
Intel Serv Robotics (2008) 1:159–167
DOI 10.1007/s11370-008-0016-5

SPECIAL ISSUE

Using dialog and human observations to dictate tasks to a learning robot
assistant

Paul E. Rybski · Jeremy Stolarz · Kevin Yoon ·
Manuela Veloso

Received: 15 April 2007 / Accepted: 6 December 2007 / Published online: 13 February 2008
© Springer-Verlag 2008

Abstract Robot assistants need to interact with people in
a natural way in order to be accepted into people’s day-to-
day lives. We have been researching robot assistants with
capabilities that include visually tracking humans in the envi-
ronment, identifying the context in which humans carry out
their activities, understanding spoken language (with a fixed
vocabulary), participating in spoken dialogs to resolve ambi-
guities, and learning task procedures. In this paper, we des-
cribe a robot task learning algorithm in which the human
explicitly and interactively instructs a series of steps to the
robot through spoken language. The training algorithm fuses
the robot’s perception of the human with the understood
speech data, maps the spoken language to robotic actions,
and follows the human to gather the action applicability
state information. The robot represents the acquired task as
a conditional procedure and engages the human in a spoken-
language dialog to fill in information that the human may
have omitted.

Keywords Human robot interaction ·
Learning by demonstration · Interactive dialog

P. E. Rybski (B) · J. Stolarz · K. Yoon ·M. Veloso
School of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA
e-mail: prybski@cs.cmu.edu

J. Stolarz
e-mail: jstolarz@cs.cmu.edu

K. Yoon
e-mail: kmy@cs.cmu.edu

M. Veloso
e-mail: mmv@cs.cmu.edu

1 Introduction

For robots to be accepted in the home and in workspaces as
useful assistants or partners, we believe that people will need
to be able to interact with them using spoken language and
physical actions (such as demonstration) rather than solely
through traditional user interfaces such as a mouse or key-
board. To this end, we are actively researching ways for
robots to interact with humans and have focused our atten-
tions on human detection, speech understanding, and dialog
processing.

In this paper, we describe our work in socially assistive
robotics [9] which makes use of these different research areas
and describe a set of algorithms for a mobile robot that allow
it to learn a task from a human. Through a combination of
processing a finite set of spoken commands, observation of a
human performing that task, and engaging in simple spoken
language dialog, the robot both appends new instructions to
and verifies the learned task sequence. Our robot uses a com-
bination of color vision and a laser range finder to track the
position and location of a person. Additionally, our robot uses
speech recognition to understand verbal instructions of what
must be accomplished at each location visited by the human.
After the task has been verbally described and demonstra-
ted, the robot verifies the newly acquired task by engaging
the human in spoken language dialog to query any unspeci-
fied effects of conditional (branch) points in the task. In this
fashion, the robot actively participates in the training process
rather than passively absorbing the information.

2 Related work

Research into the issues involved with social robotics is
important for the creation of robots that will operate

123

160 Intel Serv Robotics (2008) 1:159–167

alongside people and integrate themselves into human envi-
ronments [10]. Some successful examples of social robots
include tour guides in museums [6,27], home health care
assistants for the elderly [20], and socializing robots at confe-
rences [24]. In these studies, robots carried out a specific set
of actions, for which they had to actively interact with people,
but where no explicit learning of new skills took place. In this
paper, we are interested in a complementary robotic capabi-
lity, whereby the robots actively learn new tasks from humans
by listening to their speech and monitoring their movements.

Language (spoken or signed) is a crucial communication
modality for humans [7]. In our research, we have chosen to
focus on the use of spoken language understanding (and syn-
thesis) as one of the primary means for humans to communi-
cate with the robot. Speech as a robot interaction mechanism
has been studied in a number of different scenarios. For ins-
tance, Martignoni and Smart [15] use a restrictive grammar
is used for describing robot control where objects, behavioral
commands, and perceptual modifiers are all mapped directly
from the parsed speech.

We also are interested in the use of spoken language dia-
log as a mechanism for the robot to actively query the human
about specific aspects of its task that require further expla-
nation where dialog with a human is used for understan-
ding human perspectives and resolving linguistic ambiguities
[26]. Spoken language dialog processing has been extensi-
vely studied by the human–computer interaction commu-
nity [3,11,12,21] and this is becoming more prevalent now
in the robotics communities. A number of mechanisms for
supporting spoken language dialog with robots have been
explored recently, including how to describe spatial relation-
ships to robots [25].

Similar dialog-driven interaction mechanisms have been
developed in the area of plan recognition, though prima-
rily in the human–computer interaction areas, as opposed
to human–robot interaction, domain. In Lesh et al. [14], cha-
racteristics of the collaborative setting are exploited to reduce
the amount of input required of the user. This recognition stra-
tegy, however, requires some prior knowledge in the form of
shared plans (or mutually-believed goals, actions, intentions)
and a set of recipes (or action plans for achieving goals). This
work differs from ours in that the goal is to help the user
accomplish tasks according to perceived intent whereas as
we are striving to teach a robot new tasks.

In Oblinger et al. [18] an augmentation-based learning
approach is described where the task structure is inferred
from user demonstration. In this work, manual edits can also
be made to fix incorrect task structures and constrain the
induction procedure on subsequent demonstrations. Again,
this approach is explored in the software application domain
and there is no effort to conduct a collaborative discourse with
the user for natural interaction. Additionally, in our work,
branching structures are explicitly and quickly communi-

cated by the user, rather than being inferred over multiple
demonstrations.

This paper describes a mechanism for actively teaching
a task to a robot through the process of observing a person
doing the task, as well as listening to spoken commands.
Human demonstration for humanoid robotics, for instance,
has been successfully employed for task learning [8] and
action generation [2] respectively. Similar methods have been
reported where a human teacher constructs a hierarchical
description of sequences, tasks, and behaviors for robots [23].

Our work is closely related to the research of Nicolescu
and Matarić [17], where a mobile robot observes a human
doing a task and learns to associate specific behaviors with
the actions that the human is performing. Mechanisms for
generalization of the task from the observation of multiple
runs are also included. However, our approach is to focus
on the use of spoken language understanding to help learn
the initial task and then have the robot engage the human
in active dialog to verify that the task information has been
correctly transferred. Our work is also related to the plan
learning/generalization research reported in [28]. Our efforts
focus on learning a specific instance of a task interactively in
an on-line fashion and could serve as the input source to this
general off-line plan learning system.

Other work includes research in which a stationary huma-
noid that understands speech, though is unable to speak itself,
learns tasks by communicating with the human through ges-
tures and facial expressions [4]. We take a complementary
approach in which our robot is expressionless but instead
communicates understanding and/or queries through spoken
language.

3 Task training

One of the most important methods that humans have for
communicating with each other is spoken language. We
believe that an interesting challenge for a successful robot
assistant is to allow it to be taught a task (or a set of tasks) by
a human through the use of speech. When considering how
we as humans might teach tasks to each other, we note that
a combination of both demonstration and verbal instructions
can be used. If the teacher and the learner both have shared
knowledge of all of the concepts (spatial, semantic, etc...)
that are referenced, then the teacher only needs to verbally
describe the task sequence. However, as is more often the
case, such complete shared knowledge is not available and
instead a combination of both demonstration and verbal des-
criptions can be used in order to successfully teach a new
task.

Our task training architecture supports a combination of
these methodologies. In order to derive a mapping from
human actions and speech to robot actions, the robot requires

123

Intel Serv Robotics (2008) 1:159–167 161

Fig. 1 a The task item, the
basic task building block. b Two
examples of tasks. On the left is
a linear sequence and on the
right is a sequence with a
conditional branch

Precondition List
<Item1, Item2,...>

<Link1, Link2,...>
Return Cases

[Name]<Param1, Param2,...>
Behavior / Task

Task Item

True False

Task Item 1

Task Item 2

Task Item N Task Item N

Task Item 2a Task Item 2b

Conditional

(a) (b)

both a set of behaviors that will allow it to perform the tasks
required of it as well as behaviors necessary for doing the
learning. Additionally, the robot must be able to differentiate
between those language utterances which specify specific
behaviors that should be executed by the robot, and those
utterances which refer specifically to the structure of the task
to execute.

The fundamental building block of our robot’s control sys-
tem are functions, referred to as behaviors, that map a set
of inputs, including sensor information as well as derived
state information, to a set of actions [1]. Internally, every
behavior is defined as a finite state machine with an explicit
start state and potentially multiple termination states, depen-
ding on whether the behavior was successful in achieving its
goals [13]. Behaviors are responsible for relatively simple
control operations such as tracking a person or navigating
between waypoints. On termination, a behavior will report
whether it was successful or whether it had failed. One such
failure condition includes not being able to reach the goal in
a timely fashion (timeout).

Behaviors are invoked by a structure called a task item.
Task items are chained together in a directed graph structure
where each link in the graph represents the transition from
one task item to the next. A task item, illustrated in Fig. 1a,
includes three different components: (1) a list of precondi-
tions that must be true before that task item can be evaluated;
(2) the name of a behavior or another task to be executed
when the preconditions are all true; and (3) links to additio-
nal task items that will be executed based on the return status
of the task’s behavior. Typically, the outcomes of a particular
task are either Success or Failure which is equivalent
to an If conditional branching statement in a declarative
programming language, but an arbitrary number of potential
exit conditions is allowed.

A task consists of a set of task items that are linked in
the form of a directed acyclic graph (DAG) [16], as shown
in Fig. 1b. The links that connect individual task items are
directional and indicate that the first task must execute before
the second. The “root” node of the graph is the initial starting
state. There can be an arbitrary number of potential end states,
which are specified as the leaf nodes with no additional nodes
connected to them afterward. When added to the system, all
tasks are given a name so that they can be referred to by
having the human speak their name. Because named tasks
can be referred to in the behavior/task slot of a task item, tasks
can be nested in a hierarchical fashion that can be arbitrarily
deep. Tasks that have been defined and exist in the robot’s
repertoire can be re-used in the construction of new tasks (an
example of which is shown in Sect. 5).

A task item’s preconditions must be satisfied in order for
the task item’s behavior to be executed. When the precondi-
tions for a given task item do not match the perceived state of
the robot’s world, the behavior that is associated with that task
item is not executed and the preconditions of the next task
item are evaluated. The precise nature of the preconditions
is domain-specific and must be pre-defined before the robot
can be taught a new task. Preconditions may, for example, be
based on previously commanded tasks and need not neces-
sarily have any fundamental bearing on the robot’s ability to
perform the current task item. For example, assume a “goto
the nursery” command is followed by “sing a lullaby.” It may
be the case that the first command imposes on the second the
required precondition that the robot is in the nursery. This
would make sense since the obvious intent is for the robot to
sing only if it reaches the nursery, though its actual ability
to sing a lullaby is independent of its location. In this way,
preconditions can provide some protection against undesired
actions when behaviors fail.

123

162 Intel Serv Robotics (2008) 1:159–167

We have developed an algorithm for our robots where the
robots process spoken language utterances as well as visually
observe a person’s motions to learn how to do a task. For a
person to use our algorithm with a robot, they will need to
actively initiate task learning with the robot and be aware of
the robot’s physical capabilities (e.g. what the robot can and
cannot physically accomplish), the robot’s perceptual moda-
lities, and the subset of language that the robot understands.
The sequence of operations for this algorithm includes:

1. Training: The human shows the robot how to do the
task through a combination of demonstration and spoken
instructions (see Algorithm 1).

2. Verification: The robot analyzes the task for complete-
ness and asks the human for more information as needed
(see Algorithm 2).

3. Execution: The robot executes the task (see Algorithm 3)
whenever so requested by the human.

Algorithm 1 LearnTask()
1: Init task graph τ = {}, which is eventually to be added to the robot’s

list β of known behaviors and tasks.
2: Start human-tracking behavior(s)
3: while Training Loop active do
4: msg← SpeechInput()
5: if Understood(msg) then
6: p = preconditions from previous action and current robot state

(if any)
7: c = behavior/task necessary to satisfy p (if any)
8: Append c to τ

9: if msg == “Thank you” then
10: add τ to β and exit loop
11: end if
12: if msg == “Is that understood?” then
13: if Verify(τ) then
14: Add τ to β and exit loop
15: else
16: Say(“Ok, let’s start again”)
17: τ = {}
18: end if
19: else
20: Append msg to τ with preconditions p
21: end if
22: else
23: Say(“Please repeat command”)
24: end if
25: end while
26: End human-tracking behavior(s)

Finally, a robot that uses this algorithm must be capable
of the following:

1. Detect and track a person such that it is always well-
positioned to hear and observe the human.

2. Understand a subset of spoken language that lets the
human describe basic commands that the robot must per-
form.

3. Communicate via spoken language back to the human to
query them for more information as needed.

3.1 Training

To start training the robot, the human starts the LearnTask
behavior (Algorithm 1) by saying some invocation phrase
that includes a label x , typically some statement (e.g.
x=“dinner is ready”), that will be registered as the name for
the task that is about to be trained. In our example the phrase
that invokes the training procedure is “Let me show you what
to do when I say...” Note that this is hard-coded and could
potentially be any phrase.

Whenever the person speaks a command that is understood
by the robot’s grammar, the robot appends the corresponding
action to the task structure along with appropriate precondi-
tions and also prepends any actions deemed necessary to
satisfy these preconditions. The preconditions are defined
ahead of time based on what the robot can sense about the
state of the environment as well as its own state. For instance,
if the person moves to a particular location or room in the
environment, the robot observes the location and the robot
being in that location becomes a precondition for all tasks
that follow in the training sequence until the person moves
to a new location (see Sect. 5 for an example of this.) If the
robot does not understand what was said, it notifies the user
and asks to have the command repeated. When finished trai-
ning, the user can either say “Thank you,” ending the training
behavior, or he/she can ask “Is that understood?” prompting
the robot to verbally confirm the task sequence. The user then
states whether the robot correctly recorded the steps, and, if
it did not, repeats the sequence of steps the robot is supposed
to carry out.

While giving the command sequence, the user can also
make conditional statements by saying “if y”, where y is some
statement (e.g. “Kevin is present”), followed by a sequence of
commands and an optional “otherwise” clause for giving ins-
tructions when the specified condition is not satisfied. Note
that there is no limit to the number of tasks that can be spoken
in the “if” or “otherwise” blocks. Nested “if” statements are
also supported and discussed in more detail below.

3.2 Verification

A task can contain potentially many conditional branches.
However, when dictating a task to a robot, only a single
traversal from the start task item to an ending task item is
needed at any given time. For instance, the teaching human
only needs to specify what to do if any given conditional
statement is true. When the robot is asked to verify the task
(see Algorithm 2), it will traverse the graph and look for
any conditional statements that do not have an “otherwise”
(or false) condition associated with them. In this case, the

123

Intel Serv Robotics (2008) 1:159–167 163

Algorithm 2 Verify(Task τ)
1: Repeat task as it was dictated by traversing the graph τ .
2: Ask(“Is this correct?”)
3: if msg == “yes” then
4: for all if-nodes, f , with unspecified “otherwise” cases do
5: Ask(“if <f.condition> is false, I will <f.false.action>. Is this

correct?”)
6: if msg == “yes” then
7: continue
8: end if
9: if msg == “no” then

10: Ask(“What should I do when <f.condition> is false? Say
done to end”)

11: while msg != “done” do
12: Append msg to τ with preconditions f.precondition
13: end while
14: end if
15: end for
16: return True
17: if msg == “no” then
18: return False
19: end if
20: end if

robot will notify the human and inquire whether this was
intentional. If the human intended more action to be taken
at this point, then task training is resumed and the human
can either speak a new set of commands, or teach the robot
with a combination of spoken commands and demonstrated
actions. This process is repeated for every “if” in the task
that does not have an explicit “otherwise” case.

Tasks with very large numbers of nodes and numbers of
conditional states can have their complexity mitigated by
breaking them into a group of smaller tasks instead. Because
task items can reference behaviors or other tasks, a group of
smaller tasks could be dictated and assembled into a larger
task. We will show an example of this in Sect. 5.

3.3 Execution

To execute a learned task, the human simply utters the phrase
x that was specified in the training stage and the task is invo-
ked (see Algorithm 3). Execution of the task consists of recur-
sively traversing the individual task items, checking whether
their preconditions hold and executing their contents (a beha-
vior or another task) if they hold true, or skipping that task
item if they are false. Whether the preconditions are true or
false are determined by the state of the world as perceived
through the robot’s sensors.

4 Robotic implementation

We have implemented an instance of the task training algo-
rithms described in the previous section and have conducted

Algorithm 3 ExecuteTask(b)
1: if b is a Behavior then
2: Do(b)
3: end if
4: if b is a Task then
5: tcurr = b.root_node
6: while ExecuteLoop active do
7: if tcurr == NULL then
8: exit ExecuteLoop
9: end if

10: if tcurr == “if <condition>” then
11: if <condition>is satisfied then
12: tcurr = tcurr .true
13: else
14: tcurr = tcurr . f alse
15: end if
16: else
17: if tcurr preconditions satisfied then
18: ExecuteTask(tcurr)
19: end if
20: tcurr = tcurr .next
21: end if
22: end while
23: end if

Teleoperation
Controller

Stereo Cameras

Computers x2

Kill Switch

Speaker

Omnicamera

Laser Range Finder

IR Sensors

Fig. 2 Our robot interacts with a person

experiments on our CMAssist1 robots—one of which is
shown in Fig. 2—that were developed as platforms for resear-
ching the use of robots as assistants. Our robots (shown in
Fig. 2), have a CAMEO [22] omnidirectional camera rig
mounted on the top of their sensor mast. People are identi-
fied and tracked through the use of color histograms, similar
to that described in [5]. The robots use a stereo camera for
obstacle avoidance as well as to assist with tracking people.
A laser range finder at the base of the robot is used for
localization within a known map (trained ahead of time).

1 http://www.cs.cmu.edu/~coral/cmassist.

123

http://www.cs.cmu.edu/~coral/cmassist.

164 Intel Serv Robotics (2008) 1:159–167

Computational power is provided by two Pentium-M lap-
tops.

Understanding of human speech is done in two parts. First,
IBM ViaVoice is used for the initial capture and processing of
the spoken utterances. A natural language processing system
called NAUTILUS [19], developed by the Naval Research
Labs (NRL), is used to process the utterances and match them
against an a priori grammar that represents what the robot can
understand. These programs are run on a third laptop that the
robots connect to wirelessly.

A list of relevant behaviors used by our robots is as fol-
lows:

• Goto(name) Allows the robot to navigate safely from its
current position to some named location.

• Say(s)/Ask(s,p) Synthesizes speech and plays it through
the robot’s speaker. The Say(s) form causes the robot to
speak the utterance s. The Ask(s,p) form causes the robot
to find a particular person p and speak the utterance s and
then wait for an appropriate response.

• Follow(p) Causes the robot to locate and follow person
p at a safe distance of a few meters.

• FollowLearnTask Our system-specific implementation
of LearnTask (Algorithm 1). This behavior invokes the
Follow behavior to drive after the teacher, thus allowing it
to infer locational preconditions from the teacher’s posi-
tion (Algorithm 1, line 2).

In order for the locations in the environment to be seman-
tically meaningful as part of the training process, a map of the
environment is provided to the robot which contains linguis-
tic information regarding physical locations. For instance,
the locations of named objects such as “couch”, “table”, and
“television” can be added to the map as well as general loca-
tions of rooms such as “lab” or “living room.” This a priori
information is used to ground locations that are either men-

tioned in the human’s speech or are visited as the human
walks about the environment.

5 Illustrative example

As an illustrative example, we describe how our robots are
interactively taught how to do a task. In this task, the human
shows the robot the steps necessary to execute the task of
bringing the family together for dinner. In this example, the
human that performs the training walks around the home
environment with the robot following them. The individual
commands that are dictated to the robot are associated with
the specific room that the person is in when they give the
command. In our example, the location of the person when
they state the command forms the specific precondition for
each of those commands. Thus the robot will attempt to reach
the specific locations where it heard the command before
attempting to execute it.

The task training procedure is started with the statement
“Let me show you what to do when I say dinner is ready”
Training is only started when the phrase uttered by the human
starts with the words “Let me show you what to do when I
say”. In this case, “dinner is ready” is the phrase registered
to the task that is to be trained and correspond to the value
of x in Algorithm 1. The robot responds with an affirmative
“okay” and invokes FollowLearnTask.

5.1 Training and verifying the task

Figure 3 illustrates the path that the robot took as it followed
the human around the environment and learned the steps of
this task. The numbers next to the different path items are
timestamps (in seconds) and correspond to the locations of
specific task items that the robot is to execute in those loca-
tions.

Task: dinner is ready
44 goto dining room
45 “tell Jeremy set the table”
91 goto living room
92 “tell Kevin come to dinner”
132 goto bedroom
133 “say turn off the television”
187 goto living room
188 “say task complete”
192 “thank you”

Fig. 3 Top-down view of a path traversed by the robot. In all of the
figures, dark lines represent walls and boxes represent furniture such as
tables and shelves. The numbers next to the path indicate the locations
where specific commands were issued to the robot. Numbers directly on

top of each other signify the same location. This figure shows the path
taken by the robot as it followed the human through the environment
during task training. The robot’s path originates in the kitchen

123

Intel Serv Robotics (2008) 1:159–167 165

Fig. 4 The following
transcripts show the training and
verification dialogs of the tasks
“tell Jeremy set the table” and
“tell Kevin come to dinner”.
What the robot says is indicated
in <>

Task: tell Jeremy set the table
“if Jeremy is present”
“say Jeremy set the table”
“otherwise”
“say cannot find Jeremy”
“Is that understood?”
< Yes, you said if Jeremy is present say set
the table otherwise say cannot find Jeremy.
Is this correct?>
“Yes”
< Task training complete>

Task: tell Kevin come to dinner
“if Kevin is present”
“say Kevin come to dinner”
“Is that understood?
< Yes, you said if Kevin is present say come
to dinner. Is this correct?>
“Yes”
< What should I do when Kevin is present is
false? Say done to end.>
“say cannot find Kevin. done”
< Task training complete>

Fig. 5 Path taken by the robot
as it traveled through the
environment successfully
executing the learned task

5 goto dining room
39 (starting tell Jeremy set the table)
40 checking to see if Jeremy is present
41 say < set the table>
42 goto living room
80 (starting tell Kevin come to dinner)
81 checking to see if Kevin is present
82 say < come to dinner>
83 goto bedroom
113 say < turn off the television>
114 goto living room
168 say < task complete>

Commands explicitly stated by the human are in quotes.
Unquoted commands indicate commands that are implied
in order to satisfy the locational preconditions that Follow
LearnTask assumes for all actions. That is, the robot assumes
it is not to perform an action until it is at the place where the
action was commanded (such as the living room or bedroom
as in the example above). So when the human said “tell
Jeremy set the table”—another task to be described later—
in the dining room, the robot prepended the “goto dining
room” command. This insertion corresponds to lines 6–8 of
Algorithm 1.

In this example, two sub-tasks are being invoked. These
sub-tasks were defined before the “dinner is ready” task was
trained. The specific training dialog that defined these two
sub-tasks is shown in Fig. 4. Note how in the task “tell Kevin
come to dinner”, the Verify routine prompted the teacher for
instructions for the case when Kevin is not there, whereas
no further clarification was required for the other task. The
task items that make up these two tasks do not have location-
specific preconditions as these tasks were taught using the
LearnTask behavior and not the FollowLearnTask beha-
vior. However, note that these task items are referred to in the
higher-level “dinner is ready” task which does have location-
specific preconditions.

Finally, the task item specified by the phrase “if name is
present” is a behavior which uses the robots sensors to deter-
mine whether the named person is there. For our example,

the robot knows what the people look like ahead of time by
the color of their clothing.

5.2 Successful execution

Figure 5 shows the robot successfully carrying out this task
that it was taught previously. In the execution of this task,
both Jeremy and Kevin were present in the environment and
successfully detected by the robot.

Note that the “goto” behaviors are invoked when the robot
must travel to that location. Thus the position in the path
where these are active is the start of the traversal, whereas
during training, they are recognized at the end of the traversal
when the robot learns where it is supposed to go.

5.3 Unsuccessful Execution

In contrast, Fig. 6 illustrates an example when the robot is
unable to complete the task. We artificially blocked off a
segment of the environment so that the robot could not reach
the bedroom. Additionally, none of the people that the robot
was meant to find were present.

In this case, the robot was unable to find either of the
people, and, because it could not reach the bedroom (within
a given timeout period), the locational precondition that the
“goto bedroom” command imposed upon the subsequent task
item “say turn off the television” was evaluated false causing

123

166 Intel Serv Robotics (2008) 1:159–167

Fig. 6 Path taken by the robot
as it traveled through the
environment and tried to execute
the learned task. In this case, the
bedroom was made inaccessible,
preventing the robot from
reaching its intended location.
Both of the people the robot
expected to find in the
environment were also missing

21 goto dining room
79 (starting tell Jeremy set the table)
80 checking to see if Jeremy is present
81 say < cannot find Jeremy>
82 goto living room
133 (starting tell Kevin come to dinner)
134 checking to see if Kevin is present
136 say < cannot find Kevin>
137 goto bedroom
271 goto living room
273 say < task complete>

the task item not to be executed. The execution procedure
continued to traverse the task graph until it reached a task
item whose preconditions were met. In this case, it was the
next “goto living room” command since “goto” commands
do not have locational preconditions.

5.4 Discussion

This empirical example demonstrates the task training, veri-
fication, and execution algorithms as we have instantiated
them on our mobile robot. Preconditions that the robot can
detect with its sensors include its location, the location of
a person, and the identity of the person (pre-trained based
on the color of their clothes). When dictating the task to
the robot, the person walks through the environment with the
robot following them. Spoken commands are associated with
the location of the person. As a result, a task that is taught to
the robot is specific to this environment as well. If the robot
were to change to a new environment, it would require a new
map and a new training session to learn the task. The verifi-
cation algorithm was demonstrated briefly in the case when
the otherwise part of a conditional was not stated during the
initial training. Finally, when executing the dictated task and
the robot encountered an obstruction which caused a given
task item’s behavior to fail, the next task item in the sequence
was evaluated. Because the preconditions for these example
tasks included the physical location of the robot, all behaviors
that were to be executed in a specific location that could not
be reached by the robot were bypassed. This demonstrates
the capacity of the robot to be able to short-circuit sets of task
items that would otherwise not be executable because their
preconditions for execution do not hold true.

6 Summary

In this paper, we have described an algorithm for dictating
tasks to a mobile robot assistant which involves the combina-
tion of spoken language understanding, dialog, and physical
demonstration. This allows a human to interact with a robot

through a subset of spoken English language in order to train
it on a new task (it is assumed that the human is aware of what
the robot can understand). We have developed a specific ins-
tance of this algorithm and deployed it on a real mobile robot
platform. Finally, we have demonstrated how this algorithm
can be used to build tasks from previously-learned sub-tasks
and how the execution of the learned task is robust to failures
of individual task items.

Acknowledgments We would like to thank the Naval Research Labs
for the NAUTILUS natural language understanding system and for their
assistance in getting it to work with our robots.

References

1. Arkin R (1987) Motor schema based navigation for a mobile robot:
an approach to programming by behavior. In: Proceedings of the
1987 IEEE international conference on robotics and automation,
pp 264–271

2. Bentivegna D, Atkeson C, Cheng G (2003) Learning from obser-
vation and practice at the action generation level. In: IEEE inter-
national conference on humanoid robots, Karlsruhe and Munich

3. Biermann AW, Guinn CI, Smith DRHRW (1994) Efficient collabo-
rative discourse: a theory and its implementation. In: Proc. ARPA
human language technology workshop ’93, Princeton, NJ, pp 177–
182

4. Breazeal C, Hoffman G, Lockerd A (2004) Teaching and working
with robots as a collaboration. In: The third international confe-
rence on autonomous agents and multi-agent systems AAMAS
2004, New York, NY, pp 1028–1035

5. Bruce J, Veloso M (2003) Fast and accurate vision-based pattern
detection and identification. In: Proceedings of the 2003 IEEE inter-
national conference on robotics and automation, Taiwan

6. Burgard W, Cremers A, Fox D, Hähnel D, Lakemeyer G, Schulz
D, Steiner W, Thrun S (1999) Experiences with an interactive
museum tour-guide robot. Artifi Intell 114(1–2):3–55

7. Clarke HH (1996) Using language. Cambridge University Press,
New York

8. Ehrenmass M, Zöllner R, Rogalla O, Vacek S, Dillmann R (2003)
Observation in programming by demonstration: training and execu-
tion environment. In: IEEE international conference on humanoid
robots, Karlsruhe and Munich

9. Feil-Seifer DJ, Matarić MJ (2005) Defining socially assistive robo-
tics. In: International conference on rehabilitation robotics, Chi-
cago, pp 465–468

123

Intel Serv Robotics (2008) 1:159–167 167

10. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially
interactive robots. Robot Auton Systems 42:143–166

11. Guinn CI (1996) Mechanisms for mixed-initiative human-
computer collaborative discourse. In: Joshi A, Palmer M (eds)
Proceedings of the thirty-fourth annual meeting of the association
for computational linguistics. Morgan Kaufmann, San Francisco,
pp 278–285

12. Guinn CI (1998) An analysis of initiative selection in collabo-
rative task-oriented discourse. User Model User-Adapted Inter
8(3–4):255–314

13. Lenser S, Bruce J, Veloso M (2002) A modular hierarchical
behavior-based architecture. In: Birk A, Coradeschi S, Tadokoro S
(eds) RoboCup-2001: the fifth RoboCup competitions and confe-
rences. Springer, Berlin

14. Lesh N, Rich C, Sidner C (1999) Using plan recognition in human-
computer collaboration. In: Proceedings of the seventh internatio-
nal conference on user modeling

15. Martignoni AJ, Smart WD (2004) Programming robots using high-
level task descriptions. In: Supervisory control of learning and
adaptive systems: papers from the 2004 AAAI workshop, pp 49–54

16. Nicolescu M, Matarić M (2001) Experience-based representation
construction: learning from human and robot teachers. In: Pro-
ceedings of the IEEE/RSJ international conference on intelligent
robots and systems, Maui, pp 740–745

17. Nicolescu M, Matarić M (2003) Natural methods for robot task
learning: Instructive demonstration, generalization and practice.
In: Proceedings of the second international joint conference on
autonomous agents and multi-agent systems, Melbourne

18. Oblinger D, Castelli V, Bergman L (2006) Augmentation-based
learning: combining observations and user edits for programming
by demonstration. In: Proceedings of the international conference
on intelligent user interfaces, pp 202–209

19. Perzanowski D, Schultz A, Adams W, Marsh E, Bugajska
M (2001) Building a multimodal human-robot interface. IEEE
Intell Systems 16(1):16–21

20. Pineau J, Montemerlo M, Pollack M, Roy N, Thrun S (2003)
Towards robotic assistants in nursing homes: challenges and
results. Robot Auton Systems 42(31):271–281

21. Rich C, Sidner CL (1998) COLLAGEN: a collaboration mana-
ger for software interface agents. User Model User-Adapted Inter
8(3–4):315–350

22. Rybski PE, de la Torre F, Patil R, Vallespi C, Veloso MM, Browning
B (2004) Cameo: the camera assisted meeting event observer. In:
Proceedings of the 2004 IEEE international conference on robotics
and automation, New Orleans

23. Saunders J, Nehaniv CL, Dautenhahn K (2006) Teaching robots by
moulding behavior and scaffolding the environment. In: Human–
robot interaction, Salt Lake City

24. Simmons R, Goldberg D, Goode A, Montemerlo M, Roy N,
Sellner B, Urmson C, Schultz A, Abramson M, Adams W,
Atrash A, Bugajska M, Coblenz M, MacMahon M, Perzanowski D,
Horswill I, Zubek R, Kortenkamp D, Wolfe B, Milam T,
Maxwell B (2003) Grace: an autonomous robot for the aaai robot
challenge. AI Magaz 42(2):51–72

25. Skubic M, Perzanowski D, Blisard S, Schultz A, Adams W,
Bugajska M, Brock D (2004) Spatial language for human-robot
dialogs. IEEE Trans Systems, Man Cybern Part C 34(2):154–167

26. Sofge D, Trafton JG, Cassimatis N, Perzanowski D, Bugajska M,
Adams W, Schultz AC (2004) Human–robot collaboration and cog-
nition with an autonomous mobile robot. In: Groen F, Amato N,
Bonarini A, Yoshida E, Kröse B (eds) In: Proceedings of the 8th
conference on intelligent autonomous systems (IAS-8). IOS Press,
pp 80–87

27. Willeke T, Kunz C, Nourbakhsh I (2001) The history of the mobot
museum robot series: An evolutionary study. In: Proceedings of
FLAIRS 2001

28. Winner E, Veloso M (2002) Analyzing plans with conditional
effects. In: Proceedings of the sixth international conference on
artificial intelligence planning systems, Toulouse

123

	Using dialog and human observations to dictate tasks to a learning robot assistant
	Abstract
	Introduction
	Related work
	Task training
	Training
	Verification
	Execution
	Robotic implementation
	Illustrative example
	Training and verifying the task
	Successful execution
	Unsuccessful Execution
	Discussion
	Summary
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

