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Abstract We utilize a more accurate range noise model for
3D sensors to derive from scratch the expressions for the opti-
mum plane fitting a set of noisy points and for the combined
covariance matrix of the plane’s parameters, viz. its normal
and its distance to the origin. The range error model used
by us is a quadratic function of the true range and also the
incidence angle. Closed-form expressions for the Cramér–
Rao uncertainty bound are derived and utilized for analyzing
four methods of covariance computation: exact maximum
likelihood, renormalization, approximate least-squares, and
eigenvector perturbation. The effect of the simplifying
assumptions inherent in these methods are compared with
respect to accuracy, speed, and ease of interpretation of terms.
The approximate least-squares covariance matrix is shown
to possess a number of desirable properties, e.g., the optimal
solution forms its null-space and its components are functions
of easily understood terms like the planar-patch’s weighted
centroid and scatter. It is also fast to compute and accurate
enough in practice. Its experimental application to real-time
range-image registration and plane fusion is shown by using
a commercially available 3D range sensor.
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1 Introduction

Spatial cognition is a key capability for autonomous intelli-
gent robots to be useful in daily life scenarios. The availability
of fast 3D sensors is pushing the envelope of faster algorithms
for 3D perception and mapping. The algorithms developed
for 2D mapping using Laser Range Finders (LRF) do not
always scale well to 3D, e.g. the generalization of traditional
occupancy-grid 2D maps to three dimensions is hindered
by the disproportionate increase in storage and computation
requirements.

The input data for a typical 3D mapping algorithm is a
“point-cloud” obtained from a range-sensor like a rotating
LRF [16] or a time-of-flight sensor like the Swiss-ranger
[2] and the PMD [12]. Mapping methods based directly on
point-clouds are usually off-line [7]. There have been recent
attempts to use feature-based 3D mapping, where the
features are usually planar patches [6,18,19] extracted from
the point-clouds by a variation of the region-growing algo-
rithm [13]. This results in a compact semantic representation
of the environment which is faster to compute and requires
much less storage than a voxel-grid. 3D Plane Simultaneous
Localization and Mapping (SLAM) was recently introduced
in [9], which utilizes large planar patches to generate 3D
maps. Some example maps are shown in Fig. 1.

3D Plane SLAM consists of the following steps, which
are repeated at each sampling step:

1. Acquisition of 3D range scans.
2. Extraction of planes including uncertainties.
3. Registration of scans based on plane sets (plane-

matching).
4. Embedding of the registrations in a pose-graph.
5. Loop detection and relaxation of pose-graph.
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Fig. 1 a–e show data being
collected in a robot test arena in
the form of a multi-story
high-bay-rack. f–g show the
resulting plane-based 3D map.
The robot’s location is shown in
the map by its to-scale 3D avatar
with a red chassis. The color of
the planar surfaces was chosen
by the plane-matching algorithm
to show surface-correspondence
across scans. c Robot collecting
data, f The top view of the 3D
Plane Registration map. The
robot starts at top left and goes
clockwise around, g the tilted
top view showing the windows at
the far end which are visible in a

In this article, we concentrate on a discussion of the sec-
ond step, i.e., an efficient extraction of the planes and the
related uncertainties, which forms the very basis for 3D Plane
SLAM.

Given a set of noisy points known or hypothesized to lie
on a plane, the “optimum” plane can be extracted from them
using methods surveyed in [17]. The main methods are that
of least-squares [17,19] and renormalization [4,5]. The lat-
ter uses a more detailed error-model for the 3D points which
results in better estimations with respect to the assumed
model. This is achieved, however, at the cost of a compu-
tationally expensive iterative method which is not suited for
a real-time application. The main drawback of this method
is the use of an outdated range resolution model which does
not incorporate the effect of incidence-angle, and wherein
the range standard-deviation is a linear rather than a qua-
dratic function of the true range. Another aspect which needs
reexamination is the computation of covariance matrix of the
estimated plane parameters from the point of view of a trade-
off between accuracy and computation-time.

This article is organized as follows: in Sect. 2, we for-
mulate the maximum likelihood and least-squares plane
extraction problems and derive useful properties of the exact

solution based on an accurate range noise model. In Sect. 3,
we derive an approximate solution suitable for real-time
applications along with analytical expressions for the its
covariance. In Sect. 4 another analytical solution for the
covariance is derived using the eigenvector perturbation
method. These two methods are numerically compared to the
method of renormalization in Sect. 5. Finally, an application
of the plane covariance matrices for plane fusion using real-
world data is presented in Sect. 6 followed by conclusions in
Sect. 7.

2 Problem formulation

In this section, we briefly rederive the optimum plane param-
eters from scratch because this serves to highlight the various
assumptions made along the way and the effects of using a
new range sensor noise model. The equation of a plane is
n̂ · r = d, where n̂ is the plane’s unit normal and d the dis-
tance to the origin. Assume that the sensor returned a point-
cloud r j = ρ j m̂ j , j = 1 . . . N , where, m̂ j are the measure-
ment directions for the sensor, usually accurately known, and
ρ j are the respective ranges which are noisy.

123



Intel Serv Robotics (2010) 3:37–48 39

2.1 Maximum likelihood and least squares plane estimation

We make the assumption of radial Gaussian noise, i.e. ρi ∼
N {ρ̄i , σ

2{ρ̄i , n̂ · m̂i }}, where {·} encloses function argu-
ments, and ρ̄i = d/(n̂ · m̂i ) is the true range of i th mea-
surement. This implies a covariance matrix of r j of the form

Cr, j = σ 2{ρ̄ j , n̂ · m̂ j } m̂ j m̂T
j , (1)

where the range standard-deviation σ {ρ̄ j , n̂ · m̂ j } is explic-
itly a (usually quadratic) function of ρ̄ j and has been found
to be inversely proportional to n̂ · m̂ j , i.e. the cosine of the
incidence-angle [1].

The likelihood of plane-parameters (n̂, d) given range
sample ρi along measurement direction m̂i is

p(ρi | n̂, d, m̂i )

= 1√
2πσ {ρ̄i , n̂ · m̂i }

exp

{
−1

2

(ρi − d/(n̂ · m̂i ))
2

σ 2{ρ̄i , n̂ · m̂i }
}

(2)

Then, considering a sequence of samples i = 1 . . . N , ignor-
ing constant terms, and defining a binary switch β = 0/1,
the log-likelihood function to be maximized is as follows

max
n̂,d

LGMLP = −β

N∑
i=1

log σ {ρ̄i , n̂ · m̂i }

−1

2

N∑
j=1

(
ρ j (n̂ · m̂ j ) − d

)2

(n̂ · m̂ j )2σ 2{ρ̄ j , n̂ · m̂ j } , (3)

where GMLP stands for General Maximum Likelihood Prob-
lem for β = 1. The General Least Squares Problem (GLSP)
can be obtained from GMLP by simply setting β = 0. For
GLSP, the above can be equivalently rewritten as

min
n̂,d

N∑
j=1

(
ρ j (n̂ · m̂ j ) − d

)2

(n̂ · m̂ j )2σ 2{ρ̄ j , n̂ · m̂ j } . (4)

We note that the above expression is exactly the same as the
weighted least-squares cost function in [5, Eq. (8)], except
that it is rewritten in our notation on substitution of (1).
No particular functional dependence has been enforced on
σ 2{ρ̄ j , n̂ · m̂ j } yet.

The optimization (3) cannot be handled analytically, espe-
cially as σ is a function of ρ̄ j = d/(n̂ · m̂i ) and n̂ · m̂i .
One approach is to handle the problem numerically using
iterations—as is done in the renormalization method of [5].
It has the advantage of having higher accuracy. Addition-
ally, it assumes a linearly varying standard-deviation σ {ρ̄ j ,

n̂ · m̂ j } = κ1ρ̄ j , independent of the incidence-angle, and
simultaneously estimates the value of κ1 during the itera-
tions. However, there are two main reservations regarding this
approach.

Firstly, an iterative method is usually not suitable for real-
time applications. Secondly, and more importantly, as shown

in [1,8,14], the standard-deviation of commonly available 3D
sensors like the Swiss-ranger and Laser-range-finder (LRF)
is more accurately modeled by a function of the form

σ {ρ̄ j , n̂ · m̂ j } = σ̂ {ρ̄ j }
|n̂ · m̂ j | , where,

σ̂ {ρ̄ j } � κρ̄2
j ≡ κd2

|n̂ · m̂ j |2 (5)

where n̂ is the local normal to the surface the point r j lies on.
The coefficient κ > 0 can be estimated by doing initial cali-
bration experiments with the sensor. In fact, on substitution
of the LHS of (5) in (3), we get,

max
n̂,d

LEMLP = −β

N∑
j=1

log
σ̂ {ρ̄ j }

|n̂ · m̂ j | − 1

2

N∑
j=1

(
n̂ · r j − d

)2

σ̂ 2{ρ̄ j } ,

(6)

where EMLP stands for Exact Maximum Likelihood Prob-
lem. If β = 0, we get the Exact Least Squares Problem
(ELSP). The ELSP expression is both more accurate and
simpler-looking than the cost function considered in [5],
which is equivalent to the cost in (4) with σ {ρ̄ j , n̂ · m̂ j } ≡
κ1ρ̄ j . On expanding (6) using RHS of (5), and ignoring con-
stants, we get

max
n̂,d

LEMLP = −2βN log d + 3β

N∑
j=1

log |n̂ · m̂ j |

−1

2

N∑
j=1

(n̂ · m̂ j )
4

(
n̂ · r j − d

)2

κ2d4 . (7)

As m̂ j are the measuring directions of the sensor, from argu-
ments of geometric consistency of points on a plane observed
along these directions we take |n̂ · m̂ j | ≡ n̂ · m̂ j in what
follows.

2.2 Properties of the solution

We denote the ground-truth values of n̂, d by n̄, d̄ . To save
space, we define the error in the plane-equation for some
estimate n̂, d at sample r j as

ε j � n̂ · r j − d. (8)

Although only a numerical solution of (7) is possible, we
can show that unless β = 0, the solution is biased. To this
end, we define a Lagrangian L = LEMLP − 1

2λ(n̂T n̂ − 1),

whereλ is the usual Lagrange multiplier. Since at the optimum
estimate n̂�, d�, the gradient vanishes,
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∂L
∂d

= −2βN

d
+ 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
4

(
ε j + 2ε2

j

d

)
, (9a)

∂L
∂n̂

= −λn̂ + 3
N∑

j=1

β
m̂ j

n̂ · m̂ j

− 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
3
(

2ε2
j m̂ j + ε j (n̂ · m̂ j )r j

)
.

(9b)

At n̂�, d�, the above expressions equate to zero and

λ� = 3βN − 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
4
(

2ε2
j + ε j (n̂ · r j )

)
. (9c)

The Hessian of (7) at λ = λ�, n̂ = n̂�, d = d� can be
computed as follows after some algebra

∂2L
∂d2 = − 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
4

×
(

1 + 8ε j

d
+ 10ε2

j

d2

)
+ 2βN

d2 (10a)

∂2L
∂d ∂n̂

= 1

κ2d4

N∑
j=1

4ε j (n̂ · m̂ j )
3
(

1 + 2ε j

d

)
m̂ j

+ 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
4
(

1 + 4ε j

d

)
r j , (10b)

∂2L
∂n̂2 = −λ�I − 1

κ2d4

N∑
j=1

(n̂ · m̂ j )
4r j rT

j

− 4

κ2d4

N∑
j=1

ε j (n̂ · m̂ j )
3
(

m̂ j rT
j + r j m̂T

j

)

− 6

κ2d4

N∑
j=1

ε2
j (n̂ · m̂ j )

2m̂ j m̂T
j

−3β

N∑
j=1

m̂ j m̂T
j

(n̂ · m̂ j )2 (10c)

HEMLP �

⎡
⎣

∂2L
∂n̂2

(
∂2L
∂d ∂n̂

)
(

∂2L
∂d ∂n̂

)T
∂2L
∂d2

⎤
⎦ . (10d)

Using results from [4,15], we can find the 4 × 4 plane-
parameter covariance matrix

CEMLP ≡ −H+
EMLP, (11)

i.e., the negative of the Moore–Penrose generalized inverse
of the Hessian. The generalized inverse is necessary because
the Hessian may be singular.

2.2.1 The Cramér–Rao Lower Bound on Covariance

The Cramér–Rao (CR) lower bound, denoted C̄EMLP, is appli-
cable only to unbiased estimators [4], for which the opti-
mum solution is the ground-truth n̄, d̄. It can be computed
as the negative inverse of the expected-value of the Hessian
derived in (10). Since the ground-truth is not known in prac-
tice, this bound cannot be found. However, in simulations this
ideal value can be used to compare the estimated covariances
found using various methods. We note that its derivation in
[10] was not complete: we now proceed to derive the correct
expression for it.

We would first need to compute the following expected
values. Using Eqs. (1), (5), and (8), we can compute the fol-
lowing expectations

E(ε j ) = 0, (12a)

E(ε2
j ) = n̄T Cr, j n̄ ≡ σ̂ 2

j ≡ κ2d̄4

(n̄ · m̂ j )4 , (12b)

E(r j ) ≡ r̄ j = d̄ m̂ j

n̄ · m̂ j
, (12c)

E(r j rT
j ) = E(Cr, j ) + r̄ j r̄T

j

≡
(

κ2d̄4

(n̄ · m̂ j )6 + d̄2

(n̄ · m̂ j )2

)
m̂ j m̂T

j , (12d)

E(ε j r j ) = E((r j rT
j )n̂ − d r j ) ≡ κ2 d̄4

(n̄ · m̂ j )5
m̂ j . (12e)

We now substitute the above expectations in (10), and
after some tedious algebra, we obtain

E(λ�) = 3βN − 3N , (13a)

E

(
∂2L
∂d2

)
= − 1

κ2d̄4

N∑
j=1

(n̄ · m̂ j )
4 − N (10 − 2β)

d̄2
,

(13b)

E

(
∂2L

∂d ∂n̂

)
=

N∑
j=1

(n̄ · m̂ j )
3

κ2d̄3
m̂ j +

N∑
j=1

12

d̄(n̄ · m̂ j )
m̂ j ,

(13c)

E

(
∂2L
∂n̂2

)
= −

N∑
j=1

(n̄ · m̂ j )
2

κ2d̄2
m̂ j m̂T

j

−
N∑

j=1

15 + 3β

(n̄ · m̂ j )2 m̂ j m̂T
j , (13d)

E(HEMLP) �

⎡
⎣ E( ∂2L

∂n̂2 ) E
(

∂2L
∂d ∂n̂

)

E
(

∂2L
∂d ∂n̂

)T
E( ∂2L

∂d2 )

⎤
⎦. (13e)

The first terms on the right-hand side of Eqs. (13b), (13c),
and (13d) are the ones which were given in [10]. They need
to be corrected by the corresponding second terms. We can
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write these terms as

E(HEMLP) = H̄1 + H̄2, (14)

where H̄1 contains the first terms and H̄2, the second.
As noted in [10], H̄1 has the interesting property that [n̄T , d̄]T

lies in its null-space.
Finally, the Cramér–Rao covariance bound is

C̄EMLP ≡ −E(HEMLP)+. (15)

Note that −E(HEMLP) is also called the Fisher Information
matrix F.

Another way of finding this bound is using the terms in
the Gaussian of Eq. (2). We define the parameter vector θ �(

n̂
d

)
, and compute

−F ≡ E(HEMLP)

= −
N∑

k=1

⎡
⎣∂ρ̄k

∂θ
σ−2

k

(
∂ρ̄k

∂θ

)T

+ 1

2
σ−2

k

∂σ 2
k

∂θ
σ−2

k

(
∂σ 2

k

∂θ

)T
⎤
⎦

(16)

We have verified that this leads to the same results as in
Eqs. (13). Furthermore, the first summation in (16) turns out
to be H̄1 and the second H̄2. For the noise-model considered,
the contribution of H̄2 is numerically found to be signifi-
cantly less than that of H̄1, and thus it continues to be true
that eigenvector corresponding to the smallest eigenvalue of
E(HEMLP) is almost parallel to [n̄T , d̄]T .

3 Approximate solution and computation of covariance
matrix

The objective of this work is to explore if, under reasonable
simplifying assumptions, one can obtain a fast estimation of
the plane parameters and their covariance matrix without iter-
ations. When extracting planar patches from a range-image
using region-growing, the plane-fitting algorithm is called
many times per range-image, and an iterative algorithm is
unsuitable for this. The solution of ELSP cannot be done
analytically– hence, in the sequel we explore ways of solv-
ing it in an approximate but fast manner.

To proceed with the approximate solution, we make the
assumption that σ̂ (ρ̄ j ) ≈ σ̂ (ρ j ). We define σ̂i � σ̂ (ρ j ) and
note that σ̂i is now no longer a function of ρ̄ j and hence of
n̂ and d. Using Eq. (6) and setting β = 0, we get

max
n̂,d

LALSP = −1

2

N∑
j=1

(
n̂ · r j − d

)2

σ̂ 2
j

, (17)

where ALSP stands for Approximate Least Square Problem.

3.1 Solution of ALSP and covariance estimation

ALSP is a well studied problem, see for example [18].
Although the solution is well-known, the covariance matrix
computation is done in various ways in the literature.
The method presented in [18] is particularly redundant as it
solves the optimization problem twice: It first finds the opti-
mum plane in the (n̂, d) space, then rotates the plane such
that the z axis is parallel to n̂, and subsequently translates
the plane such that d = 0. Finally, another best-fit is done
using the plane-equation of the form z = β0 + β1x + β2 y.
The problem is essentially re-solved for this form by least-
squares to obtain the covariance matrix for β0, β1, β2. The
procedure is justified by saying that it provides an analyti-
cal way of obtaining the covariance and it avoids the matrix
singularity in (n̂, d) space.

We show that the covariance matrix can be obtained ana-
lytically also in the (n̂, d) space. We see the fact that the
null-space of the covariance matrix consists of the optimal
solution as an asset which can be used to efficiently fuse
planes. In fact, we show that this covariance matrix also con-
tains other summarized information about the point cloud
from which it was extracted, like its center and scatter.

As before, we have a constrained optimization problem
which can be solved using Lagrange multipliers. Defining
the Lagrangian

L = LALSP + λ(n̂Tn̂ − 1) (18)

Setting ∂L/∂d = 0 gives the well-known solution

d� = n̂� · rG , rG �

⎛
⎝ N∑

j=1

σ̂−2
j

⎞
⎠

−1
N∑

j=1

(
σ̂−2

j r j

)
, (19)

where rG is the weighted center of the point-cloud. Substi-
tuting the above in (17) gives

n̂� = arg min
‖n̂‖=1

n̂T

⎛
⎝ N∑

j=1

σ̂−2
j (r j − rG)(r j − rG)T

⎞
⎠ n̂

� arg min
‖n̂‖=1

n̂T Sn̂, (20)

where S is the positive semi-definite weighted scatter matrix.
The solution n̂� is then the eigenvector corresponding to the
minimum eigenvalue of S.

As done in Sect. 2.2, the covariance matrix of the optimal
solution can simply be obtained by finding the Hessian of the
Lagrangian (18) at n̂�, d�, λ�. Its expressions are

λ� = 1

2
n̂T

� Sn̂�, (21a)

∂2L
∂d2 = −

N∑
j=1

1

σ̂ 2
j

� −µ, (21b)
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∂2L
∂d ∂n̂

=
N∑

j=1

r j

σ̂ 2
j

≡ µ rG , (21c)

∂2L
∂n̂2 = −

N∑
j=1

r j rT
j

σ̂ 2
j

+ 2λ�I,

≡ −S − µ rGrT
G +

(
n̂T

� Sn̂�

)
I. (21d)

Using the above, the ALSP Hessian is computed by

HALSP =
⎡
⎣ ∂2L

∂n̂2
∂2L
∂d∂n̂

( ∂2L
∂d∂n̂ )T ∂2L

∂d2

⎤
⎦ =

[
Hnn Hn̂d

HT
n̂d Hdd

]

ALSP

(21e)

Finally, the covariance matrix is

CALSP = −H+
ALSP. (21f)

Using Eqs. (21), it is easily verified that

HALSP

[
n̂�

d�

]
= 0, ⇒ CALSP

[
n̂�

d�

]
= 0. (22)

It is a remarkable property of the ALSP solution, i.e. it lies
precisely in the null-space of its covariance matrix.

4 Method of eigenvector perturbation for covariance
computation

Another method to compute covariances was derived in a dif-
ferent context in [20]. We would like to confirm the computa-
tion of Hessian based covariance with their method.
For this, however, we need to reformulate the problem similar
to [5]. We define a unit vector in parameter space

ν̂ = (
ν1 ν2 ν3 ν4

)T = 1√‖n̂‖2 + d2

(
n̂
d

)
. (23)

Then the equation of the plane is

ν̂ ·
(

r
−1

)
� ν̂ · � = 0, C�,i =

(
Cr,i 0
0 0

)
, (24)

where (1) has been used. Then, the ALSP (17) can be refor-
mulated to the Eigenvector Perturbation Problem (EVPP)

min
‖ν̂‖=1

LEVPP =
N∑

j=1

ν̂
T

� j�
T
j

σ̂ 2
j

ν̂ � ν̂
T Mν̂. (25)

The solution ν̂� is simply the eigenvector corresponding to
the minimum eigenvalue of the symmetric positive semi-def-
inite matrix M. The uncertainty in ν̂� can be computed using
the method of [20]. The specialization of this method to the
present problem is, however, derived by us, and we have not
found it elsewhere.

The symmetric positive semi-definite matrix M has the
decomposition M = V�VT , where the orthonormal matrix

V contains the eigenvectors corresponding to the eigenvalues
λi in the diagonal matrix �. The eigenvectors are assumed
to be sorted in ascending order, so that λ1 is the eigenvalue
corresponding to ν̂�. If M is perturbed by a small disturbance
�M , ν̂� is perturbed by

δν̂�
= V�1VT �M ν̂�, where, (26)

�1 = diag
{

0, (λ1 − λ2)
−1, (λ1 − λ3)

−1, (λ1 − λ4)
−1

}
.

∴ Cν̂�
= E[δν̂�

δT
ν̂�

] = V�1VT E[�M ν̂�ν̂
T
� �T

M ]V�1VT

= V�1VT C�M ν̂�
V�1VT , (27)

where E[·] is the expectation operator. Let the perturbation

ri = r̄i + δri , δri ≡ (
δxi δyi δzi

)T
. One can easily derive

that

�M =
N∑

i=1

1

σ̂ 2
i

×

⎡
⎢⎢⎣

2δxi xi xiδyi + yiδxi xiδzi + ziδxi −δxi

xiδyi + yiδxi 2δyi yi yiδzi + ziδyi −δyi

xiδzi + ziδxi yiδzi + ziδyi 2δzi zi −δzi

−δxi −δyi −δzi 0

⎤
⎥⎥⎦.

(28)

Using this one can derive a matrix Ni {ν̂�}, a function of ν̂�,
such that,

�M ν̂� =
N∑

i=1

1

σ̂ 2
i

Ni {ν̂�}δri , which gives the result

C�M ν̂�
=

N∑
i=1

1

σ̂ 2
i

Ni {ν̂�}Cr,i NT
i {ν̂�}. (29)

On substitution in (27), we get the required covariance Cν̂�
.

We can now recover our optimum solution in the (n̂, d)

space by applying the following reverse transform to ν̂�(
n̂
d

)
= g{ν̂} � 1√

1 − ν̂2
4

ν̂. (30)

Transforming Cν̂�
to the (n̂, d) space by the usual Jacobian

method presents an interesting paradox, which has not been
addressed by previous researchers [5], who have used a sim-
ilar transform.

4.1 A paradox in covariance matrix transformation

Given a symmetric positive semi-definite matrix C, its eig-
envectors are the unit-directions ν̂ in the space of definition,
where the quadratic product ν̂

T Cν̂ achieves a minimum or
maximum [3]. Since a unit-vector is identical in the (n̂, d)

space as well as in the space of ν̂ of (23), we expect that Cν̂�

will have the same eigenvectors (though not eigenvalues) as
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the covariance Cn̂,d in (n̂, d) space. We have verified numer-
ically that this is true (details in Sect. 5, Figs. 2b, c, 3b, c).
However, these two matrices are also supposed to be related
by

Cn̂,d = JCν̂�
JT . (31)

An obvious way to compute the Jacobian J is

J � ∂g
∂ ν̂

= (1 − ν̂
2
4)

−1/2

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 ν̂1ν̂4

1−ν̂2
4

0 1 0 ν̂2 ν̂4

1−ν̂2
4

0 0 1 ν̂3ν̂4

1−ν̂2
4

0 0 0 1
1−ν̂2

4

⎞
⎟⎟⎟⎟⎟⎠

. (32)

The same Jacobian was used in [5], but with the bottom right
corner element negated as they had defined ν̂ = (‖n̂‖2 +
d2)−1/2

(
n̂
−d

)
instead of as in (23). However, unless ν̂4 =0,

this Jacobian rotates the eigenvectors of Cν̂�
, which contra-

dicts our earlier observation that the eigenvectors should
remain unrotated. In fact, this Jacobian is incorrect because
it assumes that the components of ν̂ can be independently
perturbed, whereas this is not true as ‖ν̂‖ = 1. The correct
Jacobian is

J � (1 − ν̂
2
4)

−1/2I4, (33)

which merely scales and which will be used in this paper
along with (31) to transform the covariance to the (n̂, d)

space.

5 Comparison of methods

We will compare four methods: renormalization [5], ALSP
(Sect. 3), EVPP (Sect. 4), and the EMLP (Sect. 2.2 with
β = 1). The comparison is done in simulation because the
“ground-truth” is known accurately in simulation and hence
the lower-bound covariance matrix C̄EMLP of Sect. 2.2.1 can
be computed.

Let the eigen-pair of C̄EMLP in which the eigenvector is
almost parallel to the solution be denoted as λ̄0, τ̄0, and the
rest of the eigen-pairs are sorted according to the eigenvalues
and and denoted as λ̄ j , τ̄ j , j = 1 . . . 3.

Given the covariance matrix estimation of method i as Ci

with sorted eigenvalues and their eigenvectors as λi, j , τ̂i, j ,

j = 0 . . . 3, and i = renormalization, ALSP, EVPP, and
EMLP. We define the following three error metrics which
are plotted for all the methods in Figs. 2, 3, and 4:

Fig. 2 Squared Mahalanobis
distance ε1 from the
ground-truth based on the
Cramér–Rao bound on the
covariance: a renormalization,
b ALSP, c Eigenvector
perturbation, d Exact Maximum
Likelihood (EMLP)
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Fig. 3 Principal Uncertainty
Directions Error ε2. The
obviously strong effect of the
different range noise model
assumed by renormalization on
the principal uncertainty
directions: a renormalization,
b ALSP, c Eigenvector
perturbation, d Exact Maximum
Likelihood (EMLP)
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Fig. 4 Relative Total
Uncertainty ε3. In a, note that
lowest value is below the
theoretically least value of unity
because the algorithm assumes a
different sensor error model.
Note also from the color-scale
that the values are much worse
than the other two methods:
a renormalization, b ALSP,
c Eigenvector perturbation,
d Exact Maximum Likelihood
(EMLP)
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Square of Mahalanobis Distance ε1 This metric, ideally
zero, is defined as follows for the i th method

ε1 � (τ̂i,0 − τ̄0)
T C̄+

EMLP(τ̂i,0 − τ̄0). (34)

Principal Uncertainty Directions Error ε2 Weighted sum
of angular errors in the principal uncertainty directions of the
i th method, which should be ideally zero.

ε2 �
3∑

j=1

w j cos−1(τ̄ j · τ̂i, j ), w j � λ̄ j

λ̄1 + λ̄2 + λ̄3
. (35)

Relative Total Uncertainty ε3 Lower bounded by unity.

ε3 � (λi,1λi,2λi,3)/(λ̄1λ̄2λ̄3). (36)

We simulated the commercial 3D sensor Swiss-ranger and
took its experimentally determined parameter κ = 0.0018
(with all lengths in meters) from [1]. The measuring direc-
tions m̂ j , j = 176 × 144 were taken to be the same as that
of the real device. Samples were generated using the noise
model of (5). We considered infinite planes at a constant dis-
tance from origin d = 4 m but with varying normals as a
function of spherical coordinates

n̂ = (cos θ cos φ cos θ sin φ sin θ)T . (37)

In Figs. 2, 3, and 4, the three error metrics are plotted as
a function of θ and φ. The four corners of the plots have
been truncated as they correspond to samples for which the
range is more than the device’s maximum range of 7.5 m.
The color-scale is different for all plots and should be noted
carefully for proper comparison.

Discussion

Figure 2 shows that as expected, EMLP, which is based
on iterative constrained nonlinear optimization, is the most
accurate method. Renormalization also is relatively accu-
rate, which shows that the solution (though not the estimated
covariance) is not strongly dependent on the noise model.
The non-iterative ALSP and EVPP method have similar
accuracy.

Figure 3 shows that the wrongly assumed model in renor-
malization leads to a systematic error pattern for ε2.
The ALSP and EVPP methods are surprisingly accurate in
estimating the principal error directions.

In Fig. 4, one notices that for the Renormalization, ALSP,
and EVPP methods, the ratio of the estimated uncertainty to
the least possible uncertainty steadily worsens as the inci-
dence angle to the plane increases. EMLP does not show this
effect and is also the most method where the ratio stays clos-
est to unity. Interestingly, the ratio sometimes is even slightly
less than unity, which suggests that EMLP may be a biased
estimator, since the Cramér-Rao bound is only applicable

to unbiased estimators. This bias, if any, is quite small how-
ever, as is clear from Fig. 4. Renormalization also sometimes
reports ratios less than unity: however, this is not trustworthy
because it is based on a different noise model.

We compared the computation times for the three algo-
rithms in MATLAB, although ALSP has been implemented
in C++ also. In MATLAB, the average computation time
(in 840 runs) per sample of 176 × 144 points took 0.0052 s,
renormalization 0.4393 s, EVPP took 0.3332 s, and the iter-
ative non-linear optimization for EMLP took about 15 s.
Renormalization is slower as expected because it is iter-
ative. EVPP is non-iterative and could possibly be made
faster by a more efficient implementation. For run-times of a
C++ implementation of a full-fledged region-growing algo-
rithm with embedded ALSP, see Sect. 6. In summary, ALSP
seems to be a good alternative for covariance computations
in real-time applications. Another advantage of the covari-
ance of the ALSP is that its components are known in terms
of easily understood quantities like point-cloud scatter and
their weighted mean—this semantic information is lost in
the EVPP covariance, although numerically its performance
is quite close to that of ALSP. EMLP is the most accurate
method, but also computationally the most expensive. It is
therefore recommended only for offline optimization.

6 Application: plane fusion after scene registration

In this section, we provide an application of the covariance
estimate provided by ALSP for fusing two estimates of plane-
parameters. Let the point-clouds corresponding to the same
physical plane be sampled from two sensor reference frames
F� and Fr . The coordinates of the same physical point
observed from these frames are denoted by r� and rr respec-
tively, and are related by

r� = R rr + t, (38)

where R is the relative rotation and t is the relative trans-
lation, both assumed known. The plane parameters vector
ξ � (n̂T d)T found in the two frames are related by the trans-
form

ξ r = U ξ �, U �
(

RT 03×1

−tT 1

)
. (39)

There are two intermediate problems which are not cov-
ered in this article, but have been addressed by the authors in
other works

1. Planes extraction from range-images by region-growing
[13].

2. Finding which planes in one scene correspond to which
planes in the second, and subsequently finding the least
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squares scene registration. This issue has been addressed
in [11].

Once the planes have been matched and registered tog-
ether, we want the corresponding plane parameters to be
probabilistically fused together as well. The estimated plane
parameters and their ALSP covariances satisfy C�ξ � = 0
and Cr ξ r = 0, as shown earlier.

Now, Uξ � with covariance UC�UT , and ξ r with covari-
ance Cr can be considered to be two observations in frame
Fr for the same plane. The usual equation for fusing two
Gaussians estimates, which is analogous to the Kalman filter
update, would give

C+
1 = (UC�UT )+ + C+

r , (40)

ξ1 = ξ r + Cr (Cr + UC�UT )+(Uξ � − ξ r ). (41)

This approach has two problems: first, there is no guarantee
that the first three components of ξ1 form a unit vector, and
secondly, the property C1ξ1 = C+

1 ξ1 = 0 may not be satis-
fied. We therefore propose that the fused covariance matrix
be found by modifying the matrix in (40) as

C+
f = C+

1 − λmin{C+
1 } ν̂ f ν̂

T
f , (42)

where λmin{C+
1 } is the minimum eigenvalue of C+

1 and the
corresponding normalized eigenvector is ν̂ f . Then the fused
plane parameters ξ f are found by using the reverse trans-
form (30).

In fact, C+
f is the matrix closest in Frobenius norm to C+

1
which satisfies both of the aforementioned properties and C f

is positive semi-definite. All fused quantities are with respect
to the right frame. Another reason for preferring (42) over
(41) is that the latter does not work if ξ is negated, which
represents the same plane.

The results of the application of the above fusion strategy
to real-life data is shown in Fig. 7b. The plane-patches were
extracted using the ALSP method coupled with a region-
growing algorithm for point-clouds obtained from a Swiss-
ranger mounted on a robot turning in-place. As shown in
Figs. 5 and 6, six successive views were analyzed by a reg-
istration algorithm and corresponding planes identified. The
details of the registration algorithm, which makes extensive
use of the computed covariance matrices, can be found in
[11]. Finally, the corresponding plane-patches were rotated in
the global frame and fused using the method described in this
section. There were on an average 10 planar patches per view.
The average time per view-pair for plane-patch extraction by
region-growing, registration, and fusion was about 0.25 s

Fig. 5 Intensity images for
successive views captured from
a Swiss-ranger

Fig. 6 Swiss-ranger
point-cloud views
corresponding to Fig. 5c.
a Front view the color
corresponds to intensity,
b zoomed in side view to show
noise normal to the planar
surface
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Fig. 7 Results for planes
extracted from the views of
Fig. 5. In a, planes were
matched and aligned using our
registration algorithm.
Corresponding matched planes
are drawn with the same color.
Unmatched and filtered out
planes are shown grayed out.
b shows the result of applying
plane fusion based on the
methodology described in
Sect. 6 on a. a registered planes
(front view), b registered and
fused planes (front view),
c registered planes (top view),
d registered and fused planes
(top view)
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by a C++ implementation on a Pentium 4 HT, 3 GHz, with
1 GB of memory.

7 Conclusions

We presented several new results for the best-fit plane using a
new range noise model. The covariance matrix for the plane
parameters is derived in several different ways, all of which
are entirely analytical. Some important properties of the null-
space of this matrix are derived and used for plane fusion.
Both simulation and real sensor data were presented to sup-
port our theoretical results. We conclude that the approximate
least-squares plane-fit (ALSP) is a suitable method for real-
time applications.
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