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Abstract This paper describes a hands-off socially assistive
therapist robot designed to monitor, assist, encourage, and
socially interact with post-stroke users engaged in rehabili-
tation exercises. We investigate the role of the robot’s per-
sonality in the hands-off therapy process, focusing on the
relationship between the level of extroversion–introversion
of the robot and the user. We also demonstrate a behavior
adaptation system capable of adjusting its social interaction
parameters (e.g., interaction distances/proxemics, speed, and
vocal content) toward customized post-stroke rehabilitation
therapy based on the user’s personality traits and task per-
formance. Three validation experiment sets are described.
The first maps the user’s extroversion–introversion perso-
nality dimension to a spectrum of robot therapy styles that
range from challenging to nurturing. The second and the third
experiments adjust the personality matching dynamically to
adapt the robot’s therapy styles based on user personality
and performance. The reported results provide first evidence
for user preference for personality matching in the assistive
domain and demonstrate how the socially assistive robot’s
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Robotics Research Lab/Interaction Lab,
Department of Computer Science,
University of Southern California, Los Angeles, USA
e-mail: adriana.tapus@ieee.org
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autonomous behavior adaptation to the user’s personality can
result in improved human task performance.
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1 Introduction

The recent trend toward developing a new generation of
robots capable of operating in human-centered environments,
interacting with people, and participating and helping us in
our daily lives, has introduced the need for robotic systems
capable of learning to use their embodiment to communi-
cate and to react to their users in a social and engaging way.
Social robots that interact with humans have thus become an
important focus of robotics research.

Nevertheless, Human–Robot Interaction (HRI) for assis-
tive applications is still in its infancy. Socially assistive robo-
tics [15], which focuses on aiding through social rather than
physical interaction between the robot and the human user,
has the potential to enhance quality of life for large user
populations, including the elderly [55], people with physical
impairments and those involved in rehabilitation therapy
(e.g., post-stroke patients) [10], and people with cognitive
disabilities and social and developmental disorders (e.g., chil-
dren with autism, children with attention deficit/hyperactivity
disorder (AD/HD)) [43,45,46]. Hence, one of the main goals
of socially assistive robotics is to create stimulating and enga-
ging interactions in which a user actively participates for an
extended period of time in order to achieve the goals of the
task (therapy, rehabilitation, training, etc.).

In this work, the target user population is post-stroke
patients. Stroke is the leading cause of serious, long-term
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disability among adults, with over 750,000 people suffering
a new stroke each year in the US alone [38]. Rehabilitation
helps stroke survivors re-learn skills that are lost when part
of the brain is damaged. Paralysis affecting the face, an arm,
a leg, or an entire side of the body is one of the most com-
mon disabilities resulting from stroke. Stroke patients with
one-sided paralysis have difficulty with everyday activities
such as walking and grasping objects. This loss of function,
termed “ learned disuse”, can be diminished with intensive
rehabilitation therapy during the critical months of the post-
stroke period. One of the most important elements of any
rehabilitation program is the practice of carefully directed,
well-focused and repetitive exercises, which can be passive or
active. In passive exercises (also known as hands-on rehabili-
tation), the patient is helped by a human (or robotic) therapist
to appropriately exercise the affected limb(s). In contrast, in
active exercises, the patient performs the exercises with no
physical assistance.

The majority of existing work in rehabilitation robotics
focuses on hands-on robotic systems for passive exercise,
attempting to recover upper-limb function primarily through
robotic manipulation of the affected-limb. Burgar et al. [7]
developed a robot-assisted arm therapy workstation, in which
patients can exercise their upper limbs and evaluate their
performance. A similar device, which also depends on hands-
on robotic technology, was developed by Krebs et al. [23].
Other related systems have been investigated in [5,42].

Recent results from physical therapy research show that
hands-on therapy may not be the most effective means of
recovery from stroke, and is certainly not the only neces-
sary type of needed treatment [10]. Consequently, our work
focuses on hands-off therapist robots that assist, encourage,
and socially interact with patients during their active exer-
cises. Previous work by Eriksson et al. [10] demonstrated that
the physical embodiment, including shared physical context
and physical movement of the robot, encouragement, and
continuous monitoring play key roles in stroke patient com-
pliance with rehabilitation exercises. We also studied the role
of physically embodied interaction in such assistive contexts
[15,17,52]; those results form the foundation for the work
described here.

Achieving a psychological “ common ground” between
the human user and the robot is necessary for a natural, nuan-
ced, and engaging interaction. Therefore, in this work we
investigated the role of the robot’s personality in the assistive
therapy process. We focus on the relationship between the
level of extroversion–introversion (as defined in the Eysenck
Model of Personality [13]) of the robot and the user, addres-
sing the following research questions:

• Is there a relationship between the extroversion–
introversion personality spectrum (assessed with the

Eysenck model [11]) and the challenging vs. nurturing
style of patient encouragement?

• How should the behavior and encouragement of the the-
rapist robot adapt as a function of the user’s personality
and task performance?

Examining and answering these questions will begin to
address the role of assistive robot personality in enhancing
patient task performance in rehabilitation exercises as well
as other task domains.

Creating robotic systems capable of adapting their beha-
vior to user personality, user preferences, and user profile in
order to provide an engaging and motivating customized pro-
tocol is a very difficult task, especially when working with
vulnerable user populations. Various learning approaches for
human–robot interaction have been proposed in the literature
[4,39,48], but none include the user’s profile, preferences,
and/or personality. To the best of our knowledge, no work has
yet tackled the issue of robot personality and behavior adapta-
tion as a function of user personality in the assistive human–
robot interaction context. In the work described here, we
address those issues and propose a methodology for evalua-
ting the user–robot personality match and a reinforcement-
learning-based approach to robot behavior adaptation. In the
learning approach, the robot incrementally adapts its beha-
vior and thus its expressed personality as a function of the
user’s extroversion–introversion level and the amount of per-
formed exercises, attempting to maximize that amount. The
result is a novel stroke rehabilitation tool that provides indi-
vidualized and appropriately challenging/nurturing therapy
style that measurably improves user task performance.

The rest of the paper is structured as follows. In Sect. 2, our
research is placed in the context of the relevant work in assis-
tive robotics. Section 3 presents the Eysenck Model of Per-
sonality. Section 4 overviews our human–robot interaction
design. Section 5 describes the proposed behavior adaptation
system. Section 6 provides a description of the experimen-
tal test-bed, the experimental setup, and the experimental
results. Section 7 discusses future work and concludes the
paper.

2 Related work and open challenges

In this section we briefly review related work in assistive
robotics to which our research most directly contributes.

An active component of assistive robotics research is focu-
sed on designing robotic systems for eventual in-home use,
mainly involving contact-based interaction. A common
theme of the work is a high degree of task specialization
toward capabilities that would enable elderly and/or disabled
people to accomplish tasks they could not do otherwise and
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to be commanded in some form by a user with one or more
communication disabilities. Movement aides that have been
developed include the GuideCane [1], a robotic guide cane
for the blind, the PAMM intelligent walker [49], Wheelesey
[59], and the NavChair [24], which involved speech control
of the wheelchair [47]. Some work has addressed the safety
aspects of such systems [47,59] and suggested common
metrics for their testing and evaluation.

Another target domain of assistive robotics consists of
hospitals, nursing homes, and managed care homes. The
research in that domain has ranged from robotic companions
[55], to story telling robots [41], to robots that serve as guides
and schedule reminders [44], to aides in rehabilitation the-
rapy [10].

Animal-assisted activities (AAA) and animal-assisted the-
rapies (AAT) have served as inspiration for past work in
socially assistive robotics. First efforts focused on robotic
pets, companions that attempt to reduce stress and depres-
sion [55]. Companion robots are designed to fulfill some
of the roles of animal pets, but without the associated pet
care. Researchers have used robotic animal toys, such as
a seal (i.e., PARO [55,57]), a cat [55], a dog (i.e., SONY
AIBO), and a teddy bear (i.e., the Huggable [50]) to attempt
to improve psychological health in elderly patients. These
studies have shown that elderly users smiled and laughed
more, and became less hostile to their caretakers and more
socially communicative as a result of interacting with the
robots. However, the impact of the novelty factor of such
systems has not yet been studied [21].

Flo, and later Pearl, were mobile nurse’s assistant robots
for use in tele-presence, data collection in a hospital or nur-
sing home, as a cognitive prosthetic for patients, and as a
vehicle for social interaction [44]. The robots were control-
led through a remote tele-operation GUI, speech recognition,
or a touch screen. The possible demeanor for such robots was
studied [18]; it was found that while a playful robot genera-
ted a positive response from patients, a serious robot received
more cooperation. Pearl was a more complex system [25] that
allowed for the study of the intricacies of temporal planning
in an assistive setting, determining an effective plan based on
user inputs by creating a personalized cognitive orthotic. The
resulting systems combined the guide functions of previous
systems to create a nurses’ assistant and cognitive orthotic for
patients, and was evaluated in a nursing home setting [32].

We propose a fundamentally different approach to robot-
assisted convalescence and rehabilitation, one that involves
no physical contact between the patient and the robot. Our
approach fits within a new research area termed Socially
Assistive Robotics [15], which has a broad focus on gai-
ning new insights about human–robot social interactions in
the assistive context and using those to develop and deploy
robotic systems that assist people. Making those systems safe
and affordable predominantly implies hands-off, non-contact

interaction between the robot and its user(s). The Nursebot
project [18,25,32,44] is one of the most mature efforts in
this new field, involving a mobile robot that roams the hos-
pital, makes deliveries, and verbally interacts with patients.
Another active area of socially assistive robotics is studying
robots as tools toward automated diagnosis and socialization
therapy for children with autism, where robots have been
shown to have great potential [27–30,45].

Our research program addresses a new niche of assis-
tive robotics, one that involves an autonomous robot provi-
ding contact-free rehabilitation monitoring, assistance, and
encouragement to stroke patients, while also being capable
of providing detailed reports of patient progress to physicians
and therapists. The robot’s physical embodiment, its physical
presence and appearance, its shared context with the user, its
personality, and its empathetic traits are all fundamental in
time-extended, sustained, personalized exercise supervision,
motivation, and encouragement in rehabilitation therapy. In
the work described here, we focus on user-robot personality
matching and robot behavior adaptation to user’s personality
and preferences, aiming toward a customized therapy proto-
col for stroke and other rehabilitation and exercise applica-
tion domains. We start by describing the model of personality
we use.

3 Eysenck model of personality

Personality is a key determinant in human social interactions.
A direct relationship between personality and behavior has
long been recognized [8,10,37]. In [33], Morris indicated
that, to a personality psychologist, the behaviors of greatest
importance are those that are:

1. relatively pervasive in the person’s life-style in that they
show some consistency across situations;

2. relatively stable in the person’s life-style across time;
3. indicative of the uniqueness of the person.

Consequently, personality is also a key factor in human–
robot interactions (HRI) [35,36]. It has been argued that robot
personality should match that of the human user [36]. While
there is no generic definition of personality, our working defi-
nition, based on the literature [9,33,58], defines personality
as the pattern of collective character, behavioral, tempera-
mental, emotional and mental traits of an individual that have
consistency over time and situations.

To date, little research into human–robot personality mat-
ching has been performed. In [58], Woods et al. explored the
topic, showing that subjects perceived themselves as having
stronger personality traits than robots. A similar study [18]
found that people enjoyed interacting with humorous robots
but complied with the more serious ones.
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Quantification of personality is controversial since there
is no universally accepted number of personality dimensions.
The Eysenck model of personality (3 model factor — PEN)
[12], the Five-factor model of personality (Big5) [26]
(extroversion–introversion, neuroticism, agreeableness,
conscientiousness, and openness) and the Myers-Briggs
model [34] (extroversion–introversion, sensation–intuition,
thinking–feeling, and judging–perceiving) are the dominant
models in the literature. In this work, we use the biologi-
cally based Eysenck [13] Model of Personality (PEN) that
advocates three major dimensions or super-factors in the des-
cription of personality: (P) Psychoticism, (E) Extroversion,
and (N) Neuroticism. Psychoticism is associated with rebel-
liousness, aggressiveness, and impulsiveness, and is rela-
ted to testosterone levels. The extroversion vs. introversion
dimension is related to the social interest and positive affect.
Eysenck showed that extroversion–introversion is a matter
of the balance of neural “inhibition” and “excitation”, since
extroversion is based on cortical arousal, measurable through
skin conductance. Neuroticism or emotional stability vs.
instability corresponds to the stability of behavior over time
and the person’s adaptation to the environment. Finally,
neuroticism is based on activation thresholds in the sympa-
thetic nervous system, measurable through heart rate,
blood pressure, hand temperature, perspiration, and muscular
tension.

We chose the PEN model of personality because of its bio-
logically inspired nature and its explicit treatment of introver-
sion and extroversion, factors that are specifically relevant to
the assistive context. Previous work with stroke patients [10]
demonstrated significant personality differences in patient
response to the robot therapist. This work aims to address
those differences directly, by focusing on the extroversion–
introversion personality dimension. Another inspiration for
this work is the observed influence of the pre-stroke per-
sonality on post-stroke recovery. It has been noted that sub-
jects classified as extroverted before the stroke mobilize their
strength easier to recover than do introverted subjects [16].
Since the extroversion dimension (see Fig. 1) comprises many
different factors, habits, and behaviors, in this study we give
higher importance to extroversion–introversion traits, to map
them to the spectrum of therapy styles that range from nur-
turing to challenging.

4 Interaction design

To date, none of the existing robotic systems for socially
assistive applications integrate personality in their behavioral
model. Inspired by Bandura’s model of reciprocal influences
on behavior [3], we believe that it is helpful to incorpo-
rate personality in order to facilitate human–robot interac-
tion (HRI) and robot behavior selection. Figure 2 depicts our
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Fig. 1 The Eysenck [13] introvert and extrovert adjectives of human
personality

general robot behavior control architecture, which integrates
the Eysenck model.

The extroversion–introversion dimension is based on the
observed inter-correlations between traits such as sociabi-
lity, activity, impulsiveness, liveliness and excitability, all of
which strongly influence behavior. In our interaction design,
we chose to use two of those traits: (1) sociability and (2)
activity. These traits can be most readily emulated in robot
behavior. We expressed those traits through three main para-
meters that define the therapist robot behavior: (1) interaction
distance/proxemics, (2) speed and amount of movement, and
(3) verbal and para-verbal communication. These are descri-
bed in more detail below.

4.1 Sociability

Sociability is the trait that most clearly expresses a person’s
level of extroversion–introversion. A large body of research
in social psychology has shown that individual behavioral
differences are most apparent in social situations [9,11,33].
In [20], Harkins et al. empirically illustrated that both the pre-
sence of others and their social activities are typically more
enjoyed by extroverts than by introverts. In [10], Eysenck
described the extrovert as sociable, friendly, talkative and
outgoing. In contrast, the introvert is quiet, introspective, and
prefers small groups of intimate friends. We posit that these
are directly related to verbal and non-verbal communication
patterns. Hence, we identified proxemics and vocal features
(i.e., content, volume, and speech rate) as relevant aspects
to be embodied in the robot’s behavior. Each is described
below.

4.1.1 Proxemics

The interpersonal space in human interactions has been
widely studied in social psychology, since the seminal paper
by Hall [19] who coined the term proxemics. Recently,
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Fig. 2 HRI information
processing using the personality
model of the user. The sensory
input of the robotic system
consisted of (1) a laser range
finder used for navigation and
people detection; (2) a
microphone for speech detection
and recognition; (3) a motion
capture device for detecting the
human user movement. The
robot’s behavior is based on its
current sensory input, human
user personality, and its previous
interaction with the environment
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roboticists have begun to use proxemics in social spatial
interactions [8,17,56]. Hall identified four general interac-
tion spaces:

– Intimate: Up to 0.25 m from the body; usually involves
contact (e.g., embracing, comforting), can be uncomfor-
table and intrusive;

– Personal: Between 0.3 and 1 m; typically used for family
and friend interactions;

– Social: About 1–3 m; used in business meetings and
public spaces;

– Public: Beyond 3 m; e.g., the distance between an
audience and speaker.

The robot must ensure its own appropriate use of and
respect for interaction space so that a human user can feel
safe, comfortable, and in concordance with his/her persona-
lity preferences. In this work, we focus only on personal and
social interaction spaces. Neither intimate space nor public
space is appropriate for our application; the former implies
contact while we are using a non-contact (hands-off) HRI
approach and the latter involves no one-to-one interaction.
Hall [19] found a strong link between human sense of space
and human behavior and personality type. We posit that extro-
verted individuals, who like social interactions, may prefer to
have the robot physically closer than introverted individuals,
who may perceive the robot as invading their space. There-
fore, proxemics can be encoded as function of the individual
extroversion–introversion level.

4.1.2 Verbal and para-verbal communication

Both vocal content and paralinguistic cues, such as volume
and speech rate, play important roles in human interactions,
and express personality and emotion [2,40,54]. The
similarity-attraction principle, which assumes that indivi-

duals are more attracted to others who manifest the same
personality, has been studied in human–machine interaction
(HCI) (e.g., [37]). Also, studies [6] have found that prosodic
characteristics are linked with features of personality, e.g.,
excitement or arousal (extroversion–introversion) are stron-
gly correlated to prosodic features such as pitch level [53],
pitch range, and tempo [2]. The interaction scripts that we
designed in this work display extroverted and introverted per-
sonality type through the choice of words and paralinguistic
cues. More details about the different interaction scripts are
given in Experimental Validation (Sect. 6).

4.2 Activity

In addition to sociability, we also considered the activity trait.
Eysenck [12,13] linked the human extroversion–introversion
personality trait with the activity level and showed that people
with high activity scores are generally energetic and favor
physical activity, while individuals with low scores tend to
be physically inactive. He suggested that high activity is an
extrovert characteristic, while low activity tends to characte-
rize introversion. In our system, the activity of the robot is
correlated/matched to the user’s movement and sociability,
and is expressed through the robot’s speed and amount of
movement.

5 Behavior adaptation system

The main goal of our robot behavior adaptation system is to
enable us to dynamically optimize the three main parameters
(interaction distance/proxemics, speed, and vocal content)
that define the behavior (and thus personality) of the thera-
pist robot, so as to adapt it to the user’s personality and thus
improve the user’s task performance. Task performance is
measured as the number of exercises performed in a given
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period of time; the learning system changes the robot’s
personality, expressed through the robot’s behavior, in an
attempt to maximize the task performance metric.

We formulated the problem as policy gradient reinforce-
ment learning (PGRL) and developed a learning algorithm
that consists of the following steps: (a) parametrization of
the behavior; (b) approximation of the gradient of the reward
function in the parameter space; and (c) movement towards
a local optimum. More details about the PGRL algorithm
can be found in [22] and [51]. Other reinforcement learning
techniques, such as Q-Learning, learn an action-value func-
tion. However, Q-learning, designed for Markov decision
processes, cannot directly be applied to our problem since
there is no obvious notion of state.

Figure 3 shows the pseudo-code of our PGRL algorithm.
The n-dimensional policy gradient algorithm implemented
for this work starts from an initial policy π = {θ1, θ2, . . . , θn}
(where n = 3 in our case, corresponding to the three main
interaction parameters: interaction distance/proxemics, speed
and amount of movement, and verbal and para-verbal com-
munication). For each parameter θi we also define a per-
turbation step εi to be used in the adaptation process. The
perturbation step defines the amount by which the parameter
may vary to provide a gradual migration toward the locally
optimal policy. The use of PGRL requires the creation of a
reward function to evaluate the behavior of the robot as para-
meters change. The robot is started with the initial policy π ,
and its learning process can be summarized as the following
steps:

1. The robot acts given the current set of parameters (πrun).
2. The reward function is evaluated to measure the perfor-

mance of the robot.
3. The loop returns to step 1, possibly with an updated

policy due to the adaptation process, until the time limit
for the exercise is reached.

The reward function is monitored to prevent it from falling
under a given threshold, which would indicate that the robot’s
current behavior does not provide the patient with an ideal
recovery scenario. This triggers the activation of the adaptive
phase of the PGRL algorithm, to adjust the behavior of the
robot to the continually changing factors that determine the
efficiency of the recovery process. The adaptation algorithm
has the following main steps:

1. Generate k random policies in the vicinity of the current
parameter set πrun (lines 15–20). Each of the perturbed
arrays in the set P = {π1, π2, . . . , πk} is calculated by
randomly adding either +εi , 0, or −εi to each of the
parameters in the current policy πrun .

2. Record the performance of the robot (the reward func-
tion) for each perturbed array.

Fig. 3 Pseudo-code for the Policy Gradient Reinforcement Learning
(PGRL) Algorithm

3. When all the k perturbed arrays have been evaluated pro-
ceed to compute the new “stable” parameter set that will
presumably increase the performance of the robot (lines
22–40).

Computing the direction in which to change each parame-
ter to maximize the user’s task performance is done over the
recorded reward functions for the k perturbed arrays. This
has itself three steps, as follows:

1. For each parameter pi compute the average reward over
the k perturbed runs for each of the types of perturbations
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(i.e., +ε, 0, −ε) of the parameter. The average rewards
are recorded in the array avg, as described between lines
25 and 27 in the algorithm presented in Figure 3. These
three averages give an estimate of the benefit of altering
parameter i by +εi , 0, or −εi .

2. The direction in which each parameter moves is compu-
ted between line 28 and line 32 in the algorithm. If the
best performance was obtained with the parameter being
unchanged then the parameter should remained unchan-
ged (thus ai = 0). Otherwise, compute which direction
(+ε or −ε) produced better results (line 31).

3. Use the contents of a to compute the new set of parame-
ters for use in the steady (non-adaptive) state.

The selection of the reward function for evaluating the
behavior of the robot was one of the major challenges in
implementing the adaptive algorithm. The main issues with
computing the reward function and applying the adaptive
algorithm in our approach were the following: (1) the events
that mark the interaction between the robot and the parti-
cipant are discrete, so computing the reward function can
only occur at discrete points in time; (2) the evaluation of the
reward function must take into consideration both: (i) the fact
that as the user performs the exercises s/he will become fati-
gued which results in slowing down of performance regard-
less of the personality of the robot and the other parameters
that we considered, and (ii) the fact that the robot adapts and
acts differently can distract the patient, slowing down his/her
response. With these factors in mind, we designed the reward
function as follows: (1) we counted the number of exercises
performed by the user during a given period of time, and
(2) we adjusted the threshold value to reduce the effects of
fatigue and distraction caused by the adaptation procedure.

Other research that uses the same mechanism for adap-
tation has been been conducted either in more consistent
environments than ours, or with the ability to continuously
evaluate the reward function, which makes adaptation take
place in real-time. For applications like the one described
in Kohl and Stone [22], where the authors try to maximize
the speed of a robot, the reward function is clearly determi-
ned; it is the speed of the robot. In our application, the effi-
ciency of the robot in encouraging and directing the patient
through the recovery process, a highly subjective measure,
must somehow be assessed. Furthermore, in [22], the same
robot was used in the same environment for each variation
of the parameters. This allowed for an accurate account of
improvements for each variations of the parameters by redu-
cing the number of uncontrolled factors that can affect the
computation of the reward function. In our application, the
reward function depends not only on the robot’s parameters,
but also on the user, who can be unpredictable and incon-
sistent, which necessarily makes the evaluation of the reward
function more difficult, and possibly inaccurate.

6 Experimental validation

In this section we present a series of hypothesis about the
matching between the personality of the user and that of
the robot it interacts with and we validate them using a set
of experiments. Our experiments try to address two issues.
First, we investigate the user–robot personality matching.
Second, using the results of the first experiment, we refine the
matching process between the user and the robot using our
adaptation algorithm to increase the user’s efficiency in per-
forming the task at hand. We analyze how varying minor cha-
racteristics of the robot’s personality impacts the efficiency
of the user and whether the robot is able to converge to a
set of characteristics that are in consensus with the user’s
preferences.

To date, our system has been validated only with heal-
thy participants. In order to be able to obtain more relevant
results, the healthy volunteers used their non-dominant limb
(their weaker side) while doing the specified tasks. They were
also encouraged to establish a social relationship with the
robot based on its personality and act as they would normally
do when interacting with a person with similar personality
characteristics.

We begin this section by introducing the robot system that
was used in our experiments and continue with the overview
of the experiments we conducted.

6.1 Robot test-bed

Our experimental test-bed, shown in Fig. 4, consisted of
an ActiveMedia Pioneer 2-DX mobile robot base, equipped
with a SICK LMS200 laser rangefinder used to track and
identify people in the environment by detecting reflective
fiducials worn by users. On the stroke-affected limb, the users
wore a light-weight motion-capture system based on inertial
measurement units (IMU) that allowed the robot to detect
and track the user’s limb movement [31].

Physical form and appearance of the robot were not a
focus of the presented research. Eriksson et al. [10] success-
fully used the same platform to assess a socially assistive
robot that interacted with post-stroke patients. Our future
work will make use of a new biomimetic humanoid torso
mounted on the mobile platform illustrated above, in order
to test the effectiveness of an anthropomorphic vs. a non-
anthropomorphic robot in a rehabilitation scenario.

6.2 User–robot personality matching

6.2.1 Hypotheses

Based on the principle of similarity attraction [37], the fol-
lowing hypotheses were formulated in order to test the user–
robot personality matching.
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Fig. 4 Robot test-bed; an ActiveMedia Pioneer 2-DX mobile robot
equipped with a SICK laser range scanner, a camera, and speakers

Hypothesis 1: A robot that challenges the user during
rehabilitation therapy rather than praising her/him will be
preferred by users with extroverted personalities and will be
less appealing to users with introverted personalities.

Hypothesis 2: A robot that focuses on nurturing praise
rather than on challenge-based motivation during the trai-
ning program will be preferred by users with introverted per-
sonalities and will be less appealing to users with extroverted
personalities.

6.2.2 Experimental design

The robot could manifest (non)social and (low)high activity
traits through its behavior to express the extroversion (chal-
lenging) or introversion (nurturing) therapy styles. The vocal
content and para-verbal cues used in this experiment are des-
cribed in Table 1.

Before participating in the experiment, each subject was
asked to complete two questionnaires: one for determining
personal details such as gender, age, occupation, and educa-
tional background, and another for establishing the subject’s
personality traits based on the Eysenck Personality Inven-
tory (EPI) [14]. The four experimental tasks were intended

Table 1 Choice of vocal content and para-verbal cues for testing the
user-robot personality matching

Personality trait Vocal content and para-verbal cues

Introversion • nurturing, script containing gentle and
supportive language (e.g., “I know it’s hard, but
remember it’s for your own good.”, “Very nice,
keep up the good work.”)

• low pitch and volume

Extroversion • challenging language (e.g., “You can do it!”,
“Concentrate on your exercise!”)

• high pitch and volume

as functional exercises similar to those used during standard
stroke rehabilitation:

• Drawing up and down, or left and right on an easel;
• Lifting and moving books from a desktop to a raised shelf;
• Moving pencils from one bin to another;
• Turning pages of a newspaper.

The participants were asked to perform the four tasks in
a sequence as part of a predefined scenario, but they could
stop the experiments at any time by saying “stop”. Each task
lasted 4 minutes, after which the robot verbally advised the
user to change the task. At the end of each experiment, the
experimenter presented a short debriefing.

Vocal data were collected from the user using a micro-
phone and interpreted using automatic voice analysis soft-
ware. The robot was capable of understanding the following
four utterances: “yes”, “agree”, “no”, and “stop”. The parti-
cipant wore a motion sensor on the (non-dominant/weaker)
upper arm to monitor movement. A reflective laser fiducial
was strapped around one of their calves to allow the robot to
identify him/her, as shown in Fig. 5.

Each participant was exposed to two different assistive
personalities of the robot: one that matched his/her persona-
lity according to the Eysenck Personality Inventory (EPI) and
one that was randomly chosen from the remaining options.
The system evaluation was performed based on user intros-
pection (questionnaires). After each experiment, the parti-
cipant completed two questionnaires designed to evaluate
impression of the robot’s personality (e.g., “Did you find the
robot’s character unsociable?”) and about the interaction with
the robot (e.g., “The robot’s personality is a lot like mine.”).
All questions were presented on a 7-point Likert scale ran-
ging from “strongly agree” to “strongly disagree”.

6.2.3 Experimental results

The subject pool for this experiment consisted of 19 partici-
pants (13 male, 6 female; 7 introverted and 12 extroverted).
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Fig. 5 The first experimental setup: the participant is performing Task
4 (turning pages of a newspaper) with the robot at a social distance. The
laser fiducial is on the participant’s right leg, the motion sensor on the
right arm, and a microphone is worn on standard headphones

A small portion (16%) was under 20 years old, but none
younger than 18. Approximately 22% were 21–25 years old
and 63% were 26–30. Most of the participants (except three)
were students; 79% were involved with technology-related
occupations.

To test the match between the user’s and robot’s perso-
nality, we asked the participants to rate whether they felt
that the “robot’s personality was a lot like yours”, on a Likert
scale from 1 (strongly disagree) to 7 (strongly agree). Table 2
shows averaged results.

While the overall mean of the responses was very close
to the midpoint, “neither agree, nor disagree”, for both the
interaction with the introverted and the extroverted robot, the

Table 2 Average of results obtained for testing the matching between
the user’s and robot’s personality (disagreement = 1, agreement = 7)

Extroverted Introverted Overall
users mean users mean mean

Extroverted robot 4.91 3.57 3.68

Introverted robot 3.16 4.57 4.42

participants tended to match their personality to the robot’s
as described below. Extroverted users rated the extroverted
robot as significantly closer to their personality than the intro-
verted robot (extroverted robot M = 4.91, introverted robot
M = 3.16). Introverted users thought that the introverted
robot matched their personality better (M = 4.57) than the
extroverted one (M = 3.57). To validate our hypotheses and
to make sure that the variation in the means between extro-
verted and introverted users for interaction with each type
of robot personality is significant and that it is due to the
variation between the treatment levels (the user’s persona-
lity) and not due to random error, we performed an analysis
of variance (ANOVA).

The first set of data consisted of the answers provided
by all participants during their interaction with the extrover-
ted robot. The results obtained in this case for a significance
level α = 0.05 were: Mextro-user = 4.91, Mintro-user = 3.57,
F0.05[1, 17] = 10.7680, p = 0.0044. Thus, our hypothe-
sis was validated by the results in this case. The probabi-
lity (p = 0.0044) of the null hypothesis, which affirms that
the variation is only due to random error, is extremely low.
The results obtained from data collected during the interac-
tion with the introverted robot validated our hypothesis as
well: Mintro−user = 4.57, Mextro-user = 3.16, F0.05[1, 17] =
15.810, p = 0.0010. In this case the validity of the null
hypothesis is even lower (p = 0.001).

By design, the extroverted robot had a challenge-based
style of user encouragement, while the introverted robot used
a nurturing therapy style. We also analyzed the correlation
between the extroversion–introversion personality of the
robot and the user’s perception of challenge-based vs. nur-
turing style of encouragement that it used. The users were
asked to rate the robot encouragement style on a Likert scale
from 1 (Nurturing) to 7 (Challenging). On average, the par-
ticipants classified the introverted robot as more nurturing
(M = 3.21) and the extroverted robot as more challenging
(M = 5.10).

None of the 38 trials was terminated by the experimen-
ter. The end of a trial was either a sequence of “stop” utte-
rances said by the user or the end of the four exercises.
Because of the high sensitivity of the speech recognition
system, participant breathing and ambient noise were on
occasion incorrectly detected as a “stop” or “no”, ending the
interaction prematurely. Figure 6 shows the average interac-
tion time (in minutes) spent by the extroverted/introverted
users with extroverted/introverted robots, respectively. To
validate our hypothesis that the interaction time with each
type of robot personality was significant we performed an
analysis of the variance (ANOVA). The results strongly sup-
ported our hypothesis, as follows. For the interaction with the
introverted robot the means and probability of the null hypo-
thesis being true were: Mintro-user = 7.41, Mextro-user = 5.21,
F0.05[1, 17] = 10.4337, p = 0.0049. For the interaction
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Fig. 6 The average interaction time (minutes) spent by introverted/
extroverted users with introverted/extroverted robots, respectively

with the extroverted robot the results were: Mintro-user = 6.1,
Mextro-user = 8.11, F0.05[1, 17] = 9.8092, p = 0.0061.

Another interesting finding resulting from the participant
debriefings was that a large percentage of participants (77%)
would have preferred to speak more with the robot and to
have a more complex dialog with it. Our future work will
enrich the verbal communication between the participants
and the robot.

In summary, the experimental studies validated our two
hypotheses. The participants with extroverted personalities
had a preference for a robot that challenged them during
exercises over the one that focused the interaction on praise.
Analogously, users with introverted personalities preferred
the robot that focuses on nurturing praise rather than on
challenge-based motivation during the training program.
Thus, the results show user preference for human–robot per-
sonality matching in the socially assistive context. Further
experiments with larger and more representative participant
pools (i.e., stroke patients) are being addressed in our conti-
nuing work.

6.3 Robot behavior adaptation

Two experiments were designed to test the adaptability
of the robot’s behavior to the participant’s personality and

preferences. In each experiment, the human participant stood
and faced the robot. The experimental task was a common
object transfer task used in post-stroke rehabilitation and
consisted of moving pencils from one bin on the left side
of the participant to another bin on his/her right side. The bin
on the right was on a scale in order to measure the user’s task
performance. The system monitored the number of exercises
performed by the user.

The participants were asked to perform the task for 15
min, but they could stop the experiment at any time. At the
end of each experiment, the experimenter presented a short
debriefing. Before starting the experiments, the participants
were asked to complete the same two questionnaires as in
the previous experiment: (1) a general introductory question-
naire in which personal details such as gender, age, occupa-
tion, and educational background were determined and (2) a
personality questionnaire based on the Eysenck Personality
Inventory (EPI) [14] for establishing the user’s personality
traits.

The robot used the algorithm described in Sect. 5 to adapt
its behavior to match each participant’s preferences in terms
of therapy style, interaction distance, and movement speed.
The learning algorithm was initialized with parameter values
that were in the vicinity of what was thought to be acceptable
for both extroverted and introverted individuals, based on the
user-robot personality matching study described above. The
values are shown in Table 3.

The PGRL algorithm used in our experiments evaluated
the performance of each policy over a period of 60 s. The
reward function, which counted the number of exercises per-
formed by the user in the previous 15 s was computed every
second and the results over the 60 s “steady” period were
averaged to provide the final evaluation for each policy.

To adjust for the fatigue incurred by the participant, the
threshold for the reward function that triggered the adapta-
tion phase of the algorithm was set to 7 exercises at each
evaluation for the first 10 min of the exercise and was lowe-
red to 6 exercises thereafter. The threshold and the time
ranges are all customizable parameters in our algorithm.
The values for these parameters were chosen based on empi-
rical data collected during trial runs before the actual
experiments.

Table 3 Initial parameters for
the behavior adaptation
algorithm

Robot behavior parameters Initial values Step size ε

Therapy style and robot’s personality as expressed Id = 1 1
through vocal content and para-verbal cues

Interaction distance/proxemics Extroverted 0.7 m 0.5 m

Introverted 1.2 m 0.5 m

Speed Extroverted 0.1 m/s 0.1 m/s

Introverted 0.1 m/s 0.05 m/s
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Table 4 The choice of therapy
styles as a function of the
user-personality

Parameter Extroverted

Id = 1 Id = 2 Id = 3 Id = 4

Therapy style Coach-like Very Challenging Stimulating Encouragement-based

Parameter Introverted

Therapy style Id = 1 Id = 2 Id = 3 Id = 4

Supportive Educative Comforting Nurturing

In the post-experiment survey, the participants were asked
to provide their preferences related to the therapy styles of the
robot, including the robot’s vocal cues, interaction distances,
and speed, as described below.

6.3.1 Robot behavior adaptation to user personality-based
therapy styles

Experimental design The goal of this experiment was to test
the adaptability of the robot behavior to the user personality-
based therapy style preference. Four different scenarios were
designed for both extroverted and introverted personality
types: the therapy styles ranged from coach-like therapy to
encouragement-based therapy for extroverted personality
types, and from supportive therapy to nurturing therapy for
introverted personality types (see Table 4). The words and
phrases for each of these scenarios were selected in concor-
dance with encouragement language used by professional
rehabilitation therapists. The coach-like therapy script was
composed of strong and aggressive language (e.g., “Move!
Move!”, “You can do more than that!”). Higher volume and
faster speech rate were used in the pre-recorded transcript
voice, based on the evidence that those cues are associated
with high extroversion [37]. The aggressiveness of the terms
used, the volume, and the speech rate diminished along with
the robot’s movement toward the nurturing therapy style of
the interaction spectrum. The nurturing therapy script contai-
ned only empathetic, gentle, and comforting language (e.g.,
“I’m glad you are working so well.”, “I’m here for you.”,
“Please continue just like that”, “I hope it’s not too hard”).
The voice used had lower volume and pitch.

A set of 3 interaction distances and speeds were chosen for
each introverted and extroverted personality type, as shown
in Table 5.

Experimental results The subject pool consisted of 12 par-
ticipants (7 male and 5 female). The participants ranged
in age between 19 and 35, 27% were coming from a non-
technological field, while 73% worked in a technology-
related area.

Table 5 The choice of interaction distances/proxemics and robot’s
speed parameters as a function of the user-personality

Parameter Extroverted Introverted

Interaction distance/ Id = 1 Id = 2 Id = 3 Id = 1 Id = 2 Id = 3
proxemics (m)

0.7 1.2 1.7 1.2 1.7 2.2

Speed (m/s) 0.1 0.2 0.3 0.1 0.15 0.2

Figure 7 summarizes the collected data as a graph of the
participants and therapy style choices. For each participant
and possible therapy style, we display a bar representing the
percentage of time spent by the robot in the given therapy
style while interacting with the participant. The relative size
of the bars for the same participant illustrates the percentage
of time spent in each of the four therapy styles of the robot.
The crosses represent the top preference of the participant as
reported in the post-experiment survey. As shown in Fig. 7,
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Fig. 7 The percentage of time that the 12 participants interacted with
each of the four therapy styles of the robot (for extroverted and intro-
verted participants, as described in Table 4). The crosses represent the
participants’ preferences
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Fig. 8 The percentage of time that the 12 participants interacted with
the robot at a certain distance (for extroverted and introverted partici-
pants, as described in Table 5). The crosses represent the participants’
interaction distances preference

the robot adapted to match the preference of the participant
in almost every case.

The only exception was the interaction with participant 8.
Despite the fact that the time spent in the preferred training
style of that participant was smaller than the time spent in
other training styles, the robot converged to it at the end of the
exercise period. The cause for this inconsistency was the fact
that the initial state of the robot was in a training style that
was furthest from the preference of the participant. Since our
approach only allowed perturbations to neighboring training
styles, and the duration of the exercise was short, the optimal
match was not found in time.

Figure 8 shows the adaptability of the robot to the interac-
tion distance preferred by the participant. Results are shown
on the same type of graph, but here there were only three
options for the parameter. The results support our hypothesis
that the robot could adapt its behavior to both introverted and
extroverted participants. The graph shows small inconsisten-
cies (3 cases) between the preferred interaction distance and
the distance that was used most by the robot during the exer-
cise. It is worth noting however that in all three cases the time
spent in each of the two options (the robot’s choice and the
user’s preference) were almost equal. After a more detailed
analysis of the data we realized that the mitigating factors
for this effect were: (1) the user performed almost indistin-
guishably when the robot found itself in either of the two
options, which prevented the robot from having any basis for
discerning between the two; and (2) both options were in the
social space, making it harder to distinguish between them.
We believe that increasing the length of the exercises and
using a different reward function for this parameter might
improve the adaptation process.

On a general note, both the extroverted and the introverted
personalities chose the interaction distance within the perso-
nal space rather than in the social space.

The results obtained for the third parameter in our system,
the speed of the robot when moving around the user, were
subject to more misses than those for the first two parame-
ters. While the robot used higher speeds for interacting with
extroverted participants and lower speeds for interacting with
introverted participants, it overshot the preference of the user
in many cases. We believe this was due to the fact that this
had a comparatively lower impact on user’s performance.
Also, as reported in the debriefings, many participants were
taken somewhat by surprise by the questions regarding the
preference in speed, as they were not able to clearly identify
the three speeds used by the robot during the experiment.

6.3.2 Robot behavior adaptation to user preferences

Experimental design In the third experiment, we wanted to
ensure the robot was able to adapt to the user’s preferences,
in order to build an engaging and motivating customized
protocol. People are more influenced by certain voices and
accents than others. Two main scenarios were designed, one
for extroverted and one for introverted individuals, respecti-
vely (see Table 1). The scenario for the extroverted group was
challenge-based while the scenario for the introverted indi-
viduals was more nurturing, in accordance with the results of
our previous study. We pre-recorded the same scenario with
2 males (one with an accent of a French native speaker, and
one without an accent as an American native English spea-
ker) and 2 females (one with an accent of a Romanian native
speaker, and one without an accent as an American native
English speaker), as shown in Table 6.

The choice of interaction distances/proxemics and robot
movement speeds was the same as in the previous experiment
(see Table 5).

Experimental results The experimental group for the third
experiment consisted of 12 participants (7 male and 5 female).
The participants ranged in age between 19 and 35, 27% were
coming from a non-technological field, while 73% had a
technology-related occupation.

The results of the third experiment, which tested the abi-
lity of the robot to adapt to the user’s preference of a certain
robot’s personality as expressed through accent and voice
gender are presented next. The results were again consistent
with our assumption that the algorithm we employed would
allow the robot to adapt and match the participant’s prefe-
rences in most cases.

Figure 9 shows the results in the same format as used in our
previous experiment. The results show three special cases. In
all three cases a detailed analysis shows that the performance
of the participant (number 4, 5 and 7) was almost indistin-
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Table 6 The choice of therapist
robot’s personality as expressed
through english accent and
voice gender as a function of the
user-preferences

Parameter Id = 1 Id = 2 Id = 3 Id = 4

Therapist robot’s personality Female with Male with Male without Female without
as expressed through English accent accent accent accent
accent and voice gender

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Participants

R
ob

ot
 P

er
so

na
lit

y

Fig. 9 The percentage of time that the 12 participants interacted with
each of the four therapist robot’s personality as expressed through accent
and voice gender (gender and English accent, as described in Table 6).
The crosses represent the participant’s preferences

guishable when the robot acted under the participant’s first
choice of robot’s personality as expressed through accent and
voice gender and the state in which the robot spent most time.
In fact, the second choice of the user, as rated in the post-
experiment survey, was in fact the one in which the robot
spent most time.

For this experiment the distance between the robot and the
user (see Fig. 10) did not perfectly match the preference of
the user. We believe that this was caused by several factors:

– The number of adaptation steps was rather small compa-
red to the size of the state space of the parameters (we
used 5 variations of the parameters with each adaptation
sequence out of the 36 possible variations).

– The changes in the robot’s personality expressed through
accent and voice gender parameter were too distracting
(male-to-female or female-to-male changes in robot’s
voice), which diminished the importance of other para-
meters involved in the adaptation process.

– This parameter had a rather lower impact on the user
performance compared to the other parameters.

To improve the adaptation process we plan on varying
only one of the parameters at a time. This will allow for
more accurately measuring the impact of each variation on
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Fig. 10 The percentage of time that the 12 participants interacted with
the robot at a certain distance (for extroverted and introverted partici-
pants, as described in Table 5). The crosses represent the participants’
interaction distances preference

user performance and for adapting more efficiently to each
dimension of the parameters space.

Finally, the results obtained for the third parameter (the
speed of the robot) were similar to those for the distance.
This supports our interpretation that in certain cases where
changes in one parameter are more distracting and have a
stronger impact on the participant, the analysis should be
separated by varying one parameter at a time. We will consi-
der implementing this option as another component of the
adaptation process.

The results obtained in the adaptation experiments point
out one possible limitation of our approach. Due to the large
number of combinations of parameter values that have to be
investigated during the adaptation phase, the optimal policy
might be obtained only after a period of time that exceeds our
exercise sessions (which were 15 min long). However, we feel
that this does not reduce the efficiency of our approach or the
relevance of our results, as our research targets interaction
with patients for an extended period of time, when many the-
rapy sessions are required for complete rehabilitation. Thus,
if the optimal policy is not reached during one therapy ses-
sion, the adaptation process can be extended over several ses-
sions, with most of the interaction occurring with the optimal
policy in place. This is similar to real-life situations where
therapists get to know patients over several therapy sessions
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and improve in their ability to respond to clues to provide a
more efficient recovery environment.

7 Discussion and conclusion

We presented a non-contact therapist robot intended for moni-
toring, assisting, encouraging, and socially interacting with
post-stroke users during rehabilitation exercises. The role of
the robot’s personality in the hands-off therapy process was
investigated, with a focus on the relationship between the
level of extroversion–introversion of the robot and the user
and the ability of the robot to adapt its behavior to user perso-
nality and preferences expressed through task performance.
The experimental results provide first evidence for the prefe-
rence of personality matching in the assistive domain and the
effectiveness of robot behavior adaptation to user personality
and performance.

Our future work is aimed at evaluating the approach in
a time-extended user study with post-stroke patients. The
longitudinal study will allow us to eliminate the effects of
novelty, and will also enable the robot to adapt better to the
user given vastly more learning trials. Further, it will allow
us to investigate various reward functions toward understan-
ding the impact of each parameter over the success rate of
the adaptation process. Continuing research will also focus
on including empathy in the robot’s behavior control archi-
tecture and using physiological data as a way of measuring
and interpreting the user’s internal state.

Our work to date demonstrates the promises of socially
assistive robotics, a new research area with large horizons
of fascinating and much needed societally-relevant research.
Our ongoing efforts are aimed at developing effective embo-
died assistive systems, and expanding our understanding of
human social behavior. Socially assistive robotic technology
is still in its infancy, but near future promises assistive robotic
platforms and systems that will be used in hospitals, schools,
and homes in therapeutic programs that monitor, encourage,
and assist their users.
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