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Abstract We present a method for automatic grasp
generation based on object shape primitives in a Program-
ming by Demonstration framework. The system first reco-
gnizes the grasp performed by a demonstrator as well as the
object it is applied on and then generates a suitable grasping
strategy on the robot. We start by presenting how to model
and learn grasps and map them to robot hands. We continue
by performing dynamic simulation of the grasp execution
with a focus on grasping objects whose pose is not perfectly
known.

Keywords Grasping · Learning · Control · Simulation ·
Robot

1 Introduction

Robust grasping and manipulation of objects is one of the
key research areas in the field of robotics. There has been
a significant amount of work reported on how to achieve
stable and manipulable grasps [2,19,20,24,26]. This paper
presents a method for an initial grasp generation and control
for robotic hands where human demonstration and object
shape primitives are used in synergy. The methodology in
this paper tackles different grasping problems, but the main
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focus is on choosing the object approach vector, which is
dependent on both the object shape and pose as well as the
grasp type. Using the proposed method, the approach vector
is chosen not only based on perceptional cues but also on
experience that some approach vectors will provide useful
tactile cues that finally result in stable grasps. Moreover, a
methodology for developing and evaluating grasp schemes
is presented where the focus lies on obtaining stable grasps
under imperfect vision.

The presented methodology is considered in a Program-
ming by Demonstration (PbD) framework [1,12], where the
user teaches the robot tasks by demonstrating them. The fra-
mework borrows ideas from the field of teleoperation that
provides a means of direct transmission of dexterity from the
human operator. Most of the work in this field focuses howe-
ver on low-level support such as haptic and graphical feed-
back and deals with problems such as time delays [17]. For
instruction systems that involve object grasping and mani-
pulation, both visual and haptic feedback are necessary. The
robot has to be instructed what and how to manipulate. If the
kinematics of robot arm/hand system is the same as for the
human, a one-to-one mapping approach may be considered.
This is, however, never the case. The problems arising are
not only related to the mapping between different kinematic
chains for the arm/hand systems but also to the quality of the
object pose estimation delivered by the vision system. Our
previous results related to these problems have been presen-
ted in for example [9] and [7].

The contributions of the work presented here are as
follows:

1. Suitable grasps are based on object pose and shape and
not only to a set of points generated along its outer
contour. This means that we do not assume that the ini-
tial hand position is such that only planar grasps can be
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executed as proposed in [20]. In addition, grasps relying
only on a set of contact points may be impossible to gene-
rate on-line, since the available sensory feedback may
not be able to estimate the exactly same points on the
object’s surface once the pose of the object is changed.

2. The choice of the suitable grasp is based on the expe-
rience, i.e., it is learned from the human by defining the
set of most likely hand preshapes with respect to the spe-
cific object. A similar idea, also using the BarrettHand
[30], was investigated in [19]. Grasp preshapes are gene-
rated based on recognition of human grasps. This is of
interest for humanoid robots where the current trend is
to resemble human behavior as closely as possible.

3. Finally, we evaluate the quality of different grasp types
with respect to inaccuracies in pose estimation. This is
an important issue that commonly occurs in robotic sys-
tems. The reasons may be that the calibration of the vision
system or hand–eye system is not exact or that a detailed
model of the object is not available. We evaluate how big
pose estimation error different grasp types can handle.

1.1 Related work

The work on automatic grasp synthesis and planning is rele-
vant to the ideas presented here [19,26,20,24]. In automatic
grasp synthesis, it is commonly assumed that the position,
orientation, and shape of the object is known [19]. Another
assumption is that it is possible to extract the outer contour
of an object and then apply a planar grasp [20]. The work on
contact-level grasp synthesis concentrates mainly on finding
a fixed number of contact locations without considering the
hand design [2,6].

Taking into account hand kinematics and a priori know-
ledge of the feasible grasps has been acknowledged as a more
flexible and natural approach toward automatic grasp plan-
ning [19,25]. In [25], a method for adapting a given prototype
grasp of one object to another object, such that the quality
of the new grasp would be at least 75% of the quality of the
original, was developed. This process, however, required a
parallel algorithm running on supercomputer to be computed
in reasonable time. This clearly shows the need to reduce the
solution space for grasping problems to reach solutions in an
acceptable time.

The method proposed in [19] presents a system for auto-
matic grasp planning for a BarrettHand by modeling objects
as sets of shape primitives; spheres, cylinders, cones, and
boxes. Each primitive is associated with a set of rules to
generate a set of candidate pregrasp hand positions and confi-
gurations. Human demonstrations can also be used to find
a suitable grasp, especially focusing on the grasp approach
[27]. Examples of robotic manipulation include [4,21,23].

2 System description

In our work, robotic grasping is performed by combining
a PbD framework with semiautonomous grasping and per-
formance evaluation. We assume that a task such as pick
up/move/put down an object is first demonstrated to the robot.
The robot recognizes which object has been moved, as well
as where, using visual feedback. The magnetic trackers on
the human hand provide information that enables the robot
to recognize the human grasp. The robot then reproduces the
action [9]. The approach is evaluated using a modified and
extended version of the robot grasp simulator GraspIt! [18]
to allow for repetitive experiments and statistical evaluation.
In the simulation experiments, we use the BarrettHand and
a hybrid force/position control framework. It is shown how
dynamic simulation can be used for building grasp expe-
rience, for the evaluation of grasp performance, and to esta-
blish requirements for the robot system.

The current components in our PbD system are as follows:

1. Object recognition and pose estimation: estimating the
pose of an object before and after an action enables the
system to identify which object has been moved where.
For object recognition and pose estimation, receptive
field co-occurrence histograms are used [8,10]. It is assu-
med that the objects are resting on a table and can be
represented by parameters (x , y, and φ).

2. Grasp recognition: a data-glove with magnetic trackers
provides hand postures for the grasp recognition system
[7].

3. Grasp mapping: an off-line learned grasp-mapping pro-
cedure maps human to robot grasps as presented in
Sect. 2.1.

4. Grasp learning: testing many grasps in simulation allows
for a quantitative rating of each grasp. This rating is used
to select an appropriate grasp controller. Here, the object
will be approached from the direction that maximizes
the probability of reaching a successful grasp. This is
presented in more detail in Sect. 4.

5. Grasp execution: a semiautonomous grasp controller is
used to control the hand from the planned approach posi-
tion until a force closure grasp is reached (Sect. 3).

2.1 Grasp mapping

It has been argued that grasp preshapes can be used to
limit the large number of possible robot hand configurations.
This is motivated by the fact that—when planning a grasp—
humans unconsciously simplify the grasp choice by choo-
sing from a limited set of prehensile postures appropriate
for the object and task at hand [22]. Cutkosky [5] classified
human grasps and evaluated how the task and object geome-
try affect the choice of grasp. The work on virtual fingers
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Fig. 1 Mapping a selection of grasps from Cutkosky’s grasp hierarchy
to three Barrett grasps. The robot hand configurations shown are the
initial joint positions

generalized the existing grasp taxonomies [14]. Based on
the above work and as described in previous work [7], the
current grasp recognition system can recognize ten different
grasp types. The human grasps are mapped to the robot as
shown in Fig. 1. The grasps refer not only to hand postures,
but to grasp execution schemes that include initial position,
approach vector, and hand controller.

3 Grasp control

The grasp control algorithm has to be able to cope with occlu-
sion and limited accuracy of the vision system. The controller
presented here copes with the above without exploiting the
wrist or arm motion. It is assumed that touch sensors capable
of detecting the normal force are mounted to the distal links
of each finger of the robot hand. This type of touch sen-
sors are available at a low cost and are easy to mount on an
existing robot hand as shown in previous work [15]. Consi-
derations on different tactile sensors are put in to perspective
in [13,16,28].

The hybrid force/position controller uses these tactile sen-
sors to control the grasp force. Position control using joint
encoders maintains the desired finger configuration and hence

object position. Here, an effort is made to bring the object
toward the center of hand during grasping. The need of this
can be exemplified by the BarrettHand for which the grasp
is typically of higher quality when all fingers have approxi-
mately the same closing angle, rather than when the object
is far from the palm center. This behavior can be seen in
the example task shown in Fig. 2. Here, the BarrettHand
is modeled such that the two joint angles of each finger
have a fixed relation. All control is performed using Matlab.
Alternative low-level controllers have been investigated in
e.g. [31].

To enable a more intuitive formulation of the controller—
as opposed to decentralized control of reference trajecto-
ries and/or torques in joint space—a linear transform T is
used to transform the joint angles q to more intuitive control
variables x = Tq. If T is a diagonal matrix containing the
finger lengths, x contains the finger tip position along the
tip trajectory. Using a diagonal matrix T will hence allow
for fingertip position control. Using a nondiagonal matrix T
enables control of linear combinations of the joint angles q.
Total closure—defined as the sum of the closing angle for all
three fingers—for example, can be controlled using forces,
positions, or any combination thereof. The joint space will
be denoted q-space. The transformed space will be denoted
x-space.

The choice of the matrix T is hence paramount to grasp
controller behavior. Luckily, choosing T is quite straight for-
ward assuming there exist an idea of how to control the hand.
This idea may be to grasp the object using a certain force and
hold the object close to the center of the palm. In this paper, a
weighted sum of the contact forces, finger position difference
(stability), off-set (centering), and finger spread is controlled
(see Fig. 3 and [29] for more detail). The transform T used
in this paper is

T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1/2 1/2 1

0 1/2 1/2 −1

0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎦
. (1)

The control forces f (in x-space) are computed using a
P-controller f = De where D contains controller gains and
e is an error vector. The joint torques (in q-space, used to
actuate the hand in simulation) can now be computed as

Fig. 2 Execution of a sample
task where corrective
movements are used to center
the object
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Fig. 3 Grasp control is performed using a transformation from joint angles q to linear combinations thereof x = T q. Using a nondiagonal matrix
T it is possible to control, for example, weighted grasp force, finger position difference (stability), off-set (centering), and finger spread. The distal
links have thin tactile sensors mounted on them

F = T T f = T T De. As it is desired to perform position
control for spread, stability, and centering and force control
for the total closure, the error e is computed using the desi-
red [des] values (in x-space) and the actual [act] sensor rea-
dings (of position and force) as

e = [
e1 e2 e3 e4

]T

e1 = [
1 0 0 0

]
ex

e2 = [
0 1 0 0

]
e f

e3 = [
0 0 1 0

]
ex (2)

e4 = [
0 0 0 1

]
ex

ef = fdes − fact = fdes − T f tactile sensors
act

ex = xdes − xact = xdes − T qact.

4 Grasp learning

The object is first recognized using appearance (textural pro-
perties). When recognizing a known object, the object model
can be quite detailed, but as a detailed object model is not
always available, we perform training both on the primitive
model and on the detailed object model (Sect. 1.1 and Fig. 4)
and compare the results. Recent progress presented in [3]
shows a promising method for retrieving shape primitives
using vision, although the method is restricted to objects with
uniform color.

While the grasp type is learnt from the demonstration
and mapped to a robot hand grasp, learning of the approach
vector is performed using a simple search technique where
many different approach vectors are tested on the object.
The approach vectors are generated by equidistant spacing
(in spherical coordinates with the origin in the object center
of mass and in Cartesian coordinates) or by using random
displacement vectors. As previously mentioned, the training
can be performed on either the primitive model or on the full
object model. In the experiments, we have evaluated both
methods.

Two approaches were used for learning. For Power Grasps,
the hand is moved along an approach vector until or just
before it contacts the object, and then the hand controller is
engaged. For Precision Grasps, the approach is the same,
but after contact with the object, the hand is retracted a dis-
tance d a certain number of times. After each retraction, the

Fig. 4 Top the real objects. Middle the detailed object models. Bottom
the simplified models, object primitives

controller is engaged with the goal of reaching a fingertip
(precision) grasp instead of a wrapping grasp.

For power grasps, the three parameters (θ, φ, ψ) des-
cribing the approach direction and hand rotation are varied.
The number of evaluated values for each variable is 9 for
θ , 17 for φ, 9 for ψ , and for precision grasps the hand is
retracted six times (d). For the precision grasps, the search
space was hence 8,262 grasps, which required about an hour
of training using kinematic simulation. For the power grasp
simulations, 1,377 approach vectors were evaluated. The 5-s
long grasping sequence is dynamically simulated in 120 s
(Intel P4, 2.5 GHz, Linux). The quality measures for each
grasp is stored in a grasp experience database.

4.1 Grasp quality measures

To evaluate grasps, the 6-D convex hull spanned by the forces
and torques resistible by the grasp is analyzed using GraspIt!.
The ε-L1 quality measure is the smallest maximum wrench
the grasp can resist and is used for power grasps. For preci-
sion grasps, a grasp quality measure based on the volume of
the convex hull was used, volume-L1. These grasp quality
measures require full knowledge of the world and can thus
only be used in simulation.
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4.2 Grasp retrieval

At run-time, the robot retrieves the approach vector for the
highest quality grasp from the grasp experience database. As
the highest quality grasp is not necessarily the most robust
with respect to position and model errors, the grasp should
be chosen taking also those parameters into account (see
Sect. 5.2). In a PbD scenario, the mapping from human to
robot grasp is many-to-one, but if the robot acts autono-
mously, i.e. explores the environment and performs grasp
on unknown objects, the grasp type is not defined and the
best grasp can be chosen from among all possible grasps.

5 Experimental evaluation

This section provides experiments that demonstrate (1) robot
grasping given the current state of the environment and the
grasp experience database, and (2) how errors in pose esti-

Fig. 5 Left the human moves the rice box. The system recognizes what
object has been moved and which grasp is used. Right the robot grasps
the same object using the mapped version of the recognized grasp

mation affect the grasp success. The objects were placed on a
table [Fig. 5(left)]. Figure 5(right) shows the results of object
recognition and pose estimation process. The human tea-
cher, wearing a data-glove with magnetic trackers, moves
an object. The move is recognized by the vision system and
so is the grasp the teacher used. This information is used to
generate a suitable robot grasp (grasp mapping) that controls
the movement of the robot hand in the simulator.

5.1 Dynamic simulation

Grasping the rice box with a fingertip grasp was dynami-
cally simulated using the controller from Sect. 3. Of the
1,377 approach vectors, 1,035 were automatically discar-
ded, because the hand interfered with the table upon which
the box is placed while approaching the object, or that the
object was obviously out of reach. The remaining 342 initial
robot hand positions were evaluated and resulted in 171 force
closure grasps, 170 failed grasp attempts, and one simulation
error. The top three hand initial positions and the resulting
grasps are shown in Fig. 6. Some sample data from the third
best simulation (Fig. 6c, f) is shown in Fig. 7. The desired
grasping force is set to 5 N. A low-pass filter is used for the
tactile sensor signal.

5.2 Introducing errors in the pose estimation

To evaluate the performance under imperfect pose estima-
tion, we have simulated errors in pose estimation by pro-
viding an object pose with an offset. In the first simulation
experiment, grasping the rice box with a fingertip grasp, the
object was translated a certain distance in a random direction.

Fig. 6 The top three approach
positions and the final grasps for
fingertip grasping of the rice
box. These results show that it is
important to consider the
dynamics when designing grasp
execution schemes and for
analyzing the grasp formation
process. In several simulations,
the fingers stop after contacting
the box (as they should), but
when the grasping force is
increased, the box slides on the
low friction proximal links and
also on the resting surface until
it comes in contact with the high
friction tactile sensors
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Fig. 7 Data logged from the
grasp simulation in Fig. 6c, f. In
the first 1.3 s, the fingers close
under force control. The force at
that time is used as the start
value for the force controller
that ramps the grasp force to
5 N. The joint angle values show
that the joint angles are getting
closer to equal with time
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Fig. 8 The effect of position
errors on the grasp success rate.
For these results, the training
and evaluation was performed
using kinematic simulation only.
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As a result, the robot interpreted the situation as if the object
was in another position than that for which the grasp was
planned. This was repeated 50 times for five different vector
lengths: 0, 1, 2, 3, and 4 cm. In total, there were 250 grasps
from 201 positions. Figures 8 and 9 show the grasp success
rates for various grasps and objects, under increasing error
in position estimation. A grasp is considered successful if it
results in force-closure.

For the second experiment, the scenario was grasping a
bottle using a wrap grasp. In the initial position, the bottle
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Fig. 9 The need for using dynamic simulation in grasp formation ana-
lysis is obvious. The grasp is the same as seen in Fig. 6c, f. (Because of
some problems with the simulator, a limited number of samples were
used in the evaluation of dynamic grasping. For the 0, 1, 2, 3, and 4 cm
random displacement, the number of trials were 50, 14, 18, 18, and 12,
respectively (instead of 50). Still, these samples were truly random and
we believe that the number of trials is high enough to draw conclusions)

was centered with respect to the palm and a fraction of a
millimeter away. It was then repositioned at positions in a
grid with 20 mm spacing and another grasp was performed.
For this scenario, the position of the bottle does not need to
be very accurate (see Fig. 10).

Using kinematic simulation, we have evaluated how an
error in rotation estimate affects the grasp formation. As
expected, for symmetric objects like the orange and the bot-
tle, this type of error has no effect. Table 1 shows the rotation
tolerance for different objects and grasp types. For grasping

Fig. 10 Grasp success as a function of initial bottle position. Grasp
success is here defined as reaching a force closure grasp. The (x, y) =
(0, 0) position is right in front of the palm with a fraction of a millimeter
of space between the palm and bottle. The inset shows the final grasp
from (x, y) = (40, 40)
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Table 1 Rotation error tolerances

Object Grasp type Rotation error tolerance (degrees)

Zip disc box Wrap 3

Rice box Wrap 17

Mug Wrap 12

Mug Precision disc 0

Mug Two finger thumb 6

the mug, the rotation estimation is absolutely crucial. Thus,
this type of grasp should be avoided for this object.

As expected, power grasps are more robust to position
errors than precision grasps. The precision grasps target
details of an object, e.g. the bottle cap or the ear of the mug.
Thus, the grasps are much more sensitive to position inac-
curacies. Dynamic simulation and the controller previously
outlined yields significantly better grasps than using purely
kinematic simulation (Fig. 9). This is a motivation for conti-
nuing the investigations on the dynamics of the grasp forma-
tion process.

The bottle and the mug have been trained using both primi-
tive and detailed models. Training using the primitive models
does not decrease the grasp success rate by much in most
cases. However, the primitive model of the mug is, unlike
the real mug, not hollow, which causes problems for some of
the precision grasps trained on the primitive.

5.3 Discussion

The success rate of the presented system depends on the per-
formance of four subparts: (1) object recognition, (2) grasp
recognition, (3) pose estimation of the grasped object, and
(4) grasp execution. As demonstrated in previous papers
[7,8], the object recognition rate for only five objects is
around 100%, and the grasp recognition ratio is about 96%
for ten grasp types. Therefore, the performance in a static
environment may be considered close to perfect with res-
pect to the first steps. As the object pose and possibly the
object model is not perfectly known, some errors were intro-
duced that indicate the needed precision in the pose esti-
mation under certain conditions. Initial results suggest that
for certain tasks, grasping is possible even when the object’s
position is not perfectly known.

If a high quality dynamic physical modeling is essential,
for example when grasping compliant objects or for advanced
contact models, other simulation tools than GraspIt! may be
more suitable (see, e.g. [11]).

6 Conclusions

A framework for generating robot grasps based on object
models, shape primitives, and/or human demonstration have

been presented and evaluated. The focus lies on the choice
of approach vector, which depends on the object’s pose and
grasp type. The approach vector is based on perceptional cues
and on experience that some approach vectors will provide
better tactile cues that result in stable grasps. Another issue
considered is obtaining stable grasps under imperfect vision,
something that has not been thoroughly investigated in the
literature.

Simulating results were necessary for generating insight
into the problem and for performing the statistical evalua-
tion for the grasp experience, since (1) the world must be
reset after each grasp attempt and (2) computing the grasp
quality measure requires perfect world knowledge. The pro-
posed strategies have been demonstrated in simulation using
tactile feedback and hybrid force/position control of a robot
hand. The functionality of the proposed framework for grasp
scheme design has been shown by successfully reaching
force closure grasps using a BarrettHand and dynamic simu-
lation.

Future work includes further grasp execution scheme
development and implementation. Furthermore, to ensure
truly secure grasping outside the simulator, the grasping
scheme must also comprise a grasp quality evaluation method
that does not use information available in simulation only.
Preferably, such a measure would also depend upon the task
at hand.

The grasp experience database contains not only a record
of success rates for different grasp controllers but also the
object–hand relations during an experiment. In this way, we
can specify under what conditions the learnt grasp strategy
can be reproduced in new trials. The results of the expe-
rimental evaluation suggest that the outlined approach and
tools can be of great use in robotic grasping, from learning
by demonstration to robust object manipulation.
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