
Intel Serv Robotics (2013) 6:199–209
DOI 10.1007/s11370-013-0137-3

ORIGINAL RESEARCH

Local map-based exploration for mobile robots

Hyejeong Ryu · Wan Kyun Chung

Received: 25 April 2013 / Accepted: 7 September 2013 / Published online: 27 September 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract For an accurate and efficient exploration, a local
map-based exploration strategy is proposed. Segmented fron-
tiers and relative transformations constitute a tree structure;
using frontier segmentation and a local map management
method, a robot can expand the mapped environment by
moving along the tree structure. Although this local map-
based exploration method uses only local maps and adjacent
node information, mapping completion and efficiency can be
greatly improved by merging and updating the frontier nodes.
Simulation results demonstrate that the computational time
does not increase during the exploration process, or when
the resulting map becomes large. Additionally, the resulting
path is effective in reducing the uncertainty in simultane-
ous localization and mapping or localization because of the
loop-inducing characteristics from the child node to the par-
ent node.

Keywords Mobile robots · Exploration · Graph search ·
Navigation

1 Introduction

Constructing a map of an unknown environment is an impor-
tant task for mobile robots. Over the past two decades, a
number of studies have reported methods of representing the
environment and localizing robots using sensor data. Simul-
taneous localization and mapping (SLAM) techniques can
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estimate the position of a robot and landmarks simultane-
ously based on noisy sensor data acquired by the moving
robot. Studies of SLAM have mainly focused on the accu-
racy of the estimated states [1–3]; however, they have not
dealt with the mapping strategy, i.e., how to autonomously
determine the next position for effective mapping.

1.1 Frontier-based exploration

Exploration algorithms determine a path for a robot to
achieve autonomous mapping. Most exploration approaches
are based on detecting frontiers in the occupancy grid map
to reduce the unmapped area and extend information about
the environment [4–6]. Frontiers are the edge areas between
the explored (i.e., mapped) and unexplored (i.e., unmapped)
regions. A method to calculate the information gain in the
occupancy grid map was reported in [7]. These previous
approaches concentrated on coverage of the entire environ-
ment. Recently, integrated exploration techniques have been
proposed; this kind of technique combines SLAM and path
planning to decide the next position of a robot based on the
uncertainty of the SLAM state [8,9]. Integrated exploration
methods allow SLAM and path planning to affect each other
in the evaluation of utilities of frontier candidates. If the
SLAM state is uncertain, the robot prefers a position where
it can localize itself more accurately, whereas if the SLAM
estimation is reliable, the robot keeps moving to reduce the
unmapped area. [9] uses extended Kalman filter (EKF) for
SLAM, whereas [10] uses Rao-Blackwellized particle filter
(RBPF) and the cost of reaching the possible destination is
calculated by the expected information gain. Most of these
exploration approaches proceed as follows:

(1) Generate frontier candidates on the grid map.
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(2) Evaluate the candidates according to the mapping cov-
erage, the uncertainty of the SLAM state, and the navi-
gation cost.

(3) Determine a destination from a number of candidate des-
tinations.

In the frontier-based method, it is necessary to spread out the
map information of an unknown environment and inspect the
completion of mapping for the entire environment. For this
reason, an occupancy grid map is required to detect frontiers
efficiently, even when feature-based SLAM is used for state
estimation.

To date, exploration approaches typically construct and
manage a single grid map using localization results to extract
frontiers on this map. Because the map is updated regardless
of the uncertainty in the localization of the robot, the map
will be inaccurate if the localization state is inaccurate. An
inaccurate map can lead to incorrect frontier information and
inefficient exploration. When the position accuracy has been
recovered following loop closing, an efficient map updating
algorithm is required. However, in general it is difficult to
update the grid map using the single global map unless the
robot has access to data about all the past trajectories and cor-
responding sensor measurements. Although the algorithms
developed to date [9–11] consider the expected uncertainty of
the pose estimation on the frontier candidates during explo-
ration, they do not include a strategy for managing the grid
map based on pose uncertainty. Moreover, to cope with the
large and complex environment or the long travel distance, a
local map approach may be more appropriate for exploration.

1.2 Local map-based mapping

Several local map-based mapping approaches have been
developed [12–15], in which a hierarchical SLAM creates
local maps according to the features or the uncertainty of the
vehicle location. Each local map has its own reference frame,
and relative transformations between local maps allow con-
struction of a global topological graph of the environment.
Loop closing makes these local maps globally consistent.
The path of the robot can be reconstructed and used to build
hybrid maps, in which abstracted topological nodes have a
local metric grid map [16]. Here, RBPF is used for the metric
estimation, whereas former approaches use EKF.

In contrast to the above metric feature-based approaches,
[17] introduced a probabilistic framework for appearance-
based topological mapping. This is the enhanced version of
[18] that learns a probabilistic model of scene appearance
online using a generative model of visual word and adds
the observation of spatial ranges between words. [19] incor-
porates the odometric information into appearance-based
SLAM systems, without performing metric map construc-
tion or calculating relative feature geometry. [20] deals with

the topological mapping in indistinguishable places of real
environments using sonar-based fingerprints of places. These
local-map based methods provide accurate and consistent
mapping, but do not consider the next target to achieve
autonomous mapping.

1.3 Local map-based exploration

For accurate and efficient exploration, we propose a local
map-based exploration strategy, in which multiple local maps
are constructed to map the environment correctly and to
determine the next frontier target position systematically.
These local maps have a tree structure, using the candidate
frontiers (nodes) and their relative transformations (edges).
Once a frontier has been visited, a local map, constructed
using local sensor data obtained on that frontier position, is
assigned to the frontier node. By inspecting the local map
assigned for each frontier node, new frontier nodes can be
added, and then the next target node will be determined
according to the tree structure and the graph search algorithm.

We apply and modify the depth-first search (DFS) to
decide the next target in the local map-based exploration.
In our exploration method, the robot not only goes to an
unvisited node for expanding the map information, but may
also return to an already visited node for reducing the pose
uncertainty. This behavior is related to the active localiza-
tion because the robot autonomously selects among fron-
tier nodes for the accurate pose estimation. There have been
many researches about the active localization. [21] chooses
the action that minimizes the expected entropy. In [22], the
orientation of the laser range finder is actively selected to
improve the localization results. [23] proposes the method
that generates optimal macro actions to localize even in
self-similar environment. [24] represents the environment as
abstracted semantic landmarks and uses spatial relationship
among them to select a robot’s action and improve local-
ization results. These researches assume the already known
map. However, our method focuses on selecting a frontier
node to make a loop constraint between previously visited
nodes in an unknown environment. This loop constraint is
useful to reduce the pose uncertainties of frontier nodes and
edges between them.

Our strategy has a number of significant advantages: (a) it
is not restricted by the accumulated position error, because
the procedure for detecting frontiers and selecting the next
target destination is executed at the local level; (b) it can
efficiently update and merge local maps using the tree infor-
mation and corresponding local maps after loop closing; (c)
it can systematically manage the number of nodes that must
be explored; (d) computational time does not increase even
when the resulting map grows; (e) it can generate a loop-
closing path by returning to the parent node after the robot
has completed the local exploration at the child node.

123



Intel Serv Robotics (2013) 6:199–209 201

The rest of this paper is organized as follows. Section
2 presents an overview of the local map-based exploration
process. Section 3 introduces the tree structure of frontier
nodes and the local map database (DB). Section 4 describes
a method for deciding the next target node using a depth-first
search algorithm, and for updating the frontier tree DB after
loop closing. Section 5 presents the simulation results for two
different kinds of environments. We conclude this paper in
Sect. 6.

2 Algorithm overview

Figure 1 presents an overview of the algorithm. This flow-
chart illustrates the procedure and the corresponding data
management for registering new frontier nodes to the tree
DB and updating the tree and map DBs by merging local grid
maps. Because the proposed algorithm uses only local infor-
mation to detect frontiers and decide the next target, local
maps of adjacent neighbor nodes are used to guarantee that
mapping of the entire environment is complete. This process
differs from conventional frontier-based methods, which use
global information.

The algorithm has two parts: registering new frontier
nodes and updating the DB upon loop closing. The first is

Fig. 1 An overview of the algorithm

performed at each node when the robot first explores it. Loop
closing occurs when the robot revisits that node.

At the new frontier node, the current local grid map is
assigned to the current node of the tree structure and map
DB. Adjacent local maps, corresponding to the parent node or
previous node, are merged with the current local map to detect
frontiers. If frontier cells are detected, they are segmented
into representative frontiers to be registered as nodes of the
tree. If no new frontier appears, the current node is regarded
as completely explored and the algorithm finds the next target
node using the tree.

When the robot revisits a node, that is, loop closing
becomes possible, it is necessary to find the loop nodes
and the corresponding sequence. Because the loop-closing
constraint according to the loop sequence leads to accu-
rate relative transformations between loop nodes, local maps
assigned to loop nodes can be merged using the corrected
relative transformations. The merged local map is assigned
to the loop nodes, so that loop nodes have the same grid
map. Additionally, the edge information of the tree is updated
using the corrected relative transformations. The robot uses
the updated frontier tree and local map DB to find the next
target. If all nodes have been completely explored, i.e., there
is not an unvisited frontier node in the tree, the process of
exploration can be considered complete. The following sec-
tions present details of the construction of the frontier tree
structure and the merging of local maps for detecting frontiers
and loop closing are described. The next target is determined
using the tree structure and graph search algorithm.

3 Tree structure and map database

In the proposed strategy, the robot moves between the nodes
of the tree structure during exploration. Because the effi-
ciency of the graph search algorithm depends on the number
of nodes, the number of frontier nodes affects the efficiency
of exploration. If every frontier cell is registered as a node, the
computational load will be large. Segmenting frontiers and
registering one representative node for each frontier segment
reduce the computational cost of the algorithm.

3.1 Frontier node segmentation

Using a grid map and its binary image, we can detect edge
cells [6]. Computer vision approaches, such as Canny-edge
detection, can be used, and the resulting edge cells include
both frontier edge cells and occupied edge cells. It is neces-
sary to identify frontier cells, which are not adjacent to any
occupied cells. We can use the entropy of each edge cell,
which is a measure of the amount of information of a cell
[9], to identify frontier cells. The entropy of an occupancy
grid cell (i, j) is
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Fig. 2 Frontier segmentation using a polar histogram. a The blue dot
indicates the current node, the light green dot indicates the representa-
tive node, and the red star indicates a frontier cell. b Polar histogram
(color figure online)

h (i, j) = −Pi, j (O) log Pi, j (O)− Pi, j (E) log Pi, j (E)

(1)

where Pi, j (O) is the probability of being occupied and
Pi, j (E) is the probability of being empty. This entropy is
highest when there is a uniform probability distribution; in
other words, the unknown cell, Pi, j (O) = Pi, j (E) = 0.5,
has the highest entropy. The sum of the entropy within a
window W around the frontier is calculated from Eq. (2).

H =
∑

i, j∈W

hi, j (2)

An edge with a higher sum of entropy corresponds to more
unknown regions around that edge, so it is more profitable
for exploration. Frontier cells are selected when the sum of
the entropy is higher than a constant describing the tolerance
for a frontier location.

A polar histogram of selected frontier cells can be calcu-
lated based on the current robot position. Frontiers are seg-
mented according to this histogram distribution, as shown
in Fig. 2. Before frontier segmentation, frontier cells on the
current local grid map are inspected again using the adjacent
local grid map. That is, the previous and parent local grid
maps are merged with the current local map. Grid cells that
are determined to be frontier cells both in the current map
and in the merged map are assigned as frontiers, as shown in
Fig. 3.

If a robot is in an empty space, with frontiers detected
in all directions, only one histogram segment is available.
These frontiers must be uniformly divided into at least three
segments to define all the current frontiers as “empty” or
“occupied” after exploring all child nodes. Figure 4 shows
examples in which a robot has two child nodes or three child
nodes in the empty space. If frontiers are segmented into just
two child nodes, some frontier cells remain unknown even
after all child nodes have been explored, which can hinder the
completion of mapping. For this reason, we divide the polar
histogram segment with an angle difference, �θ , greater than
120◦ into n = � �θ

120◦ � smaller segments.

Fig. 3 Frontier detection on the merged map. a The red stars indicate
frontiers on the parent map, and the red circle indicates the position of
the parent node. b The blue stars indicate frontiers on the merged map
and the current map, and the light green stars indicate frontiers on the
current map that are known on the merged map. The blue circle indicates
the current node position. c The yellow dots indicate the segmented
frontiers (child nodes) on the parent map, and the cyan dots indicate
child nodes of the current node (color figure online)

Fig. 4 Frontier segmentation in an empty space

The nearest cell to the average position of each segment,

(i, j) =
(∑N

k=1
ik
N ,

∑N
k=1

jk
N

)
, is selected as the representa-

tive node, i.e.,

(X, Y ) = cell (I, J ) = arg min
ik , jk

∥∥∥(i − ik)
2 + ( j − jk)

2
∥∥∥

(3)

where N is the number of frontier cells in each segment
and (X, Y ) is the spatial position in the Cartesian coordinate
of the grid cell cell(I, J ). This representative cell for each
frontier segment is registered as the node of the tree, and
the relative transformations between frontier nodes and the
current robot position are the edges. Section 3.2 describes
the tree structure, which consists of the representative nodes
and the map DB.

3.2 Tree and local map database

In the local map-based method, exploration is the process of
expanding the tree by detecting and adding frontier nodes
until no further nodes are discovered. Eventually, the envi-
ronment can be represented as distributed nodes and edges
between these nodes. Figure 5 presents the structure of a
frontier tree, and Table 1 lists the details of the components.
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Fig. 5 Structure of a frontier tree

Table 1 Frontier tree DB

Node = {nodeid | 1 ≤ id ≤ N }
nodeid =

{
id, idmap, idparent, f lagvisit,{
idchild1 , . . . , idchildn

}
}

Map = {mapid | 1 ≤ id ≤ M}
mapid =

{
id, gridmapid ,

{
idnode1 , . . . , idnodem

}
,{

poseid,node1 , . . . , poseid,nodem

}
}

Edge− = {edge−i, j | predicted relative transformation,
1 ≤ i ≤ N , 1 ≤ j ≤ N }

edge−i, j =
{

distance−i, j , x−i, j , y−i, j , θ−i, j

}

Edge+ = {edge+i, j | actual relative transformation,
1 ≤ i ≤ N , 1 ≤ j ≤ N }

edge+i, j =
{

distance+i, j , x+i, j , y+i, j , θ+i, j

}

N the number of nodes
n the number of child nodes
M the number of maps
m the number of nodes which share the mapid
poseid,nodem the pose of nodem in mapid

Information about each frontier node, including the parent
node, child nodes, corresponding local map, and the explo-
ration state ( f lagvisit) is stored in the node DB. When new
child nodes are detected, each child node is given its own ID
and the parent ID is stored at the child node. At the same time,
child node IDs are also stored at the parent node. Exploit-
ing the DB where the parent and child node IDs are stored
can facilitate more efficient exploration. An exploration state,
logical flag can be set to keep a record of whether the node
has been explored, and used when a robot subsequently visits
the node to improve the efficiency of the search algorithm.

The map DB contains information about the local maps
constructed at the frontier nodes, and each local map has
its own ID and occupancy data. The information about each
local map also includes the corresponding node ID and its
position in the local map. At the new frontier node, the local
map, constructed with respect to the node, has one node ID
and the position of the node is (0, 0, 0). After loop closing,
multiple local maps will be merged. Consequently, the map
information has several node IDs, corresponding to the loop
nodes and their positions on the merged map.

Fig. 6 The depth-first search algorithm for local map-based explo-
ration

The edge DB includes the relative transformation (xi, j ,
yi, j , θi, j ) and the shortest distance (distancei, j ) between the
nodes. This forms an N × N , where N is the number of
nodes. Two kinds of edge DB are used: the predicted edge
information (Edge−), which is obtained when new nodes are
detected at the parent node and added to the node DB; and the
relative transformation calculated from the actual travel path
after the robot has arrived at the node (Edge+). The former
can be used to select the next target node, and the latter is
useful to decide the loop sequence and the constraint for loop
closing. Section 4 describes the procedure for selecting the
next target node using this tree structure.

4 Determining the next target and loop closing

One key element in an exploration algorithm is efficiently
determining the next target. Conventional approaches find
the next target by calculating the various costs of the detected
frontier cells at each decision stage; in contrast, the local
map-based exploration uses the frontier tree structure. The
tree includes information about the relationship between the
parent and child nodes, as well as the distance between adja-
cent frontier nodes. This structure can be useful to find the
nearest frontier node to the current node, thereby facilitat-
ing efficient exploration and search, expediting loop clos-
ing, and improving the accuracy of the relative transforma-
tions.
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4.1 Depth-first search for exploration

The next target node can be determined using a depth-
first search (DFS) algorithm. DFS is generally applied to
search the shortest path in a predetermined environment, i.e.,
the graph information is perfectly known. However, in the
local map-based exploration, the graph structure is initially
unknown and is expanded until no further frontier nodes are
found. We modify and apply the DFS for exploration. Every
frontier node constitutes the tree structure and DFS prefers
a forward-searching path, and so DFS is suitable for explo-
ration.

DFS exploration involves two directions. One is down-
ward from the current node to the unexplored child node;
this allows exploration of unknown areas and expansion of
the map. The other is upward from the current node to the par-
ent node. In the frontier tree, every frontier node has only one
parent node (except for the initial starting node). When no
new frontiers appear at the current node, this node is regarded
as completely explored and the robot returns to the parent
node. This direction induces loop closing, and is an impor-
tant advantage for exploration. It is well known that loop
closing reduces the pose uncertainty in SLAM problem [25].
Although the parent has several child nodes and the relative
transformations can be obtained from the local map, move-
ment between sibling nodes is not allowed. This restriction
makes the movement to the parent occur more frequently.

Figure 6 shows a flowchart describing the DFS local map-
based exploration algorithm. First, it determines whether the
merged map includes frontiers. The merged map used to
detect new frontier cells described in Sect. 3.1 is applied
again to decide whether mapping is complete. If the merged
map includes no frontiers, this indicates that the robot is in a
closed space and all regions of the merged map are known.

The robot continues exploration until no new frontier
nodes are detected around the current node. After the cur-
rent node has been completely explored, the robot returns
to the parent and this process is repeated until the robot has
visited all nodes in the frontier tree. The predicted edge DB,
edge−i, j , and in particular distance−i, j , is used as the adjacency
matrix for DFS exploration.

4.2 Loop closing

Assuming that the relative transformations between loop
nodes are accurate due to loop closing, corresponding local
maps can be merged. The merged map is important for explo-
ration efficiency, because it can overcome the lack of infor-
mation in the local map, i.e., it can select the actual frontiers.
Frontiers in the current local map that are known regions of
the merged map can be registered, if we do not compare the
local frontier information with the merged map. The map-

Fig. 7 An example of map DB update: following loop closing at the
parent, node1, data about the child, node2, is updated with respect to
the parent

Fig. 8 Simulation result in environment 1. a Environment 1 and the
starting positions, indicated by the blue dots. b, Simulation result using
starting position 1; the blue circles and blue dots indicate frontier nodes,
and the number shown is the node ID. c The resulting tree structure
of b (color figure online)
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Fig. 9 Simulation result in environment 2. a Position (blue circle) of
frontier node and ID (number) on the resulting map b. Frontier tree struc-
ture and distance matrix of edge DB c–f. Merged map after accidental

loop closing, blue circle: positions of loop nodes, red star: explored
adjacent nodes of loop nodes, blue star: unexplored adjacent node of
loop nodes (color figure online)

merging process has two parts: (1) finding the loop sequence
and (2) updating the map DB.

4.2.1 Loop sequence decision

When loop closing is induced from the child to the parent
node, the loop sequence is clearly determined as nodeparent

→ nodechild → nodeparent. All local information about the
child node is recalculated with respect to the parent node.

Loop closing can also occur when the robot revisits a node
by chance during exploration. Detecting this accidental loop
closing is beyond the scope of this paper; here, we focus
only on how to manage the proposed frontier tree when loop
closing is detected.

The loop sequence can be acquired by using the A∗ search
algorithm [26] together with the edge DB. Unlike the pre-
dicted edge DB (edge−i, j ), the edge DB (edge+i, j ) contains
the actual connections between adjacent nodes, which were
obtained according to the movement of the robot. The A∗
algorithm determines the shortest loop sequence from the
revisited node to the previous node.

We can impose the loop constraint between edges accord-
ing to this loop sequence as follows:

edge+1,2 ⊕ · · · ⊕ edge+n−1,n ⊕ edge+n,1 = 0 (4)

where node1 is the revisited node and noden is the previous
node. The edge information between loop nodes can be cor-
rected by using the loop constraint and the iterated method,
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Fig. 10 Simulation result in environment 3. a Environment 3 and the
starting positions, indicated by the blue dots. b, Simulation result using
starting position 6; the blue circles indicate frontier nodes, and the num-
ber shown is the node ID. c Frontier tree structure of b (color figure
online)

such as iterated extended Kalman filter [14]. By using this
constrained relative transformation, the corresponding local
maps can be consistently merged. If the edge is updated once,
it acts on later loop closing as a constraint with a zero uncer-
tainty.

4.2.2 Map update after loop closing

The corresponding local grid maps are merged based on the
corrected relative transformations through loop closing. Mul-

Algorithm 1 Tree DB update after loop closing
Input: loop sequence node1 → · · · → noden → node1 (node1 is the

revisited node), edge DB
{

edge+1,2, edge+2,3, . . . , edge+n−1,n, edge+n,1

}
,

map DB
{
ma pm1 , . . . , ma pmn

}

Output: updated node DB and map DB
1: for all loop nodei , except node1 do
2: Calculate the poses of nodes with respect to the node1,{

tr1,2, tr1,3, . . . , tr1,n
}
,

tr1,i = edge+1,2 ⊕ · · · ⊕ edge+i−1,i
3: end for
4: for all loop node nodei , except node1 do
5: calculate the relative transformations from mapm1 to mapmi .
6: trm1,mi = posem1,node1 ⊕ tr1,i ⊕

(
posemi ,nodei

)
.

7: end for
8: Merge local maps using trm1,mi

9: Update mapm1 , gridmapm1 ← gridmapmerged
10: for all loop node nodei , except node1 do
11: get mapmi in map DB
12: for all nodek , which share the mapmi do
13: idmap ← m1
14: calculate the pose of nodek in mapm1 , posem1,nodek =

trm1,mi ⊕ posemi ,nodek

15: push k and posem1,nodek into mapm1

16: take mapmi off map DB.
17: end for
18: end for

tiple local maps are updated onto the larger map, and each
frontier node position on the local map must be recalculated
in the new reference frame. For both the induced and the
accidental loop closing, the new reference position is the
current node position. In other words, the parent node and
the revisited node become the new reference node. Algo-
rithm 1 describes the details of the tree DB update. From
lines 1 to 3, the position of each loop node is calculated with
respect to the reference node, node1. We obtain posemi ,nodei

from the map DB, and the new position of each local map
is obtained using the procedure in lines 4–7. The local maps
can be merged based on these relative transformations. Even-
tually, all local information assigned to loop nodes will be
unified into the reference node (lines 10–18). Figure 7 shows
an example of map DB updating based on child-to-parent
induced loop closing.

5 Simulation results

We simulated the local map-based exploration for the corri-
dor environments shown in Figs. 8(a) and 9(a), and the hall
environment in Fig. 10(a). The robot had a simulated 360◦
laser scanner, which was calculated using a ray-tracing algo-
rithm to obtain local occupancy information.

5.1 Frontier tree structure

Figure 8(b) and (c) show the position of the frontier nodes
and the tree structure in the first corridor environment. The
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Table 2 Simulation results at different starting positions in environment 1

Starting position 1 2 3 4 5 6 7

Method DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF

# of measurements 25 25 25 25 25 25 25 24 25 25 26 25 26 26

Travel distance (cells) 913 801 1,134 828 1,225 852 1,236 854 1,226 916 1,067 1,032 1,093 1,011

# of nodes 28 – 28 – 28 – 27 – 28 – 29 – 29 –

Min. time (s) 1.92 2.61 1.93 2.63 1.91 2.73 1.95 2.94 1.96 3.00 1.88 3.00 1.91 2.90

Max. time (s) 3.68 11.14 4.13 11.18 4.01 10.91 4.18 10.95 3.79 21.20 3.32 14.85 3.30 13.99

Avg. time (s) 2.51 5.38 2.71 5.44 2.73 5.36 2.72 5.44 2.64 9.49 2.59 8.00 2.59 6.99

Starting position 8 9 10 11 12 13 14

Method DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF

# of measurements 25 25 25 26 25 24 25 24 25 26 25 25 24 24

Travel distance (cells) 1,134 833 1,067 945 1,038 1,078 1,010 824 1,069 999 1,165 1,027 1,258 765

# of nodes 28 – 27 – 27 – 27 – 27 – 29 – 27 –

Min. time (s) 1.72 2.99 1.72 3.03 1.74 2.75 1.94 2.58 1.76 2.77 1.91 3.14 1.99 2.77

Max. time (s) 4.66 20.79 4.40 16.02 4.15 24.68 3.84 13.96 3.78 12.84 4.35 15.01 4.14 9.70

Avg. time (s) 2.52 10.48 2.50 8.13 2.51 11.50 2.56 6.52 2.51 6.98 2.61 7.43 2.68 5.69

Table 3 Simulation results at different starting positions in environment 3

Starting position 1 2 3 4 5 6 7

Method DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF DFS SF

# of measurements 29 29 26 25 32 25 25 28 31 26 21 25 28 27

Travel distance (cells) 2,014 1,306 1,688 1,142 2,123 1,233 1,447 1,257 2,249 1,166 1,261 1,192 2,029 1,329

# of nodes 47 – 42 – 46 – 40 – 49 – 31 – 48 –

Min. time (s) 2.60 2.44 3.53 4.54 3.62 4.17 4.62 7.87 3.29 5.99 4.00 5.12 3.00 6.45

Max. time (s) 22.92 78.36 15.97 158.81 11.27 96.55 19.98 77.58 14.54 109.76 16.31 92.20 16.41 113.67

Avg. time (s) 4.78 29.54 6.87 53.41 5.55 35.01 7.89 29.49 5.97 37.42 7.51 36.27 5.48 35.92

position of the first node was the starting position. The envi-
ronment included 28 frontier nodes; these well-distributed
nodes represented the entire environment. The robot moved
between the nodes according to the DFS algorithm. Figure
8(c) presents the resulting exploration path: child-to-parent
loop closing was induced at the red numbered node. Acci-
dental loop closing occurred at node 27, when node 5 was
revisited, and this loop sequence was calculated using the A∗
algorithm.

Figure 9 presents simulated data for the second corridor
environment, which was more complex than the first. In total,
59 nodes were registered to the frontier tree, as shown in Fig.
9(b). Whenever there was no new frontier region at the current
node, child-to-parent loop closing was induced. Accidental
loop closing occurred at nodes 28, 48, 58, and 59. In Fig.
9(c)–(f), the updated map, constructed according to the loop
node, can be seen. In each loop-closing event, the tree DB
was successfully updated, so exploration was completed for
the entire environment.

We also simulate the proposed algorithm in a hall envi-
ronment, as shown in Fig. 10. Figure 10(b) and (c) are the
distributed frontier nodes and their tree structure using start-
ing position 6 in Fig. 10(a). Accidental loop closing occurred
at nodes 15, 27, and 31.

5.2 Computational time

To compare the computational expense of the local map-
based method with the conventional approach, we also car-
ried out simulations using the shortest frontier-based (SF)
algorithm. In the SF algorithm, the robot merges local sensor
data with the single global map at every decision step and
finds the shortest path to the frontier position. It does not
include a loop-inducing strategy or map management meth-
ods; near frontiers are segmented into one frontier cell to
reduce the computational time.

Table 2 lists simulated data for different starting positions
in the environment 1 (corridor). Here, the robot commenced
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Fig. 11 Computational time for each decision step in environment 1
and 2
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Fig. 12 Computational time for each decision step in environment 3

exploration at 14 different starting positions. The simulation
results in the environment 3 (hall) are in Table 3 and the robot
started exploration at seven different positions.

We restricted the movement between siblings, so the robot
could move from the current node to the child node or the
parent node. This can induce loop closing and lead to map
updating, but it also means that the total travel path of DFS
exploration can be longer than the results of SF exploration,
because the robot always moves to a new place in SF explo-
ration. However, the computational expense of DFS explo-
ration is significantly more stable than that of SF exploration.
As shown in Table 2, the longest computation time required
for the DFS method was 4.66 s; in contrast, the longest com-
putation time required for the SF method was 24.68 s. Figure
11 presents the computational time for each decision step in
environment 1 and 2, and Fig. 12 shows the results in environ-

ment 3; it clearly illustrates the computational advantage of
the local map-based exploration. The time that elapsed using
the DFS method (multiple local map-based) was approxi-
mately constant at every decision, while the SF algorithm
(single global map-based) took longer and longer as the
exploration proceeded. To find the shortest frontier with a
larger map requires more computational time. In the local
map-based method, the managed tree DB can reduce the com-
putational burden. In a more complex environment, this merit
of the local map-based exploration becomes more significant
(see the black and red lines in Fig. 11 and 12 ). A similar
number of measurements were used for the completion of
mapping. This means that although only local information
is used in the proposed method, efficiency for completing a
map can be guaranteed.

6 Conclusions

We have proposed a local map-based exploration algorithm
and analyzed its efficiency by comparing it with the single
global map-based method. By adding frontier nodes to the
tree structure and moving along this tree, a robot can expand
the knowledge of the environment. Because segmented fron-
tier nodes are distributed over the entire environment and
the tree structure is well defined by the relative transforma-
tion, the environment can be efficiently represented by this
tree structure and exploration can be completed using only
local information. Stable and predictable computational cost
can be expected using the proposed method. To determine
the next target node, adjacent node information can be used
efficiently even in a large environment, as the computational
cost at each decision step does not increase during the explo-
ration. Additionally, an exploration path can be planned for
inducing loop closing that can be effective in reducing the
position uncertainty in SLAM.
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