
Intel Serv Robotics
DOI 10.1007/s11370-012-0120-4

SPECIAL ISSUE

Navigation of mobile robot by using D++ algorithm

Pi-Ying Cheng · Pin-Jyun Chen

Received: 12 April 2012 / Accepted: 10 September 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract The navigation of mobile robots is a vital aspect
of technology in robotics. We applied the D++ algorithm,
which is a novel and improved path-planning algorithm, to
the navigation of mobile robots. The D++ algorithm com-
bines Dijkstra’s algorithm with the idea of a sensor-based
method, such that Dijkstra’s algorithm is adapted to local
search, and the robot can determine its next move in real-
time. Although the D++ algorithm frequently runs local
search with limited ranges, it can compute optimum paths
by expanding the size of the searching range to avoid local
minima. In addition, we verified the performance of the D++
algorithm by applying it to a real robot in a number of envi-
ronments. The use of the D++ algorithm enables robots to
navigate efficiently in unknown, large, complex and dynamic
environments.

Keywords Mobile robot · Path planning · Dijkstra’s
algorithm · Real time

1 Introduction

During the past few decades, the navigation of mobile robots
has attracted notable attention, and considerable research was
developed. The main technology of navigation in unknown
or uncertain environments includes exploration, mapping,
localization, motion control, and path-planning [1,2]. Path
planning is one of the main technologies to direct a robot from

P.-Y. Cheng · P.-J. Chen (B)
Department of Mechanical Engineering, National Chiao Tung
University, EE437, 1001 Ta-Hsueh Road, Hsinchu 30010,
Taiwan, R.O.C
e-mail: rexchen@mail.mirdc.org.tw; rexandimmj@hotmail.com

P.-Y. Cheng
e-mail: pycheng@cc.nctu.edu.tw

a starting point to its destination. Dijkstra [3] and Hart [4]
proposed Dijkstra’s algorithm and A* to determine a shortest
path in a known environment. However, Dijkstra’s algorithm
and A* explores numerous cells in an environment. Further-
more, Dijkstra’s algorithm and A* require the global infor-
mation of the environment in advance. Therefore, they are
only suitable to static and smaller environments. Stentz [5,6]
proposed the D* algorithm, which manages dynamic envi-
ronments. Koenig subsequently proposed the Life Long A*
(LPA*) [7] and D*-Lite algorithm [8] to improve the effi-
ciency limitations of the D* algorithm. However, D* and
D*-Lite algorithms also require information of the global
environment. Therefore, these approaches involve the initial
running of global searches from the start point to the desti-
nation, and lead to long delays for the first search operation
in large environments. Therefore, these algorithms are only
suitable for applications in which the information of the envi-
ronment is determined in advance, such as in GPS navigators
or video games.

In recent years, research on the navigation of mobile
robots has focused on local searching in dynamic envi-
ronments. Khatib [9] proposed using artificial potential
fields (APF) as a type of local-searching approach to solve
the path planning problem of manipulators and mobile
robots. The theory of APF is quite simple and demon-
strates high response times in large environments and real-
time operation. Moreover, the APF can generate extremely
smooth trajectories. However, the APF exhibits consid-
erable problems in local minima. Other shortcomings of
the APF include the robot oscillating in a narrow channel
and being incapable of passing through small-sized doors
[10,11].

Moreover, several novel and improved approaches based
on fuzzy logic or neural networks have been proposed for
the mobile robot navigation problem in unknown environ-

123



Intel Serv Robotics

ments [12,13]. According to the varied information of the
environments that are obtained by the camera, the mobile
robot exhibits various behaviors (e.g., obstacle avoidance,
road following, and target detection) when the algorithm of
neural networks is used. In addition, numerous previous stud-
ies have solved the problem of path-planning by using fuzzy
logic [14–16] and have established the definition of mem-
bership function for the direction and position of the mobile
robot, having the robot select the best behavior (based on
expert rules) to avoid obstacles and reach a target. However,
these approaches of local searching usually present the prob-
lem of local solution. Therefore, they are often applied to col-
lision avoidance rather than path planning. Otherwise, they
must be combined with other approaches, such as the A*
algorithm or the wall-following method, to escape from the
local minimum area.

In this study, we propose a novel algorithm, that is,
the D++ algorithm [17], which combines Dijkstra’s algo-
rithm with the idea of a sensor-based method [18], to over-
come the common limitations of the path planning methods.
We demonstrate the results of our experiment by using the
D++ algorithm for a mobile robot to determine an efficient
path to its destination in a number of static and dynamic
environments.

2 D++ algorithm

The D++ algorithm was thus named because it was derived
from Dijkstra’s algorithm; however, it is an improvement
of Dijkstra’s algorithm, which was inefficient for unknown
and dynamic environments. This chapter describes the con-
cept and procedures of the D++ algorithm and demonstrates
numerous simulations to illustrate its operation. The first sec-
tion introduces the fundamental background of Dijkstra’s
algorithm and describes and explains the D++ algorithm.
Finally, we describe some simulations to verify the perfor-
mance of the D++ algorithm.

2.1 Dijkstra’s algorithm

Dijkstra’s algorithm belongs to a class of path planning
approaches that involve using a one-time search in a global
environment. The algorithm is a graph-search method (see
Fig. 1) that involves using OPEN and CLOSE lists to save and
evaluate the cost of cells in the environment. The OPEN list
saves the cells that have been identified but not selected yet,
and the CLOSE list saves the cells that have been selected.
Figure 2 shows the workflow of Dijkstra’s algorithm. The
concept of Dijkstra’s algorithm entails expanding child cells
that are nearer the start point repeatedly until the goal is
discovered. Thus, Steps 2–11 in Fig. 2 are continually exe-
cuted until the goal is identified. Therefore, in large environ-
ments, Dijkstra’s algorithm requires a considerable amount
of time to compute the shortest path before the robot can
begin moving. Furthermore, Dijkstra’s algorithm requires an
environment’s global information in advance; therefore, it is
entirely inadaptable to unknown environments.

In addition, the cost of cell in Step 2 of Fig. 2 indicates
the traveling length from the START to the current cell [see
Eq. (1)].

cos tC = cos tL +
√

(XC − XL)2 + (YC − YL)2 (1)

where, costC denotes the cost of the current cell and costL

denotes the cost of the previously encountered cell. XC indi-
cates the x-position of the current cell, XL indicates the
x-position of the previous cell, YC denotes the y-position of
the current cell, and YL denotes the y-position of the previous
cell.

2.2 D++ algorithm

To overcome the limitations of Dijkstra’s algorithm men-
tioned in the previous section, the concept of a DETECTIVE
RANGE was added to Dijkstra’s algorithm, thereby requiring
the robot to manage only the local environment information.

Fig. 1 Two examples of
Dijkstra’s algorithm: a no
obstacle and b with U-shaped
obstacle (from Amit’s thoughts
on path-finding and A-star)

123



Intel Serv Robotics

Fig. 2 Workflow of Dijkstra’s
algorithm

The DETECTIVE RANGE is similar to an area observed by
a sensor. A robot must search for a WAYPOINT only within
the current DETECTIVE RANGE. The WAYPOINT is the cell
that has the shortest distance to GOAL [Eq. (2)].

cos tE =
√

(XG − XC)2 + (YG − YC)2 (2)

where, costE denotes the expected cost from the current cell
to GOAL, XC indicates the x-position of the current cell, YC

denotes the y-position of the current cell, XG denotes the
x-position of the GOAL, and YG denotes the y-position of
the GOAL. Only searching for a WAYPOINT within a lim-
ited range allows it to determine its next move immediately.
Thus, the robot reaches its destination by continually search-
ing for WAYPOINTS and following the consequent steps.
Therefore, the D++ algorithm not only involves using Dijk-
stra’s algorithm to expand the child cell from the robot’s cur-
rent position [use Eq. (1)] but involves applying the concept
of the heuristics of the A* algorithm to evaluate the worth
of the cells first by searching for WAYPOINTS [use Eq. (2)].
Figure 3 shows the legends that were used for all figures
in this study, and Fig. 4 shows the workflow of the D++

Fig. 3 Figure legends used in this paper

algorithm. As shown in Fig. 4, the duration of the search-
ing was considerably short because the searching range
(DETECTIVE RANGE) for each loop (Step 2–12) was lim-

123



Intel Serv Robotics

Fig. 4 Workflow of D++
algorithm

ited. Therefore, a robot can complete the first searching
rapidly and begin moving. Moreover, a robot requires only
the information that is relevant to the DETECTIVE RANGE
rather than that of the entire global environment.

Because the D++ algorithm involves using only Dijkstra’s
algorithm for each searching loop, it must clear the contents
of the OPEN and CLOSE lists every time before beginning
the next loop (Step 2 in Fig. 4). Therefore, these two lists
cannot record the information beyond one searching loop;
that is, there are no permanent references to the global envi-
ronment. This causes a robot to select repeatedly the old cells
and eventually the robot tends to circle a small local environ-
ment. To avoid this situation, the D++ algorithm follows the
approach of the D* algorithm [5,6] to record further the status
of the cells after a loop search. When the searching process
begins, all of the cells are set to a NEW status. If a cell has
been detected or visited once, its status is changed to OLD. In
addition, the D++ algorithm involves using a SELECT list.
The statuses of the cells that are identified in each loop are
assessed. If a cell is NEW, then it is moved to the SELECT
list (Step 6 in Fig. 4). Otherwise, the cell is ignored. After

all the cells in the DETECTIVE RANGE are identified and
checked, the WAYPOINT that is nearest to the GOAL in the
SELECT list is chosen (Step 9 in Fig. 4). Subsequently, the
robot decides its next move by tracing their parent cells from
this WAYPOINT to its current location (Step 10 in Fig. 4).
Before the next loop begins, the contents of the SELECT list
are cleared along with those of the OPEN and CLOSE lists.

In general, when the searching range for a loop reaches
the size of the initial DETECTIVE RANGE, the process ends
this loop and selects a WAYPOINT from the SELECT list.
However, if the robot reaches a dead end, such as a U-shaped
obstacle, then all of the cells in the DETECTIVE RANGE
may be OLD (see Fig. 5b). Consequently, no more cells are
available in the SELECT list, and the robot is unable to deter-
mine its next move. Therefore, when a robot encounters this
situation, the D++ algorithm expands the size of DETEC-
TIVE RANGE until a NEW cell is located (Step 8 in Fig. 4
and see Fig. 5c). Thus, the robot determines a pathway out
of its local confinement toward the GOAL.

Figure 6 demonstrates a simple example of the D++ oper-
ation. According to the procedure in Figs. 4, 6a indicates the

123



Intel Serv Robotics

Fig. 5 Actions of D++ upon finding no cells in the SELECT list: a the robot encounters a U-shaped obstacle, b no NEW cells are present in the
SELECT list, c D++ expands the DETECTIVE RANGE to locate NEW cells, and d the robot locates a NEW cell and moves toward it

initialization of the entire search process (Step 1). Figure 6b
shows that the robot’s DETECTIVE RANGE is set to one cell,
and the robot has finished an initial search (Steps 2–8). Sub-
sequently, it chooses the upper-right cell as a WAYPOINT
from the SELECT list (Steps 9–11). Because the DETEC-
TIVE RANGE is equal to only one cell in this example, the
WAYPOINT is also the next location of the robot. Because
the location of the robot in Fig. 6c is not the GOAL, it con-
tinues to execute the next searching loop (Steps 2–12). In
Fig. 6d, the robot has reached the GOAL, thereby ending the
search process. Based on the example shown in Fig. 6, the
D++ algorithm with a small DETECTIVE RANGE is similar
to the greedy best-first method [19]. This may result in the
chosen path not always being the expected optimal path. To
avoid this problem, magnifying the size of the DETECTIVE
RANGE appropriately is necessary. The results for different
sizes of the DETECTIVE RANGE are compared in the fol-
lowing section.

2.3 Simulation

In this section, we demonstrate a few simulations that were
performed by using the D++ algorithm. In these simulations,
the cycle time (the time for performing a search loop) was
set at 20 ms. The specifications of the computer hardware
used in this study are listed in Table 1 to provide a standard
reference.

2.3.1 Static environments

In this case, the results of two simulations are demonstrated.
One simulation had its DETECTIVE RANGE set to five cells
(see Fig. 7), and the DETECTIVE RANGE for the other sim-
ulation was set to 20 cells (see Fig. 8). The path length in
Fig. 8 is considerably greater than that in Fig. 8 because a
DETECTIVE RANGE of five cells was not sufficiently wide

123



Intel Serv Robotics

Fig. 6 An example of D++ operation with DETECTIVE RANGE set-
ting of one cell

Table 1 Specifications of computer hardware used in this study

Item Specification

CPU Intel Core 2 Duo T6600 2.2 GHz

RAM DDR2-800 2 GB

VGA ATI Radeon HD4650 512 MB

OS Microsoft Windows XP

IDE SharpDevelop

to enable the robot to avoid a number of vain cells (cells that
were not optimally chosen). In contrast, because of the pre-
cognition of more vain cells that is possible with an increased
DETECTIVE RANGE of 20 cells, the resultant path, as shown
in Fig. 8, was shorter and more efficient.

2.3.2 Dynamic environments

In this simulation, nine objects were initially clustered in the
middle of the environment (see Fig. 9); the objects were pro-
grammed to randomly move at a speed of one cell per 100 ms.
As shown in Fig. 10, the robot was able to avoid objects
in real-time and reached the goal without any collisions.
Moreover, a definite buffer distance was observed beyond the
searching range and the goal or the object because, in prac-
tical situations, the robot requires some clearance between
itself and the obstacle for safety purposes.

Fig. 7 Result for DETECTIVE RANGE setting of five cells. Total
elapsed time for robot movement from START to GOAL is approxi-
mately 4 s

Fig. 8 Result with for DETECTIVE RANGE setting of 20 cells. Total
elapsed time for robot movement from START to GOAL is approxi-
mately 3 s

2.4 Comparison

This section demonstrates some comparisons to distinguish
the advantages and shortcomings of the D++ algorithm from
other common approaches of path-planning, which are Dijk-
stra’s algorithm, the A* algorithm, D* algorithm, and artifi-
cial potential fields.

(1) Comparison with Dijkstra’s algorithm and A*: Fig. 11a
shows a no-obstacle environment with a size of 100 ×
100 cells. The START location was set at the lower-left
corner, and the GOAL was set at the upper-right corner. In

123



Intel Serv Robotics

Fig. 9 Dynamic environment with nine randomly moving objects

Fig. 10 Result for DETECTIVE RANGE setting of ten cells. Total
time elapsed is approximately 8 s

Fig. 11b, the path was computed using the original Dijk-
stra’s algorithm, and it required (“cost”) approximately
12.1 s to compute the path before robot moved. In addi-
tion, the simulation using Dijkstra’s algorithm visited all
the cells in the environment. Figure 11c shows the results
when the simulation used the A* algorithm to compute
the shortest path, and the elapsed cost reduced to 5.2 s
because the A* algorithm had to visit only half the total
number of cells. In Fig. 11d, the use of the D++ algorithm

Fig. 11 a Pre-set START -GOAL conditions of environment. Path com-
putation for b Dijkstra’s algorithm, c A* algorithm, and d D++ algo-
rithm (DETECTIVE RANGE setting of ten cells and cycle time of 20 ms)

cost only 20 milli-seconds before the robot could begin
moving towards the GOAL. In addition, the D++ algo-
rithm visited very few cells in the environment. The dif-
ference among the performance of these algorithms will
become more significant for larger environment sizes.

(2) Comparison with the D* algorithm: Fig. 12 shows the
results for the two situations that have been discussed by
Stentz [6]. Figure 13 shows the result of using the D++
algorithm for these situations. It can be observed that the
D++ algorithm located a lesser number of cells for the
same environment than D*, and still computed a similar
path. Therefore, the D++ algorithm has a faster response
time than the D* algorithm. This indicates that the D++
algorithm is more practicable than the D* algorithm in
dealing with rapidly changing real-time environments,
such as the case in Fig. 10.

(3) Comparison with the artificial potential fields: In the
case of Fig. 14 is a maze-like environment. The robot
was able to easily determine a path to the GOAL by
using the D++ algorithm without being trapped at any
local areas (see Fig. 14a). In this case, the approach of
APF will be hardly to obtain a path without any assis-
tance of other methods like wall-following method, and
then easily gets stuck at a local area (see Fig. 14b). There-
fore D++ algorithm has an easy way and better ability
than conventional local solution such as APF to find an
effective path for complex environments.

123



Intel Serv Robotics

Fig. 12 Results from Stentz’s study [6]: a basic D* algorithm and b focused D* algorithm

Fig. 13 Result obtained using D++ algorithm (DETECTIVE RANGE
setting of ten cells and cycle time of 20 ms)

Therefore, from the comparisons described above, we
can generalize the advantages and shortcomings of Dijk-
stra’s algorithm, A* algorithm, D* algorithm, APF and D++
algorithm in Table 2. From Table 2, we can see that D++

algorithm has better average performance than others in
term of solving speed, adaptability of varied environments,
and the quality of solution. Thus D++ algorithm is more
suitable than those other approaches for the mobile robots
which need to deal with many kinds of environments in real
world.

2.5 Optimization of DETECTIVE RANGE

From the cases of Figs. 7 and 8, it is assumed that the size
of the DETECTIVE RANGE considerably affects the per-
formance of the D++ algorithm. However, the question of
the optimal DETECTIVE RANGE size must be addressed.
The path computed by using the D++ algorithm may not
be optimal because the D++ algorithm only manages the
local environment in one cycle time. Therefore, the DETEC-
TIVE RANGE should be set for as wide a value as possible,
such that the robot can complete one local search within one
cycle time. For example, for the environment in Fig. 11d, the

Fig. 14 Results of maze exploration a D++ algorithm with DETECTIVE RANGE setting of 20 cells, and total elapsed time is approximately 4 s,
b artificial potential fields

123



Intel Serv Robotics

Table 2 Comparisons of some mainly path-planning approaches

Fig. 15 Total time required for reaching the goal for the environment
as specified in Fig. 11 for various DETECTIVE RANGE settings

DETECTIVE RANGE was varied from 1 to 20 cells, and the
respective costs (times) from the start to the goal were mea-
sured and plotted as a chart (see Fig. 15). The chart shows

that the response time increased for DETECTIVE RANGE
of more than 15 cells because the robot efficiently manages
computational loads only for DETECTIVE RANGE of less
than 15 cells. Therefore, for the computer used in this study
(Table 1), the DETECTIVE RANGE of 15 cells for a cycle
time of 20 ms was optimal.

3 Experiment

To demonstrate the performance of the D++ algorithm, a
self-designed mobile robot was built to navigate in unknown
environments. The robot system included a host computer, a
robot, a detection system, and a communication system (see
Fig. 16). The specification of the host computer was the same
as that in Table 1. The detection system was used to acquire
the information of obstacles. The host computer applied the
D++ algorithm to control the motion of the robot through
the communication system by using the information of the
detection system.

The size of robot is about 20 cm in length, 20 cm in width,
and 30 cm in height. The robot comprised two driving wheels
at the back and one swivel wheel at the front (see Fig. 17).
Each driving wheel had a DC motor and a rotary encoder to
drive the robot forward or to turn. The control system of the
robot comprised a control board and a motor driver board.
The control board was Arduino Mega 1280, which included
a microprocessor of 16 MHz clock and a flash memory of
128 Kbytes. The Arduino Mega 1280 also comprises 52 dig-
ital I/O pins, 16 analog input pins, and 4 UART ports. The
motor driver board has an IC of L289P, which can drive two
DC motors forward and in reverse with a maximal current
of 2 A. The rotative angle of the robot was detected by an

Fig. 16 The framework of the robot system used in this paper

123



Intel Serv Robotics

Fig. 17 The real robot that is
discussed in this paper

Fig. 18 The disposition and DETECTIVE RANGE of the IR sensors

electric-gyroscope. The detective system comprised of six
infrared-ray (IR) sensors that were installed on the robot
(see Fig. 18). Three sensors were Sharp GP2Y0A02 with the
detective distance from 20 to 150 cm, and were used to detect
far away obstacles. The other sensors were Sharp GP2D120
with the detective distance from 4 to 30 cm, and were used to
detect proximity obstacles. The sensors that detected proxim-
ity obstacles not only provided the information of obstacles
to the host computer, but also avoided collision, which is the
cause of some errors of motion control such as miscounts of
encoders, inaccuracy of electric-gyroscope, skid of wheels,
etc. The communication system was a pair of radio-frequency
(RF) modules. They operated at a baud rate of 9,600 bits/s,
and at a work frequency of 434 MHz. They were installed on
the robot and the host computer.

Figure 19 shows the workflow of the navigation control
of a real robot used in these experiments. First, users must
determine the size of the DETECTIVE RANGE and the posi-
tion of the GOAL. The robot then sets its current position as
START. The robot then uses IR sensors to detect obstacles
and determine the next move by using the D++ algorithm. If

Fig. 19 Workflow of navigation control of real robot

Fig. 20 A maze-type and static environment with the dimension of 7
cells × 6 cells

123



Intel Serv Robotics

Fig. 21 The actual situation of navigation of the robot (DETECTIVE RANGE is three cells)

Fig. 22 The monitor of navigation of the robot (DETECTIVE RANGE is three cells)

the robot must turn, then the electric gyroscope guides the
robot to turn left or right at an angle of 90◦. If the robot must
move forward, then the rotary encoders and the electric gyro-
scope guide the robot to move straight for the distance of one
cell. When the robot reaches the GOAL, the navigation ends.
Otherwise, the process continually returns to Step 2.

3.1 Static environment

Figure 20 shows that the robot navigated a maze-shaped
environment, the information of which was not determined
in advance. Figure 21 presents the actual process of robot
navigation, and Fig. 22 presents the monitor of the host

123



Intel Serv Robotics

Fig. 23 The monitor of navigation of the robot (DETECTIVE RANGE is 20 cells)

Fig. 24 The monitor of navigation of the robot (DETECTIVE RANGE is 20 cells and information of environment is known in advance)

123



Intel Serv Robotics

Fig. 25 A dynamic environment

computer when the robot was navigating. In this case, the
DETECTIVE RANGE was set for three cells. The dimen-
sions of each cell in the experiments of this chapter are
30 cm × 30 cm. The blue dot on the grey robot in Fig. 22
indicates the orientation of the robot. This example is useful
for visualizing the function of the D++ algorithm in a real

robot system and shows the ability of the D++ algorithm to
escape from local solutions or to avoid them.

Figure 23 shows the monitor of another case in which
the DETECTIVE RANGE was set for 20 cells in the
same environment as that in Fig. 20. Figures 22 and 23
show that few differences exist between the results of
the DETECTIVE RANGES of 3 and 20 because the limit
of the sensors was that they could not detect the obsta-
cles as wide as the DETECTIVE RANGE of 20 cells.
However, if we use the information of the environment,
which was detected in the case of Fig. 23, the robot
would directly determine the shortest path to its destination
(Fig. 24).

3.2 Dynamic environment

Figures 25, 26 and 27 show that the robot navigated in a
dynamic environment in which an object moved forward at
the middle of map. The DETECTIVE RANGE was set for
five cells. This case shows that the D++ algorithm has a
superior ability to regular global search approaches, such
as Dijkstra’s algorithm and A*, in rapidly responding in
dynamic environments.

Fig. 26 The actual situation of navigation of the robot in a dynamic environment (DETECTIVE RANGE is five cells)

123



Intel Serv Robotics

Fig. 27 The monitor of navigation of the robot in a dynamic environment (DETECTIVE RANGE is five cells)

4 Conclusions

This study applied the D++ algorithm, which is an opti-
mal and efficient path-planning algorithm that combines the
advantages of global and local searching approaches and
applies them to a sensor-equipped robot. The concept of a
DETECTIVE RANGE was added to the Dijkstra’s algorithm.
The DETECTIVE RANGE reduced the size of the search-
ing space of Dijkstra’s algorithm; therefore, the D++ algo-
rithm obtained waypoints rapidly to enable the robot to move
immediately. This characteristic also enabled the robot to
manage the changing and dynamic environment. Moreover,
the D++ algorithm maintains the property of a global search
because it is based on the theory of Dijkstra’s algorithm.
Thus, the D++ algorithm has an optimal ability and is sim-
pler than other local searching approaches in determining a
pathway when a robot is stuck in a local area.

We also applied the D++ algorithm to a small robot in
a laboratory environment. Because of the limitations of IR
sensors, the performance of the D++ algorithm applied to
the actual robot system was not as favorable as the results
of the simulations (Figs. 7, 8), despite the DETECTIVE
RANGE being considerably wide. Thus, the performance of
the sensors, which detect the obstacles of environments, had
a considerable effect on the results of the D++ algorithm for
a real robot system.

We expect that the D++ algorithm is a general algo-
rithm of path-planning to manage the problems of unknown,
large, complex, and dynamic environments. However, using
the algorithm requires additional experiments for real-world
environments to verify the performance of the D++ algo-
rithm. Therefore, future studies should develop and establish
a more effectively functioning robot system by installing a
sturdier structure, a high-speed control board, high-accuracy
encoders, a laser rangefinder, or a GPS. The D++ algorithm
may be applied successfully to exploratory robots in the
actual field in the future.

Acknowledgments The authors would like to thank Kun-Min Huang
and Chuen-Fu Wu for their help. This work was supported by Metal
Industries Research and Development Centre, Taiwan.

References

1. LaValle SM (2006) Planning algorithms. Cambridge University
Press, Cambridge

2. Russell S, Norvig P (2009) Artificial intelligence: a modern
approach, 3rd edn. Prentice Hall, Englewood Cliffs

3. Dijkstra EW (1959) A note on two problems in connexion with
graphs. Numer Math 1:269–271

4. Hart PE, Nilsson NJ, Raphael B (1972) Correction to a formal basis
for the heuristic determination of minimum cost paths. SIGART
Newslett 37:28–29

123



Intel Serv Robotics

5. Stentz A (1994) Optimal and efficient path-planning for partially-
known environments. In: Proceedings of the international confer-
ence on robotics and automation, pp 3310–3317

6. Stentz A (1995) The focused D* algorithm for real-time replanning.
In: Proceedings of the international joint conference on artificial
intelligence, pp 1652–1659

7. Koenig S, Likhachev M, Furcy D (2004) Lifelong planning A*.
Artif Intell J 155(1–2):93–146

8. Koenig S, Likhachev M (2002) D* Lite. In: Proceedings of the
eighteenth national conference on artificial intelligence, pp 476–
483

9. Khatib O (1985) Real-time obstacle avoidance for manipulators
and mobile robots. In: IEEE international conference of robotics
and automation, vol 2, pp 500–505

10. Koren Y, Borenstein J (1991) Potential field methods and their
inherent limitations for mobile robot navigation. In: IEEE interna-
tional conference of robotics and automation, vol 2, pp 1398–1404

11. Charifa S, Bikdash M (2009) Comparison of geometrical, kine-
matic, and dynamic performance of several potential field methods.
In: IEEE Southeastcon, pp 18–23

12. Meng M, Kak AC (1993) Mobile robot navigation using neural net-
works and nonmetrical environmental models. Control Syst Mag
13(5):30–39

13. Yang S, Meng M (2001) Neural network approaches to dynamic
collision-free trajectory generation. IEEE Trans Syst Man Cybern
B Cybern 31(3):302–318

14. Pan J, Pack DJ, Kosaka A, Kak AC (1995) FUZZY-NAV: a
vision-based robot navigation architecture using fuzzy inference
for uncertainty-reasoning. In: Proceedings of the world congress
on, neural networks, vol 2, pp 602–607

15. Lee TL, Wu CJ (2003) Fuzzy motion planning of mobile robots in
unknown environments. J Intell Robot Syst 37:177–191

16. Senthilkumar KS, Bharadwaj KK (2009) Hybrid genetic-fuzzy
approach to autonomous mobile robot. In: IEEE international con-
ference of technologies for practical robot applications (TePRA),
pp 29–34

17. Cheng, PY, Chen PJ (2010) The D++ algorithm: real-time and
collision-free path-planning for mobile robot. The 2010 IEEE/RSJ
international conference on intelligent robots and systems, pp
3611–3616.

18. Kim M, Chong NY, Yu W (2008) Fusion of direction sensing rfid
and sonar for mobile robot docking. In: IEEE international confer-
ence of automation science and engineering, pp 709–714

19. Pearl J (1984) Heuristics: intelligent search strategies for computer
problem solving. Addison-Wesley, Boston

123


	Navigation of mobile robot by using D++ algorithm
	Abstract 
	1 Introduction
	2 D++ algorithm
	2.1 Dijkstra's algorithm
	2.2 D++ algorithm
	2.3 Simulation
	2.3.1 Static environments
	2.3.2 Dynamic environments

	2.4 Comparison
	2.5 Optimization of DETECTIVE RANGE

	3 Experiment
	3.1 Static environment
	3.2 Dynamic environment

	4 Conclusions
	Acknowledgments
	References


