinate the processing steps of algorithms. However, this
approach is too low level for task control.

The state machine executive (SMACH) [1] has success-
fully been used for scenarios like fetching beer or playing
pool. It defines hierarchies of state machines that return out-
comes (user-defined strings) to proceed to the next state. Such
a transition is thus a mapping of one return string value to
another state and can only be triggered internally but not from
the calling state. SMACH supports data passing between
state hierarchies via explicitly defined user-data structures. It
explicitly uses blocking calls which may cause the complete
execution system to not respond anymore. SMACH states
“correspond more to states in structured programming” [23].
It is thus essentially only a flowchart since it proceeds from
one activity to the next upon completion based on input of
the states itself. It is not event based and does not react to

external events. It is thus a smart structuring of function calls
aimed at rapid prototyping of scenarios [1]. SMACH sup-
ports static composition of behaviors without the ability of
situation-dependent task execution.

Only few approaches separate task modeling from reac-
tive components. For example, SmartTCL [34] is a domain-
specific language in LISP for task coordination. It uses
the same coordination services of components as Dynamic
State Charts. It supports hierarchical task decomposition and
situation-driven execution of tasks. Task-nets are specified
at design-time with variation points purposefully left open.
Task-trees are at runtime dynamically created and modified.
SmartTCL focuses on the integration of external planners
for specific problem domains (e.g., Metric-FF) and reason-
ing.

Simplicity and clarity of the languages is the common goal
of the presented state-chart-like approaches. Hierarchies of
actions are a key mechanism in all presented approaches.
Hierarchies require to identify the proper abstraction level
below which low-level processing apart from state charts
takes place (SMACH states are also intended to com-
pute results [23], SHSM have algorithms in states). Most
approaches lack mechanisms for generic configuration of
software components in a robotic system. The focus on reuse,
if any, is on “local” reuse within the application but not
towards composing new applications at the task modeling
level in a building blocks manner. Only few approaches are
event based and thus not as responsive as required for task
coordination: e.g., SMACH and SHSM allow no transitions
into higher levels than the current state. Many do not address
the runtime refinement and situation-dependent selection of
instantiations of states.

3 Use case

Nowadays, the roles in developing robots are too tightly cou-
pled and every involved person needs to be an expert in every
area ranging from algorithms over expertise of the applica-
tion domain up to the final integration. This led to impressive
demonstrations of robot skills in laboratories, but these have
been mainly driven by technical achievements. A robotics
expert can neither be an expert in each of the prospective
application domains nor can a robotics company become a
player in all the markets of these application domains.

The lack of separation of roles is a severe show-stopper
when it comes to developing a service robotics market [26].
Separation of roles reduces risks, efforts and costs as well as
time-to-market and increases overall robustness of systems.
To exploit economically viable service robotic applications,
we need to make a shift towards use-case driven service robot
systems. This requires the involvement and collaboration of
stakeholders with dedicated expertises as shown in Fig. 2,
ranging from component developers over system integrators
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Fig. 2 Separation of roles in a robotics business ecosystem to make
the step from technically driven service robot systems towards use-case
driven ones. At a technical level, it requires handover of composable
black-boxes

and application domain experts to the robot itself that might
extend its capabilities at runtime by downloads via the inter-
net.

A successful business ecosystem depends on separation of
roles where building blocks can be handed over as black-box
from one role to another, hiding complexity and still ensuring
composability.

To realize this separation, we have to follow a devel-
opment process including appropriate tooling (like model-
driven approaches) which provide partial but focused views
on the overall system development. These views have to be
aligned with the needs and skills of the different stakeholders:
the architectural view needs to be separated from the imple-
mentation as well as the technical views need to be separated
from the business logic / use case. This not only decouples
development in space but also in time which enables speedup
of the overall development and faster time-to-market.

An abstract use case with respect to task coordination is
illustrated in Fig. 3.

Component developers model the component hull of a
component (Fig. 3: 1©) with provided/required services.
They are based on communication patterns [27] and provide
stable interfaces towards the outside view of a component
(to be compatible with other components) as well as to the
inside view of a component (for implementing functional-
ity, either by reusing existing libraries or implementing own
algorithms, Fig. 3: 2©).

In this step, they also define the coordination services vis-
ible at the component hull and write minimal action plots
that make these components usable in action plot models
(Fig. 3: 3©). For example, they model components for colli-
sion avoidance, mapping and path planning and model simple
action plots that can navigate (a “goto” action plot, Fig. 3:
4©).

They focus on implementation and component function-
ality rather than integration. They are interested in keeping
effort and costs low by reusing algorithms and libraries and
want to offer and sell their work (components) in the market
for reuse.

Task experts have deep knowledge in task modeling. They
develop abstract action plots (Fig. 3: 4©, 5©) in cooperation
with application domain experts. These plots focus on the
task at hand which is independent of the specific robot or
components used in the final application. For example, they
model an action plot for a delivery robot but leave open how
the robot moves (walk, drive or fly) or navigates (SLAM or
indoor GPS, 2D or 3D path planning) to its destinations since
all delivery robots will somehow move and navigate. They
are interested in reusing action plots (their own or others) and
want to offer and sell their work (action plots) in the market
for reuse.

System integrators put together action plots and compo-
nents (Fig. 3: 6©) and fit both to the concrete robot and

Fig. 3 Use case for modeling of task coordination from defining a component hull with stable services to a complete action plot for an application
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application. Both, action plots and components are treated as
building blocks, i.e., they are black boxes. System integra-
tors do not want to be bothered by internals of components or
action plots. They want to reduce effort by reusing existing
components and action plots.

Application domain experts know best about typical use
cases in the target domain of the final robot application. They
do not need knowledge of robotics or computer science. For
example, a cleaning professional is an expert in cleaning but
does not know anything about robotics.

Robotic experts have deep knowledge of robotics and
transfer the application domain expert’s knowledge towards
the robotics application and “build” the robot physically. For
example, he knows best what kind of robot (walking, driving,
flying) and additional details are best for the application.

The robot executes the action plot as coordinated by
the sequencer and thereby orchestrates components to work
together as an application. Alternatives and variations in the
action plots are chosen from a library at runtime depending
on the context and situation (Dynamic states).

4 MDSD for behavior modeling

We are convinced that model-driven software development
(MDSD) is an enabler to drive robotics towards a business
ecosystem for robotics software [26].

In the context of task modeling and composition, it is
important to model independently from the implementation
or from deep technical details or even program code, e.g.,
architecture must be separated from implementation. Due to
several involved stakeholders, elements must be handed over
from one stakeholder to another and their different views
and needs must be supported and provided. While every
stakeholder has to be given sufficient degrees of freedom,
the boundaries must be clearly defined for a successful han-
dover.

This can be achieved by establishing MDSD throughout
the whole development process where it is an important tool
implementing the separation of roles, supporting the stake-
holder’s perspective and reducing time of development.

4.1 Graphical and textual modeling

For MDSD, both graphical and textual modeling are used.
As there are arguments for both representations, this section
elaborates how and why which representation is used.

Graphical modeling (e.g., with Eclipse GMF, UML) is
good for visualizing structural relations and getting infor-
mation out of descriptions at the first glance. This is impor-
tant for behavior modeling. They are easier to understand,
easier to use by (novice) users and may even be used in
discussions with non-experts when not all aspects of a dia-

gram are important and therefore helpful for separation of
roles.

From the modeling point of view, textual modeling (e.g.,
Xtext, Eclipse TMF) can be compared to writing code, so
its use in domains involving “algorithmic” models is likely.
Compared to graphical models, textual models have their
advantages when models are “linear”, i.e., lists of properties
or name value pairs. These kinds of models look the same
when they are modeled textually or graphically. Tools for
textual models are more matured, lightweight and can easily
be used with tools like diff and versioning tools.

A common use case in the modeling world is to combine
graphical and textual modeling such that two views exist of
a single model: the model can be edited in its graphical and
in its textual representation simultaneously as e.g., presented
in [14]. However, both representations of the model need to
be maintained and additional effort in layouting is required:
when the textual model is updated (elements added), the
graphical representation must be updated as well and auto-
matic placement of elements is difficult because information
is missing (e.g., size, position of the element in a 2D draw-
ing plane). Vice versa, when graphically adding elements at
a 2D position, the textual view must be updated, but again,
information is missing (e.g., where in the linear list of lines
shall the object be added?).

Our approach is to make use of the individual strengths
of graphical/textual modeling. We use graphical modeling
for elements where structure is important: in the action plot.
Since state charts have a graphical representation, we keep it
and reuse UML (Papyrus UML [18] modeling from Eclipse).
Coordination of components (configurations in entry/exit
actions) in lists of values, parameters, etc. corresponds more
to linear programming, so we use a textual modeling lan-
guage (Eclipse TMF/Xtext DSL [4]) for this purpose and
embed this language into the entry/exit actions of the UML
state chart (Fig. 4). This is similar to YAKINDU SCT Tools
[11].

Fig. 4 Use of graphical and textual modeling: the structure of the
action plot is modeled graphically using Papyrus [18] and UML pro-
files. Configuration of components is modeled textually in Xtext [4]
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5 Robot behavior with Dynamic State Charts

Dynamic State Charts are based on UML state machines
[17] (the term “state machine” is used in the context of
“UML::StateMachine”). Our implementation uses UML pro-
files which allow to make use of existing UML toolchains and
the UML standard.

5.1 Architecture: interaction of sequencer and skills

This work is based on a layered architecture as described in
[34] with a sequencing layer and a skill layer (Fig. 5). Low-
level processing in closely coupled reactive control loops is
done in components in the skill layer. These components
include algorithms and low-level control accessible as skills.
They provide basic services such as collision-free driving
and path planning. Skills can be configured at runtime. For
example, navigation is done by setting up path planning to get
input from map building and send intermediate way-points
to the motion execution that avoids obstacles (Fig. 5).

The sequencing layer consists of a central component
(sequencer) that coordinates the execution of the action plot
encoded in Dynamic State Charts and triggered by reported
events. Persistent data to build a world model (e.g., loca-
tions of objects) are stored in and retrieved from an external
knowledge base. This gives space for powerful reasoning
mechanisms.

This architecture is not fixed to two layers or any layers
at all. In fact, the sequencer is the central component that
orchestrates the others.

The component-based architecture follows the princi-
ples of SmartSoft and the SmartMARS component meta

Fig. 5 An architecture with two layers for Dynamic State Charts. The
skill layer consists of components running algorithms and low-level
processing in continuously running control loops. These skill compo-
nents can be configured by the sequencer according to the action plot
(e.g., motion execution, path planning and map building to drive to
position X/Y). Skills report about execution via discrete events to the
sequencer

Fig. 6 The sequencer typically coordinates by first configuring com-
ponents, then triggering them to start an action (both via parameter
pattern) and finally can collect results via event pattern

model [28,31] with well-defined services through commu-
nication patterns to communicate with components. In gen-
eral, the sequencer coordinates the components by first con-
figuring them (e.g., configuring objects to recognize), then
triggering the component to start (recognize objects) and
finally collecting results or feedback. This is done using a
set of communication patterns for coordination (orchestra-
tion), e.g., state, parameter, event (Fig. 6). The state pattern
[25,28] is used to switch between modes of processing in
skills (e.g., run/standby). The parameter pattern [28] is used
to configure and trigger actions in skills. Skills are expected
to report to the sequencer about actions using events (event
pattern [24,28], e.g., goal reached). Necessary information
is included in the event.

The sequencer coordinates and orchestrates skills by con-
figuring components according to the action plots encoded in
Dynamic State Charts. All communication to the sequencing
layer is asynchronous to stay responsive through all hierar-
chies of states in the state chart.

The sequencer only triggers actions and receives discrete
event notifications that report on the execution process. This
enables task sequencing at a high level of abstraction as there
is no data communication on an algorithmic level or even
closely coupled control loops in between sequencer and skill
components (e.g., visual servoing). By responding to events,
the responsibility for the action is on the skill layer and
follows the concept of cognizant failure [16]: any problem
encountered which cannot be handled locally must be noti-
fied to the sequencer. The state chart in the sequencer then
takes command and can resolve a problem by reconfiguring
the skill layer as defined by the action plot.

5.2 State charts as sequencer

Each state of the Dynamic State Charts resembles a config-
uration of the skill layer (Fig. 7). Configurations are set up
within entry actions and can be reverted by exit actions (i.e.,
to set in a safe state if necessary). Further hierarchical refine-
ment of the configurations is made along the hierarchy in the
entry/exit actions of nested state charts. Transitions are taken
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Fig. 7 Each state (left) corresponds to a configuration of the skill layer
(right). The first state in this example (timestep 1) configures skills for
speech recognition (and sets navigation components to inactive). After
a recognized voice message was sent to the sequencer, the second state
(timestep 2) configures the skill layer to approach a location. The entry
actions in each state set up the configurations

according to events raised by components. They continue to
the next state and reconfigure the components in entry/exit
actions (Fig. 7).

Communication with skill components from within the
state chart is done using a set of function calls that map com-
munication with the coordination interface of skill compo-
nents (Fig. 6). A mapping assigns a user-defined name for
each component port in the skill layer. Configurations may,
for example, include the change of the mode (SmartSoft
lifecycle automaton/state pattern [25]) of a skill component.
The call from the state chart is translated into communication
to the state port of the component.

Communication that the state chart sends or receives
towards the framework is buffered in queues (Fig. 10). Fired
framework events are pushed to an event queue that is then
dispatched to the sequencer. The dispatcher translates these
events to framework events. Actions that leave the state chart
(for configuring components) are again queued and translated
into framework communication for the coordination patterns.
The state chart may fire events for itself. They are put in the
action queue to meet the run-to-completion and are again
forwarded to the event queue by the dispatcher.

The sequencer does not execute any actions or control
loops itself but only triggers them in skills—the do action of
states is therefore not used. The state chart manages parallel
control flows with regions (e.g., driving to location), while the
corresponding actions (map building, collision avoidance,
motion control, …) are executed by components.

5.3 Dynamic states for situation-driven execution

Dynamic State Charts extend state charts by dynamic states.
State charts in general are sufficient for robot control in many

Fig. 8 Dynamic states select their content at runtime from alternative
action plots (candidates) based on the current situation. The states from
the selected alternative action plot become the substates of the dynamic
state

use cases where full explication of all execution variants is
feasible beforehand. However, modeling all possible states
and transitions that are necessary for real-world tasks includ-
ing all variants and recovery tasks (including deviations from
the regular action plot), soon results in a huge, unreadable and
error-prone representation.

Dynamic states are introduced for this purpose. They
allow the developer to leave certain states purposefully empty
for runtime refinement from candidates. They are essen-
tially submachine states with the referenced state machine
being determined depending on the current situation (Fig. 8).
The benefit is a simpler and more manageable representa-
tion that allows the situated selection of skill configurations.
For example, only one dynamic state is used to represent
approaching a location (approach). The correct refining (sub-
machine) is chosen at runtime from a library (approach room
or approach shelf which may be different approach strate-
gies).

Candidates are specified in a top-down direction (a
dynamic statereferences possible candidates). A logic con-
dition for selecting a candidate is defined in the candi-
date itself (bottom-up direction). Each candidate can thus
decide whether it is appropriate in the current situation (same
as information expert principle [13]). The condition is not
defined in the dynamic state because this resembles a choice
pseudo state and leads to redundant conditions.

To express the appropriateness of a candidate in a logical
condition, it checks the current situation by evaluating para-
meters passed to the state or stored in the knowledge base
(e.g., the type of approach strategy depends on whether the
location is a person, object or room). In case no candidate
matches, a special event is fired that can be handled on a
transition leaving the dynamic state.

5.4 Using actions for coordination/configuration

Dynamic State Charts distinguish between internal and exter-
nal actions which improves the structure significantly. Inter-
nal actions stay within the state chart (e.g., setting variables)
and have no influence on components. They are allowed at
transitions.
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External actions have effects outside the sequencer towards
components. They may be used for configuration through the
coordination/configuration service (Fig. 6) for setting para-
meters, states or requesting and activating events. Actions are
modeled in a textual DSL. External actions are only allowed
in entry/exit actions of states.

5.5 External events

Events in SmartSoft (components) need to be activated
[24]. This way, the activator configures in which cases it
wants to be notified by events. For example, the activator
wishes to be informed as soon as the battery drops below
5%.

States can activate events of components and assign user-
defined state chart event names. Event names separate the
specific event activation with the exact activation parame-

Fig. 9 Mapping between state chart and skills: a set of function calls in
the state chart are translated into communication to skills. Component
events received from skills are translated into state chart events and fire
transitions

ters from the reaction to the event. In Fig. 9, this allows the
usage of an abstract event label low_bat on a transition with-
out knowing the activation details that caused the event to
fire (e.g., battery < 5%). Additional event details may be
included in the state chart event attributes (e.g., exact battery
level). Component events are translated to these named state
chart events when fired (Fig. 10).

Events in the state chart are scoped. By default they are
only visible within the state machine they were activated in
(to transition between children). Events can be declared to be
visible on transitions that leave the state. This way, activated
events can be handed over to the next level in the hierarchy
to consider it for further transition.

5.6 Data passing and internal events

One-way parameter passing (as defined for state machines in
UML [17]) is used to send data into states and can then be
read from local variables.

Between states, data are passed with scoped variables (Fig.
11). Variables have a local scope and are visible within the
containing state machine (the scope is defined by the border
of the state machine).

State charts can fire internal state machine events that carry
variables to pass data in attributes to the parent hierarchy and
to report on the outcome of actions to consider the next state.
Figure 11 shows the usage of variables, parameter passing
and events: the event evt is fired by the submachine say and
carries attributes that can be accessed. Special success or fail-
ure states are not available as the submachine cannot decide
on the success or failure.

Fig. 10 Handling of events and
actions between component hull
and state chart in the sequencer
component
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Fig. 11 Assignment and use of variables: ?x is passed as parameter
into the submachine. Event evt returns data in an attribute which is
saved to ?message

5.7 Grouping and hierarchy

In Dynamic State Charts, composite states are only used to
structure and group states. They do not introduce a new scope
or hierarchy as they bring no further hierarchy. This follows
a suggestion by Simons [29] who suggests to use composite
states only for abbreviation to draw group transitions only
once.

Submachine states are supported to bring hierarchy and
abstraction as they reference a state machine that is com-
pletely encapsulated.

5.8 Transitions

External transitions as defined e.g., by Harel and UML state
charts define transitions that cross the boundary of either
composite states or submachine states. They are intended to
jump from any state to any other state regardless of the hier-
archy or any other limitation, even between states of differ-
ent state machines. They are not supported in the presented
approach as they break encapsulation and have a negative
impact on the readability [30].

5.9 On composability and reuse

Dynamic State Charts are encapsulated state machines with
a defined interface. Developers can use them as a black-box
without knowing about the internals. This raises the abstrac-
tion by each hierarchy which helps to manage the complexity
of the overall action plot and allows for separation of roles.

With this described concept, two main kinds of Dynamic
State Charts can be identified based on what mechanisms
are being used (Fig. 12), primitive action plots and abstract
action plots.

Primitive action plots contain communication calls to skill
components through the coordination/configuration services.
They thus build the bridge to skill layer configurations and at
the same time from task modeling to component configura-
tion. They contain details for the configuration of individual
components (e.g., parameters) and are thus specific to them.

Fig. 12 Action plots can be divided into primitive and abstract action
plots. Primitive action plots which interact with (e.g., configure) skill
components and are thus specific for skills as they use concrete con-
figuration parameters. Abstract action plots which use primitive action
plots but do not directly interact with skills and are thus more general

Abstract action plots are plots that use only primitive
action plots. They do not contain communication calls to the
skill layer and are independent from it, which makes them
more generic. The benefit is that they are highly reusable in
other applications or robot platforms with completely differ-
ent skill components that offer other services but have the
same abilities. Since all the state machines offer an inter-
face, only the underlying primitive action plots need to be
exchanged or bound before deploying the application.

5.10 Building applications: workflow

The workflow for building applications is illustrated in
Fig. 13: Developers provide algorithms in components.
These components are bundled with (primitive) action plots
that encode basic abilities. E.g. components for map build-
ing, collision avoidance and path planning can be bundled
and combined with action plots realizing goto tasks and form
a bundle navigation. Given that these elements are reusable,
they can be provided in a market, illustrated as the “robot app
store” in Fig. 13 towards a market.

Task experts can model tasks as abstract action plots (e.g.,
clean up the table) with parts for later refinement (e.g., with
object recognition and driving/goto table). These action plots
and behavior packages may again go into the market/“robot
app store” or further packaged to full-fledged tasks and again
published.

An application expert or system integrator begins with
modeling the application specific task plot as abstract action
plot (Fig. 13). It is refined in a building-blocks manner by
reusing packages, action plots or even full-fledged tasks as
off-the-shelf bundles from the market or “robot app store”.
If using only provided action plots, the user can put together
abstract action plots without having to know about any tech-
nical details (configuration, event activations, parametriza-
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Fig. 13 A “robot app store” as a repository of algorithms in com-
ponents, their corresponding (primitive) action plots to configure and
use them and task descriptions (abstract action plots) that application
experts put together for a specific application. The roles are clearly
separated

tions, internal knowledge of algorithms or details of action
plots). This way, every role can focus on its contributions to
the robotics business ecosystem.

6 Experiment and results

A real-world example is used to demonstrate the approach.
Even though the example is small in complexity, it includes
very typical use cases of larger applications since the founda-
tions of these use cases are based on insights and experience
gained by implementing and operating real-world and com-
plex robot applications like the robot butler scenario [22]
where a robot acts as a butler and operates a coffee machine,
delivers coffee or fetches juice.

The presented example not only shows how it is imple-
mented from a technical or modeling point of view but also
how the steps relate to the development process and separated
roles. The example illustrates the benefit of the described
approach and development method.

6.1 Experiment description

From a story point of view, a robot (Pioneer P3DX platform)
is commanded via speech to navigate to rooms (e.g., din-
ing room) or objects (e.g., shelf). It shall return immediately
and wait for further commands. Such a task may be used to
extend the robot butler scenario [22] as basis for fetch and
carry tasks. Objects and rooms have to be approached by a
different kind of navigation which is realized through a dif-
ferent configuration and use of different components of the
skill layer.

From a development point of view, only the main story
(action plot) shall be described as Dynamic State Charts. All
(sub) action plots and components required (e.g., for path
planning and navigation) shall be reused in the form of pack-
ages that bundle components and action plots from a reposi-
tory.

6.2 Implementation and modeling

The example was created using the SmartSoft MDSD
Toolchain [31], in which we integrated a prototypical
implementation of Dynamic State Charts (Fig. 14). It uses
Papyrus UML [18] for graphical modeling. The state chart is
generated to C++ code by the toolchain and can be deployed
to the robot.

The deployment diagram in Fig. 15 is used for this exam-
ple and shows the components and their initial wiring. The
Dynamic State Charts acts as sequencer and controls and con-
figures all other components. The SmartPioneerBaseServer
wraps the robot hardware, the SmartLaserLMS200Server
provides laser scans. In addition, there is a mapper to provide
a map, a planner to plan paths and the SmartCdlServer for
motion execution and collision avoidance. All components
are available at [31].

Fig. 14 A screenshot of the SmartMDSD Toolchain with a prototyp-
ical implementation of Dynamic State Charts. The state chart diagram
of the example is opened
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Fig. 15 The deployment diagram shows the components used in the
example and their initial wiring

The application is realized as an abstract action plot with
three states for speech, approaching and returning to the
initial location (Fig. 14). Figure 16 illustrates the modeled
Dynamic State Charts MainMachine and illustrates internals
of reuse and component parametrization. Only the Dynamic
State Charts MainMachine has to be modeled for the exam-
ple. The states speech and return are submachine states that
re-use already existing primitive action plots (e.g., from the
“robot app store”). The state approach is a dynamic state with
two candidates for approaching rooms or objects that re-uses
existing action plots.

The primitive action plots SpeechInput configures com-
ponents in the skill layer to listen and fire a speech event
upon input. As soon as this event is fired, the action set_vars
fills the variable ? what with data from the speech event. The
object to approach is stored in the speech event and can be
accessed by the attribute SEMANTIC.

A dynamic state (approach) is used to decide at run-
time how the location given via speech input is approached.
Depending on the type (object or room), the dynamic state
chooses the instantiation from the candidates approach_obj
and approach_room. The candidates know the exact loca-
tion (e.g., by previously having shown the robot around) and
approach the location using a different configuration of the
skill layer: an object (e.g., shelf) is expected to be nearby and
not to require path planning and is approached using only
the SmartCdlServer for this task. Driving to rooms requires
more complex path planning and is thus realized by config-
uring the SmartCdlServer in combination with mapping and
path planning. This is done using the primitive action plot
goto_planning which takes goal coordinates as parameters
and handles all details.

The setup state of goto_planning uses the SmartSoft
state and parameter pattern to configure components in its
entry action. It activates the mapper to build maps, config-
ures the collision avoidance (“cdlp”) and finally configures
the planner (“plannerp”) with goal coordinates ?x = 0 and
?y = 0. The done event is triggered as soon as the substates of

Fig. 16 Illustrated screenshots showing the main Dynamic State
Charts for the overall behavior of the example and a primitive state
chart for navigation

a state reach its final state. In this case, there are no substates
and done is fired immediately. The entry action of approach
activates the event goal_reached in the skill layer. As soon
as the event is fired, the state approach is left and it’s exit
actions set the components inactive (SmartSoft state pat-
tern: “neutral”). approach then fires an internal state machine
event arrived which can be used in the upper hierarchy (Main-
Machine). These configuration commands are specified by
the developer (component developer/task expert).

6.3 Results

The example demonstrates a suitable level of abstraction in
the modeling of action plots. The overall task is build in a
building blocks manner. Existing plots can be reused without
knowing about their internal plot or component configura-
tion they use. Therefore, component configuration is decou-
pled from component usage in action plot modeling. These
re-usable plots can be shipped together with components and
form a complete behavior package for the idea of the “robot
app store” and separation of roles.

However, Dynamic State Charts itself are limited for robot
behavior in the way that they can only represent what can
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be expressed in advance at development time. In use cases
where this is not possible or too complex, an external sym-
bolic planner (e.g., Metric-FF [9] or even action recipes from
RoboEarth [35]) must be integrated as shown in [34]. They
can be used to generate an action plot at runtime and the
Dynamic State Charts would control the execution (e.g., the
best order to clean up a table given the objects on the table).

Today, powerful tools for model-driven software devel-
opment exist, especially driven through the Eclipse commu-
nity (e.g., Xtext, Papyrus UML, YAKINDU). However, these
tools are not yet matured enough for all use cases in com-
plex scenarios, since they are still under heavy development
and therefore not stable for custom adaptation. For example,
YAKINDU supports modeling and code generation for state
charts, but both modeling and code generation are not com-
plete. Remarkable progress has been made towards methods
to extend and adapt these tools for specific domains, but it
still needs more time.

7 Conclusion and future work

We have presented the approach of Dynamic State Charts
as a generic method for composition and coordination of
complex robot behavior as action plots. The instantiation of
dynamic states and the selection of their internals at runtime
reduces the complexity in modeling real-world applications
and brings robustness by context and situation dependent
selection of actions. Modeling action plots is intuitive, since
the underlying concept of state charts is known and formally
defined.

We have shown how task coordination can be modeled
independent from component implementation. These con-
cepts are a progress towards separation of roles in a robotics
business ecosystem to make the step from technically driven
service robot systems towards use-case driven ones.

Future work includes selection mechanisms for alternative
plots and more real-world examples for further evaluation.
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