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Abstract

Purpose Road dust samples in Baoshan District, Shanghai, were collected to explore magnetic and chemical properties of
atmospheric dustfall in urban areas, intensively impacted by anthropogenic activities. Magnetic particles in road dusts were
separated and analyzed to track their sources and then to discuss the influences of industrial and traffic emissions on the
urban environment.

Materials and methods One hundred twenty-two road dust samples in the industrial, traffic, residential, and agricultural
areas of Baoshan District, Shanghai, were collected. Magnetic susceptibility (x¢) and heavy metal content of the samples
were determined. Micromorphological and microchemical features of magnetic particles separated from the road dusts were
analyzed by a scanning electron microscope (SEM) equipped with energy spectrum.

Results and discussion The road dusts are usually alkaline and strong in magnetic signal, of which, magnetic susceptibility
(x> 838.7% 107 m® kg~! on average, is much higher than the nearby topsoils. Moreover, X of the industrial and traffic road
dusts, 1363.0x 10~ m* kg~! and 775.9x 1078 m® kg~! on average, respectively, is significantly higher than that of the others.
Magnetic spherules, mainly composed of Fe oxides, were commonly observed in the road dusts, which are mostly formed
during industrial high-temperature processes. A high number of flake-like, rod-like, and other irregular-shaped magnetic
particles were also found in the road dusts, which may come from metal processing or vehicular wearing. The road dusts in
the study areas are heavily polluted by Cu, Zn, Pb, Cd, and Cr. The principal component analyses (PCA) indicate that
and Zn, Mn, and Fe contents in the road dusts belong to the same principal component.

Conclusions Magnetic dustfall commonly occurs in urban areas due to industrial or vehicular emissions, which leads to the
enhancement of magnetic signal and heavy metal content in urban road dusts simultaneously. x ; can indicate the accumula-
tion of toxic heavy metals in the road dusts effectively. This also highlights a fact that the urban environment is continuously
and significantly affected by the deposition of artificial atmospheric magnetic particles.

Keywords Road dusts - Magnetic susceptibility () - Heavy metals - Industrial emissions

1 Introduction Natural dust on roads stems from the deposition of loessic
materials, which are transported from remote sources, or
Road dust is mainly formed by the dry or wet depositions  re-deposition of raised local soil. Under the urban envi-
of atmospheric suspended particles, which, however, often ronment, the materials of road dust are highly influenced
varies in origin (Gunawardana et al. 2012; Liu et al. 2014). by industrial and traffic emissions, which mostly come
from the settlements of fly ashes emitted from industrial
or petrochemical fuel combustion, or particles produced
by vehicular exhausts or frictions (Abbasi et al. 2020;
54 Xue-Feng Hu Logiewa et al. 2020; Pant and Harrison 2013; Petrovsky
xfhu@shu.edu.cn et al. 2013; Wei and Yang 2010; Yang et al. 2010). A high
) ) o amount of fine black particles are emitted by iron process-
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People’s Republic of China road dust with dense traffic often contains higher content
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of metal particles produced by frictions of vehicular
brakes, while that in rural areas is mostly composed of
soils (Panko et al. 2013).

Highly affected by industrial and traffic emissions, atmos-
pheric suspended particles in urban areas often contain a
certain amount of metal dust, especially ferromagnetic par-
ticles combined with toxic heavy metals. The deposition of
magnetic dusts makes magnetic signal and heavy metal con-
tent of urban topsoils enhanced simultaneously (Fabijariczyk
et al. 2016; Liu et al. 2016; Yang et al. 2007), thus highly
changing the properties of urban soils (Li and Feng 2010;
Magiera et al. 2018). Moreover, significant correlations
between magnetic parameters and heavy metal contents in
urban soils were reported worldwide (Cao et al. 2015; Jor-
danova et al. 2013; Karimi et al. 2011; Xia et al. 2014; Yang
et al. 2020). The soils closer to the iron smelting complex
are much higher in magnetic susceptibility (x¢) in Baoshan
District of Shanghai (Hu et al. 2022, 2007). Magnetic spher-
ules were observed in urban soils (Lu et al. 2016; Wang
et al. 2017), further proving the deposition of anthropogenic
magnetic particles on the urban ground.

The constituents of urban soils, however, are much com-
plicated. Especially, magnetic particles accumulated in
urban soils are often multiple in provenances, which may
be inherited from parent rocks, produced by pedogenic
processes, or stem from anthropogenic activities. On the
contrary, the dust on urban solidified roads solely comes
from the deposition of atmospheric particles due to routine
road cleaning. Therefore, it can reflect atmospheric quality
and metallic or magnetic deposition under the urban envi-
ronment more directly (Ali et al. 2017; Bucko et al. 2011;
Dytlow et al. 2019; Gérka-Kostrubiec et al. 2023).

Fe-rich magnetic spherules are observed in road dust (Bour-
liva et al. 2016), which mainly comes from industrial high-
temperature combustion (Jordanova et al. 2021) or coal burn-
ing (Jose and Srimuruganandam 2021). Located in the northern
part of Shanghai, Baoshan District is an important metallurgical
industrial base in China. The accumulation of toxic heavy met-
als and magnetic particles in the soils of the district has been
intensively studied over the past decades (Hu et al. 2022, 2007,
Ye et al. 2007). Road dust in the district, which may indicate the
influences of anthropogenic emissions on the urban environment
more clearly and directly, is still less studied however.

In this study, 122 dust samples on the solidified roads at
four different land use surface in the district are collected.
We aim to measure the magnetic signal of the road dust to
scrutinize whether it is also enhanced like that of topsoil in
the district, then to track the sources of magnetic particles
accumulated in it, further to study the correlations between
magnetic signal and heavy metal in the road dust, and finally
to discuss the implications of magnetic enhancement in the
road dust on the urban environment.
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2 Materials and methods
2.1 Studyarea

Located at the frontier of the Yangtze River Delta, Shanghai is
close to the East China Sea on the east, with geographic location
of 30°40'N~31°53'N and 120°51'E~122°12'E. Shanghai
has a subtropical monsoonal climate, with mean annual
temperature16.6 “C and mean annual precipitation 1168.1 mm.
Baoshan District is situated in the northern part of Shanghai,
adjoining the Yangtze River Estuary in the northeast (Fig. 1). It
covers 365.3 km? in area, including Luojing, Yuepu, Luodian,
Yanghang, Gucun, Songnan, and Dachang Towns, with a
permanent population of 2,235,000. As a traditional industrial
base of Shanghai, Baoshan District has developed a huge
industrial system dominated by ironic smelting and processing,
where shipping, railways, highways, urban roads and inland
waterways are interconnected, forming a large and developed
network of transportation.

2.2 Sample collection

According to different land use surface, four functional areas,
namely, industrial, traffic, residential, and agricultural areas, were
circled in Baoshan District, Shanghai. More sampling points were
arranged in the industrial and traffic areas, as more intensively
impacted by anthropogenic activities. After seven consecutive
sunny days from Sep 2022 to Dec 2022, 37, 40, 23, and 22 dust
samples were collected on the solidified road surface of the four
areas, using clean brushes, respectively (Fig. 1). One sample,
about 150 g in weight, was a mixture of three subsamples, all
collected within a range of 20x20 m? at a sampling point. The
samples were carried to the laboratory, air-dried, and passed
through 2-mm nylon sieve to discard weeds, gravel, leaves, and
other debris. It was then passed through 0.149-mm nylon sieve.
The dominant fraction (<0.149 mm) of the samples was mainly
used for physical and chemical analyses.

2.3 Determination of pH and organic matter content

Dust sample of 4.00 g (<0.149 mm) was added with 10 ml
deionized water and stirred. The electrode of a pH meter was
put into the dust-water suspension for measuring pH value.
About 1 g sample (<0.149 mm) was weighed to determine
the content of organic matter by the K,CrO,-H,SO, method
(USDA and NRCS 2004; Zhang and Gong 2012).

2.4 Magnetic measurements
Road dust sample of 5.00 g (<0.149 mm) was weighed and

wrapped using plastic film and fixed into a 10-ml cylindri-
cal polyethylene box. The sample boxes were then put into
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a Bartington MS-2 magnetic susceptibility meter to meas-
ure the magnetic susceptibility in low frequency (0.47 kHz)
(x;p) and high frequency (4.7 kHz) (x ;). Each sample was
measured for three times, and the relative error was <0.3%.
The frequency susceptibility (yy%) was calculated by the
following formula:

X% = Qur — xnp)/x0e X 100%

2.5 Determination of heavy metal content

About 0.2 g road dust sample (< 0.149 mm) was put into
a Teflon crucible and digested using three mixed acids
(HNO;+HF +HCIO,). The concentrations of Cu, Zn, Cr,
Co, Ni, Mn, and Fe in the digested solutions were deter-
mined using an inductively coupled plasma atomic emis-
sion spectrometer (ICP-AES) (Leeman Prodigy ICP AES,
USA); Pb and Cd were determined using a graphite furnace
atomic absorption spectrometer (GF-AAS) (ZEEnit600/650,
Jena, Germany). During the testing processes, some samples
randomly selected were repeatedly measured for five times,
in which, the relative standard deviations of the contents of
heavy metal were mostly <3.58%, and Co was<5.92%. A

standard soil sample, GSS-5, produced by China Environ-
mental Monitoring Station, was inserted during the testing.
The relative error between the measured and reference val-
ues of heavy metals in the standard was mostly <2.95%, and
Co was<9.25%.

2.6 Separation of magnetic fraction from road dust
samples

Road dust sample of 100 g (<2 mm) was put into a beaker
and added with 0.05 mol L~'sodium hexametaphosphate
solution. The muddy solution was continuously stirred and
then maintained overnight. A strong magnet wrapped with
plastic film was slowly rotated in the beaker to fully adsorb
magnetic particles in the solution. The wrapped magnet was
removed from the solution and washed with deionized water
to get rid of muddy impurities. The plastic film was then
separated from the magnet, and magnetic particles on the
film were immediately washed into another clean beaker
with deionized water. Such operation was repeated for sev-
eral times until few magnetic particles were extracted from
the solution. The extracted magnetic materials were washed
into a tube, centrifuged, and then dried at 50 °C in oven to
get a purified magnetic fraction.
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2.7 Micromorphological analyses of single
magnetic particles

Single magnetic particles were chosen from the separated
magnetic fractions using a microscope and were gold-plated
in a vacuum container using Au ion sputtering method. The
prepared gold-plated particles were put into the ZEISS Gem-
ini 300 scanning electron microscope (SEM) to observe the
microscopic morphology of magnetic particles. The chemi-
cal composition of a selected position of a magnetic particle
was enlarged, scanned, and finally semi-quantitatively ana-
lyzed by the energy spectrum analysis affiliated to the SEM.

2.8 Calculation of pollution indexes

Single-factor Pollution Index (SPI) and Pollution Load Index
(PLI) are used to assess the degree of heavy metal pollution
of road dusts. SPI was calculated as the formula:

CFi = Ci/CO.

Here, CF|is the SPI of heavy metal i; C; is the measured
concentration of heavy metal i in the road dusts; and C
is the background value of heavy metal i in the soils of
Shanghai (Hu et al. 2007).

PLI reflecting a comprehensive pollution degree of an
area was calculated as (CF, X CF,x CF;x ... x CF,)!'"", of
which, n is the number of heavy metals participating in
the assessment.

Based on the values of SPI or PLI, four levels of pollution
are classified, including non-pollution (< 1.0), slight pollution
(> 1.0 and <2.0), moderate pollution (>2.0 and <3.0), and
heavy pollution (> 3.0) (Tomlinson et al. 1980).

2.9 Data treatments

All the data were firstly processed by Microsoft Excel
2016.The sketch map of the study areas was drawn using
ArcGIS Map10.8.1. Statistical analyses, including analysis
of variance (one-way ANOVA), Pearson correlations, and
principal component analysis (PCA) were performed by
IBM SPSS Statistics 24. The box diagrams were drawn
using Origin 2018.

3 Results
3.1 pH and organic matter content of road dusts

The road dusts are mostly alkaline, of which, pH is in a
range of 7.2-10.9 (Table 1). Moreover, pH of the road dusts
on the different functional areas varies highly. That on the
industrial, agricultural, traffic, and residential areas is 9.3,
8.3, 8.2, and 7.8 on average, respectively (Fig. 2a). pH of the
industrial road dust (the road dust on the industrial area; the
same below) is significantly higher than that of the others
(p <0.05) (Fig. 2a), hinting the addition of alkaline materials
due to industrial emissions.

The content of organic matter in the road dusts of the study
areas is 71.5 g kg™! on average. That on the industrial, resi-
dential, traffic, and agricultural areas is 90.3, 84.0, 61.2, and
41.6 g kg~! on average, respectively (Fig. 2b). Organic matter
content on the industrial and residential road dusts is signifi-
cantly higher than that on the traffic and agricultural (p <0.05)
(Fig. 2b). This suggests that a higher amount of organic pollut-
ants were emitted from industrial and dweller daily life.

Table 1 Magnetic susceptibility

(x) and physical-chemical Functional areas Items pH S;gf)nic matter (g Xy (X 1078m?3 kg—l) Xia (%)
properties of road dusts in the
different functional areas of Industrial Maximum 10.9 253.6 3367.3 4.53
Baoshan District in Shanghai, (n=40) Minimum 7.7 202 436.0 0.0
Southeast China
Mean 9.3 90.3 1363.0 0.76
CV (%) 8.9 56.1 44.8 79.6
Traffic Maximum 8.9 111.3 1482.0 2.62
(n=37) Minimum 7.3 46.4 448.0 0.0
Mean
CV (%) 8.2 61.2 775.9 0.73
3.6 25.1 33.2 87.7
Residential Maximum 8.4 156.9 771.3 3.51
(n=23) Minimum 72 443 106.0 0.21
Mean
CV (%) 7.8 84.0 357.2 1.38
2.2 17.5 20.0 63.4
Agricultural Maximum 8.9 56.8 910 2.66
(n=22) Minimum 8.0 28.1 174.0 0.0
Mean
CV (%) 8.3 41.6 494.3 0.95
29 17.4 60.7 64.2
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Fig.2 Variation of pH (Left) and organic matter content (Right) of the road dusts in the different functional areas of Baoshan District, Shanghai,

Southeast China

3.2 xof road dusts

X¢ values of the road dusts on the study areas are in a range of
175.3 t0 3367.3x 1078 m? kg~!, with a mean of 838.7x 1078
m? kg™, about 29 times the magnetic background of the soils
in Shanghai (Hu et al. 2007). Likewise, ¢ of the road dusts in
the different functional areas is highly different (Table 1).

Xt of the industrial road dusts is 1363.0x 1078 m?® kg™
on average, with the coefficient of variation (CV) being
44.8%. A maximum occurs at Site No. 36 nearby some
machinery and metal processing plants, reaching as high as
3367.3x 1078 m’> kg™!, 115.6 times the magnetic background
of the soils in Shanghai (Hu et al. 2007). That at Site Nos.
35, 37, and 41 nearby concrete and steel plants is more than
2038 x 1078 m? kg™!, 70 times the magnetic background.

Xf of the traffic road dusts is 775.9 X 1078 m* kg™! on
average, with the CV being 33.2%. That at Site Nos. 1 and
12 located at the junction between the outer-ring express
way and the Hui-Tai Highway is higher than 1164.7x 1078
m> kg™!, 40 times the magnetic background. The junction
has witnessed an extremely busy traffic.

;¢ of the residential areas is 357.2x 107 m* kg™' on
average, with the CV being 20.0%. The samples of the agri-
cultural road dusts are mostly collected on solidified road
surfaces near vegetable greenhouses and fields, of which,
X1 s 494.3 X 1078 m? kg~! on average, with the CV being
60.7%. Only that at Site No. 63 nearby the intersection of
two traffic lines is anomalously high, 910 x 1078 m? kg~".

Xta% can roughly indicate the concentration of Super-
fine paramagnetic particles (SP) in soils or sediments. It is
believed to contain few SP when x ;4% is <2% (Dearing et al.
1996). In this study, x (4% of the industrial, traffic, residen-
tial, and agricultural road dusts are 0.79%, 0.73%, 1.47%,
and 0.98% on average, respectively.

3.3 Micromorphological features of magnetic
particles separated from road dusts

A high amount of magnetic spherules were observed in the
magnetic fractions separated from the road dusts, mostly in
arange of 10—100 pm in grain size (Fig. 4). The spherules in
the industrial road dusts are more and coarser, ranging from
20 to 100 pm; those in the traffic range from 10 to 80 pm in
grain size; and those in the residential and agricultural are
less and finer, ranging from 10 to 50 pm in grain size.

Moreover, the magnetic spherules highly vary in mor-
phological features, mainly including five surface types,
namely, round, hollow, coral reef-like, encephalon-like, and
mother-son ball surfaces (Fig. 5). The chemical composi-
tion of the spherules, however, is much similar, including
Fe (62.23~74.61%), O (20.81~29.05%), and other elements
of C, Al, Ca, and Si as impurities (Fig. 6).

There are also many non-spherical magnetic particles
separated from the road dusts, showing brick-like, flake-
like, prismatic, rod-like, stalactite-like, and polymeric forms
(Figs. 5 and 7). Like magnetic spherules, most non-spheri-
cal particles are also dominantly composed of Fe (Fig. 7a).
Some are mainly composed of Fe, O, Zn, and Cr (Fig. 7b);
some composed of Fe, Si, Al, and Ca (Fig. 7c); and some
composed of O, Zn, C, Ti, and Fe (Fig. 7d).

3.4 Heavy metal accumulation in road dusts

The contents of Cu, Zn, Pb, Cd, Cr, Co, Ni, Mn, and Fe
in the road dusts of the study areas are 94.1, 368.6, 204.3,
0.622,282.0, 13.6,45.9, and 901.3 mg kg~ ! and 53.1 g kg™!
on average, respectively (Table 2). Cu, Zn, Pb, Cd, and Cr
contents in the road dusts are significantly higher than the
background values of the soils in Shanghai (Wang et al.
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1992). Especially, Zn, Cd, and Pb contents in the road
dusts are 4.3, 4.8, and 8.0 times the soil background values,
respectively.

The contents of heavy metals in the road dusts of the study
areas also vary from site to site, with the CVs of Pb, Cr, Cu,
Zn, Co, Fe, Cd, Ni, and Mn being 186.08%, 66.99%, 63.61%,
63.45%, 62.46%, 56.24%, 49.90%, 49.33%, and 41.12%, respec-
tively (Table 2). These in the different functional areas are highly
different. Zn, Mn, and Fe contents in the industrial road dusts are
significantly higher than those in the residential and agricultural
(p<0.05) (Table 3). Cu, Cr, and Co in the traffic road dusts are
significantly higher than those in the residential and agricultural
(p<0.05). Notably, Cr content in the traffic road dusts is even
higher than that in the industrial. Cr content at Site No. 12 located
beside the outer-ring of expressway is as high as 1453.1 mg kg™,
19.4 times the soil background value. Anomaly of Pb content in
the residential road dusts was also observed. Pb content at Site
No. 61 in the residential areas, for example, reaches as high as
4131.4 mg kg™!, 162 times the soil background value.

4 Discussion
4.1 Magnetic enhancement of urban road dusts

The dust accumulated on solidified road surface is mostly
formed by dry and wet depositions of atmospheric sus-
pended particulate matter. Compared with soil, it reflects
local atmospheric quality more directly. Natural dustfall var-
ies from 80 to 150x 1078 m*kg~!in Xt in the Loess Plateau,
Northwest China (Sun et al. 2001). Modern loess in Lantian
in the northern part of the Loess Plateau, Northwest China,
is about 53 x 107 m® kg~! in X on average (Rao et al.
2015). This means that natural dustfall far away from urban
areas is not so high in magnetic background. In contrast, the
dustfall and road dust in metropolises are often extremely
strong in magnetic signal. As far as we know, x; of the
road dust in West Midlands, UK, is 588.3x 107% m? kg™!
on average (Shilton et al. 2005); that in Asaluye, Iran, is
550.9x 1078 m® kg~! (Abbasi et al. 2020); that in Lanzhou
City, Northwest China, is 442.4x 107 m3 kg~! (Wang
et al. 2012); that in Thessaloniki, Greece, is 408.7 X 1078
m’ kg_1 (Bourliva et al. 2018); and that in Sofia, Bulgaria,
is 264.6x 1078 m? kg™! (Jordanova et al. 2014).

Generally, x; of the road dusts in Baoshan District, Shang-
hai, 838.7x 107® m® kg™! on average, is much higher than that
in the other cities worldwide (Fig. 3). Moreover, the road dusts
vary in magnetic signal in the different functional areas. The
industrial and traffic road dusts are even more significantly
enhanced (Fig. 3). x; of the industrial road dust, 1363.0x 1078
m?> kg~! on average, is significantly higher than that of the oth-
ers, while ¢ of the traffic road dust (p <0.05), 775.9 X 1078
m? kg~! on average, is significantly higher than that of the

Table 3 Contents of heavy metals in the road dusts in the different functional areas in Baoshan District, Shanghai, Southeast China

Fe (gkg™")

Mn (mg kg™")

Co (mgkg™") Ni(mgkg™)

Cd(mgkg™") Cr(mgkg™)

Pb (mg kg™

Zn (mgkg™")

Functional areas  x ¢ (X 1078 m? kg‘l) Cu (mg kg‘l)

79.1+£32.9a

1151.2+412.2a

449+17.3ab

17.2 +£8.60a

0.59+0.20ab 277.1+145.8b 14.6+10.6ab 52.4+28.6a

113.0+53.1b

139.0+76.4a 309.2+150.2b

77.1.0+42.5b 522.2+316.4a

1363.0+617.8a

Industrial
Traffic

632.0+155.9b 30.9+9.9¢c

831.9+321.5b 49.7+16.0b

9.03+£2.03c

168.0+64.2b
229.0+92.4b

0.74£0.56a

188.6+105.0b 0.65+0.25ab 389.7+261.7a
68.9+37.6b 270.5+142.7b 428.8+840.2a

775.9+261.1b

844.9+263.9b 34.8+20.7bc

36.4+17.4b

162.2+53.7b

75.8+28.7b 291.8+61.6b

357.2+146.0c +

Residential

45.6+21.1ab

10.8+5.16bc

0.52+0.11b

494.3+307.3c

Agricultural

Data in the table are expressed as mean + standard deviation (SD); the data in the same column marked with different lowercase letters indicate significant difference (p <0.05)
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Fig.3 Variation of magnetic susceptibility () of the road dusts in
the different functional areas of Baoshan District, Shanghai, South-
east China

residential and agricultural road dusts (p <0.05) (Fig. 3). In
addition, the industrial road dust is more alkaline and are sig-
nificantly higher in pH and organic matter content than the oth-
ers (p <0.05) (Fig. 2). This highly suggests that the accumula-
tion of magnetic substances in the road dusts of the study areas
is mainly attributed to the deposition of alkaline Fe-bearing
dustfall emitted from industries and vehicles.

SP in soil are dominantly produced during the pedogenic
weathering processes, while multi-domain (MD) and stable
single-domain (SSD) grains are mainly formed from anthro-
pogenic activities. All of the road dust samples of the study

Fig.4 Micromorphological
characteristics of magnetic par-
ticles separated from the road
dusts in the industrial a, traffic
b, residential ¢, and agricultural
d areas in Baoshan District,
Shanghai, Southeast China

@ Springer

areas have (% less than 4%, while 89.3% have x ;% less than
2%. The industrial and traffic road dusts are only 0.76% and
0.73%in x 1y% on average, respectively. It fully suggests that the
road dusts in Baoshan District are dominantly enriched in coarse
magnetic particles, originating from industrial and vehicular
emissions. The accumulation of magnetic substances in the road
dusts highlights a fact of the continuous settlement of anthropo-
genic magnetic particles in the urban environment.

4.2 Tracking the sources of magnetic particles
in urban road dusts

Magnetic spherules, 5-150 pm in grain size, were pre-
viously observed in urban topsoils and atmospheric sus-
pended particles in Baoshan District, Shanghai (Hu et al.
2022). In this study, a high number of similar magnetic
spherules were also found in the road dusts (Fig. 4). The
spherules are mostly produced during high-temperature
combustion, which are commonly seen in the urban soil
and environment around smelting industries and coal-fired
power plants (Wang et al. 2019). It was also found in auto-
mobile exhausts (Aguilar et al. 2021). Fe-rich spherules
are usually released during industrial smelting and ore
(coal) combustion as a round shape is the lowest in energy
when high-temperature molten iron or ore are condensed.

In this study, magnetic spherules observed in the indus-
trial and traffic road dusts are more in content r and coarser
in grain size, mostly ranging from 50 to 100 pm. These in
the residential and agricultural are less and finer, mostly
ranging from 10 to 20 pm, as relatively far away from
industrial smelting and coal-burning power plants (Fig. 4).
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Fig.5 Micromorphological characteristics of magnetic spherules
a—f and non-spherical particles g—i separated from the road dusts in
Baoshan District, Shanghai, Southeast China. The spherules show
round and smooth a, hollow b and ¢, coral reef-like d, and encepha-

This further suggests that magnetic spherules accumulated
in the road dusts mostly come from industrial and vehicu-
lar emissions.

Magnetic spherules in the road dusts vary in micromor-
phological features, of which, five types were identified
(Figs. 5 and 7). Some spherules show smoothly round sur-
face, some have holes in body, some have encephalon-like
or reef-like surfaces, and some are adhered with smaller pel-
lets, which are basically comparable to these separated from
urban topsoils as previously reported (Gunawardana et al.
2012; Jose and Srimuruganandam 2021; Lu et al. 2016). The
variation in shape and structure of spherules is mainly due
to the change of forming conditions, such as temperature,
chemical composition, and cooling time (Blaha et al. 2008).
The spherules with hollow surface (Fig. 5b, c¢), for example,
reflects the escape of gases during high-temperature con-
densation, and these with encephalon-like surface (Fig. Se)
may indicate the processes of high-temperature melting and
solidification. All reflect the characteristics formed by indus-
trial high-temperature combustion or fossil burning, consist-
ent with many previous results (Gunawardana et al. 2012;
Jose and Srimuruganandam 2021; Lu et al. 2016).

lon-like e surfaces, as well as a big ball adhered with tiny balls f. The
non-spherical particles show brick-like g, flake-like h, and stalactite-
like i forms

The chemical composition of magnetic spherules is much
similar, in which, Fe content is between 62.23 and 74.61%,
and O is between 20.81 and 29.05% (Fig. 6). According to
the chemical composition, magnetic spherules can be further
divided into two types. The first is dominantly composed
of Fe oxides, with Fe and O accounting for about 95%; the
second is also mainly composed of Fe oxides, accompanied
by a small amount of Al, Mg, Ca, Si, and other elements as
impurities (Fig. 6). It was found that the first type mostly
appears in the industrial areas, and the second mostly occurs
in the traffic area.

Magnetic spherules produced during industrial high-
temperature combustion are mainly composed of Fe oxides
(Magiera et al. 2011). These in fly ashes produced by power
plants are also dominated by Fe oxide minerals, formed by
the oxidation process of iron-bearing minerals (Strzatkowska
2022). Magnesite is the dominant mineral phase of mag-
netic particles in the road dust collected in Merida, Mexico
(Aguilar et al. 2021). The parameters of the Mossbauer spec-
tra indicated that anthropogenic magnetic particles in the
urban topsoils are magnetite-like minerals (Magiera et al.
2021). Magnetite, nicopyrite, and other Fe oxide minerals

@ Springer
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Fig. 6 Micromorphological
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were identified in the magnetic fractions of urban soils in ~ (Wang et al. 2019). A flake-shaped particle (Fig. 7a), mainly
Shanghai (Hu et al. 2022). composed of Fe (97.32%), C (1.11%), O (0.55%), Si (0.24%),

Non-spherical magnetic particles commonly occur in  and Al (0.17%) (Fig. 7a), was found beside a machinery fac-
urban road dust intensively impacted by industrial and traffic ~ tory in Gucun Town, possibly emitted from the nearby iron
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processing factory. A rod-shaped magnetic particle (Fig. 7c),
mainly composed of Fe, Al, Ca, Fe, Mg, C, and Si, was
observed beside the outer-ring expressway, whose chemi-
cal composition and proportion are much similar to that of
automotive brake pads (Table 4) and may be derived from
the wearing of brake pads. This was also reported by a pre-
vious study (Kim et al. 2007). This particle also contains
some Pb (about 0.94%) (Fig. 7¢), which may be attributed
to the wearing of axle bearing alloys and wheel balancing
devices (Adamiec et al. 2016). Generally, magnetic particles
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formed from the friction of vehicular parts are rough and
angular in surface.

A prismatic-shaped magnetic particle, containing high
content of Cr (19.97%), was also observed in the road dusts
on the sides of the outer-ring expressway (Fig. 7b). Mag-
netic particles, with high content of Cr (13%) and irregu-
lar in shape, exist in road dust in the urban and industrial
areas in Thessaloniki, Greece (Bourliva et al. 2016). Cr in
the road dusts mostly comes from the peeling off automo-
bile coatings, wearing of automotive bodies and emissions
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Table 4 Composition of chemical elements in the commercial brake pads (Park et al. 2021) and a rod-like magnetic particle (Fig. 7¢) in the road

dusts in Baoshan District, Shanghai, Southeast China

Samples C (Wt%) O (Wt%) Fe (wt%) Ca (Wt%) Mg (wt%) Al (Wt%) Si (wt%)
Brake pads 12.00~43.60 10.20~27.80 5.07~13.64 0.55~9.20 0.63~2.66 0.92~3.25 2.40~15.80
Magnetic particle 16.32 39.39 13.81 7.45 2.27 6.22 11.78

from stainless steel manufacturers (Bourliva et al. 2016;
Wang et al. 2012). According to a test, the content of
Cr(V]) in three automotive materials is in a range of 16 and
92 mg kg™! (Wang et al. 2020). Cr content of the road dusts
in the traffic area of this study is 315.5 mg kg~! on average.
Appreciatively, high content of Cr in the road dusts beside
the outer-ring expressway intensively impacted by traffic is
attributed to non-exhaust automotive emissions.

Another magnetic particle polymeric in shape in the traf-
fic road dust has high content of Zn, reaching as high as
22.31% (Fig. 7d). ZnO is added to the rubber of tires (Adachi
and Tainosho 2004). Zn content in the tire-treading particles
attains as high as 9000 mg kg~!, in line with the expected
value of synthetic rubber, and that in the road dusts usually
ranges from 300 to 2600 mg kg~! (Kreider et al. 2010). Zn
content in the road dust, where the Zn-rich particle appears,
is 377.1 ppm, coinciding with previous studies (Kreider
et al. 2010). This suggests that the road dust has ever been
added with tire-wearing particles. Zn level in the environ-
ment may also be increased by the emissions of automo-
tive exhausts, and antioxidants and dispersants in lubricants
(Charlesworth et al. 2011).

4.3 Heavy metal accumulation in urban road dusts
and its correlations with magnetic signal

Urban soils are often complicated in origin. Besides being
inherited from parent rocks, it can also be deeply affected
by the filling of guest soils, discharge of solid wastes, and
deposition of atmospheric particles. Urban road dusts, on the
contrary, solely come from the dry and wet depositions of
atmospheric suspended particles and can reflect the presence
or content of atmospheric magnetic pollutants more directly.

Compared with urban soils, therefore, urban road dusts
are often enriched in more heavy metals. Cu, Zn, Pb, Cd,

Cr, Ni, and Mn contents in the road dusts of this study are
significantly higher than those in the urban soils in the
same areas, as previously reported (Hu et al. 2022). The
road dusts in urban areas mainly consist of anthropogenic
pollutants, containing high content of toxic heavy metals.
The SPI of heavy metals in the road dusts of the study
areas is in the decreasing sequence of Pb>Cd >Zn> Cr
> Cu>Mn > Ni> Co (Table 5), of which, Cu, Zn, Pb, Cd,
and Cr are > 3, reflecting the degree of heavy pollution.
The road dusts in the different functional areas are dif-
ferent in the SPI. The industrial road dusts are heavily
polluted by Zn, Pb, Cd, and Cr, moderately polluted by
Cu and Mn, and slightly polluted by Co and Ni. The traffic
road dusts are heavily polluted by Cu, Zn, Pb, Cd, and Cr
and slightly polluted by Co, Ni, and Mn. The residential
road dusts are heavily polluted by Zn, Pb, and Cd, mod-
erately polluted by Cu and Cr, and lightly polluted by Ni
and Mn. The agricultural road dusts are heavily polluted
by Zn, Pb, Cd, and Cr, moderately polluted by Cu, and
lightly polluted by Ni and Mn. Overall, Pb, Cd, Zn, Cer,
and Cu are highly accumulated in the road dusts. The PLI
analyses also indicate that 30.3% of the road dusts in the
study areas are heavily polluted by heavy metals, 44.3%
moderately polluted, and 25.4% slightly polluted.
Magnetic particles emitted from industry, traffic, and coal
burning usually contain or adsorb toxic heavy metal elements
(Ali et al. 2017; Yang et al. 2020). The deposition of mag-
netic particles, therefore, leads to the enhancement of magnetic
strength and heavy metal content in urban topsoils simultane-
ously (Golden et al. 2017; Oudeika et al. 2020). The enrichment
of magnetic particles and heavy metals were observed in the
surface soil of an industrial park in Izmit, Turkey, where s is
significantly correlated with the content of Cu, Pb, Cr, and Ni
(Canbay et al. 2010). The spatial distribution of ; and heavy
metal content in the urban green land in Kaifeng City, China, is

Table 5 Single-factor Pollution

. Functional areas SPI PLI
Index (SPI) and Pollution Load .
Index (PLI) of the road dusts Cu Zn Pb Cd Cr Co Ni Mn
in Baoshan District, Shanghai, -y 3 ) 270 607 443 453 369 115 164 206 288
Southeast China
Traffic 4.86 3.59 7.40 4.98 5.20 1.35 1.40 1.49 3.14
Residential 241 3.14 16.81 5.68 2.24 0.71 1.14 1.13 2.49
Agricultural 2.65 3.39 6.36 4.01 3.05 0.85 1.43 1.51 2.45

Baoshan District 3.30 4.28 8.01 4.79 3.76 1.07 1.44 1.61 2.90
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Fig.8 Correlations between
magnetic susceptibility (x )
and Single-factor Pollution
Index (SPI), and Pollution Load
Index (PLI) in the road dusts

in Baoshan District, Shanghai,
Southeast China
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closely related to the intensity of anthropogenic impacts, where
X is significantly correlated with the content of Cu, Zn, Pb,
Cd, Cr, and Ni (Liu et al. 2016). x; of the urban topsoils in Bao-
tou City, southern Mongolia Plateau, China, is significantly cor-
related with the content of Zn, Pb, Cr, Mn, and Fe (Wang et al.
2018). The urban soils highly impacted by industrial activities
in Baoshan District, Shanghai, were investigated 10 years ago,
in which, s positively significantly correlated with the con-
tent of Pb, Cd, Ni, and Mn (r=0.781, 0.473, 0.365, and 0.835,
respectively; n=27; p<0.01), and also significantly correlated
with Cu, Zn, and Cr (r=0.227, 0.214, and 0.218, respectively;
n=27; p<0.05) (Hu et al. 2007). In recent years, the same
areas in Baoshan District were investigated again, where more
significant correlations between  r and content of Cu, Zn, Pb,
Cd, Cr, Ni, Mn, and Fe were observed (r=0.726, 0.873, 0.873,
0.726, 0.873, 0.873, 0.726, 0.873, 0.726, 0.873, and 0.654
respectively; p <0.01) (Hu et al. 2022). This suggests the con-
tinuous deposition of metal-containing magnetic particles in
the industrial/urban areas.

Xt of road dusts near the largest copper smelter in South-
east Europe is 325.65 x 1078 m® kg™, which is significantly
positively correlated with the content of Cu, Zn, Pb, Cd, and
Ni and also strongly correlated with the (PLI) (Jordanova
et al. 2021). That of street dusts in Warsaw, Poland, rang-
ing from 470 to 1025x 10~® m® kg™, is significantly posi-
tively correlated with the content of Zn, Cd, Co, Ni, and Mn,
where the content of anthropogenic magnetic particles is
closely related to the flux of vehicles (Dytlow et al. 2019).
That of road dusts in Lanzhou, China, 449.88 x 1078 m? kg ™!
on average, is positively significantly correlated with the
content of Cu, Zn, Pb, Ni, and Mn (Wang et al. 2012).

In this study, x; of all the road dusts of the study areas
is positively significantly correlated with the content of Cu,
Zn, Cr, Co, Ni, Mn, and Fe (r=0.320, 0.459, 0.497, 0.527,
0.641, 0.708, and 0.871, n=122; p<0.01), and is also posi-
tively correlated with PLI value (r=0.613, p <0.01) (Fig. 8),
further proving that the magnetic signal of urban road dusts
can indicate heavy metal pollution.

X1 of the industrial, traffic, residential, and agricultural
road dusts is all significantly correlated with their PLI

values (r=0.758, 0.827, 0.506, and 0.741, respectively;
p<0.01 or 0.05). However, the correlations between
X1 and heavy metal content of the road dusts in the four
areas are often different. x; of the industrial road dusts is
positively significantly correlated with the content of Cu,
Pb, Cd, Cr, Co, Ni, Mn, and Fe (p <0.01); that of the traffic
road dusts is positively significantly with Cu, Zn, Cd, Cr,
Co, Ni, Mn, and Fe (p <0.01); that of the residential road
dusts is only positively significantly with Cu, Cr, and Fe
(p<0.01) and Ni (p <0.05); and that of the agricultural road
dusts is positively significantly with Cd, Cr, Co, Ni, and Fe
(p<0.01) (Table 6).

Generally, the industrial and traffic road dusts, highly
impacted by industrial and vehicular emissions, and more
enriched in anthropogenic magnetic particles, have more
significant correlations between x ;; and heavy metal con-
tent. For example, the industrial road dusts located near
the Baosteel Machinery Factory at Site No. 36 reach as
high as 3367.3x 10~ m® kg~! in X correlated with high
content of Zn (1308.8 mg kg™!), Cr (431.8 mg kg™'),
Mn (2090.1 mg kg™!), and Fe (127.1 g kg™!). The traffic
road dusts beside the outer-ring expressway at Site No.12
is 1482.0x 107® m® kg™'in ;, correlated with high con-
tent of Cu (349.4 mg kg~!), Zn (475.7 mg kg™!), Cr
(1453.1 mg kg™1), Co (16.0 mg kg™"), Ni (95.7 mg kg™,
Mn (920.0 mg kg™!), and Fe (84.4 g kg™!).

For comparison, the agricultural and residential road
dusts are lower in ;¢ and have weak correlations between
X1t and heavy metal content, as they are relatively far
away from industrial parks and transportation hubs,
and contain lower content of anthropogenic magnetic
particles.

4.4 Principal component analyses (PCA)

Xjs value and content of heavy metals (Cu, Zn, Pb, Cd, Cr,
Co, Ni, Mn, and Fe) in the 122 road dust samples of the study
areas are further analyzed using the PCA method (Fig. 9).
The results indicated that the three components contribute
to 72.033% of the total variance (Table 7).

Table 6 Correlation between magnetic susceptibility ( ;) and heavy metal content of the road dusts in different functional areas in Baoshan Dis-

trict, Shanghai, Southeast China

Functional areas Cu Zn Pb Cd Cr Co Ni Mn Fe

Xif Industrial 0.5807%* 0.165 0.491%*  0.577** 0.702%* 0.623%* 0.707%* 0.684%* 0.744%*
Traffic 0.917%* 0.614%* -0.322 0.547%* 0.876%* 0.491%* 0.795%* 0.574%* 0.8137%:*
Residential 0.665%* 0.179 -0.122 0.224 0.462%* 0.437 0.589* 0.341 0.776%*
Agricultural 0.169 0.418 0.095 0.626%* 0.749%* 0.671%* 0.758%:* 0.329 0.869%*%*
Baoshan District 0.320%* 0.459%* -0.154%* 0.171 0.497%* 0.527%* 0.641%* 0.708** 0.8717%*

*Indicates the significant level ( p <0.05)
**Indicates the extremely significant level (p <0.01)

@ Springer



Journal of Soils and Sediments (2024) 24:1969-1987

1983

1.0 Cu o
° o
Co
%o
Ni
0.5 Ma
cd o af
«Q o 0©
+ Fe
£
g, 0.0 .
£ P" o
H )
O
0.5
10+
As

-85 098

[
Companens |

(X3

b 3
12 19 Coﬂon‘*“‘

Fig.9 Rotational spatial distribution of magnetic susceptibility ()
and heavy metal contents in the road dusts in Baoshan District,
Shanghai, Southeast China

Principal component 1 (PC1) explains 46.671% of the
total variance, with an initial eigenvalue of 4.667. xy, Zn,
Mn, and Fe show high positive loads in the PC1. Moreover,
they are positively significantly correlated with each other
(p<0.01) (Table 8), implying their similar provenance. Fe-
containing particles are highly emitted from burning cylin-
ders and frictions of brakes (Dytlow et al. 2019). Zn mostly
comes from the wearing of treading tires and corrosion of
galvanized automobile parts (Iijima et al. 2007; Lu et al.
2017), and Mn tightly combined with Fe is emitted from

Table 7 Principal component analyses (PCA) on magnetic suscepti-
bility () and heavy metal contents in the road dusts in Baoshan Dis-
trict, Shanghai, Southeast China

Elements Component 1 Component 2 Component 3
Xit 0.880 0.308 -0.119
Cu 0.228 0.871 —0.058
Zn 0.688 —0.069 0.268
Pb -0.122 —0.098 0.826
Cd 0.198 0.361 0.681
Cr 0.228 0.871 —0.058
Co 0.427 0.635 0.058
Ni 0.555 0.633 0.129
Mn 0.722 0.393 -0.074
Fe 0.823 0.277 —0.065
Total eigenvalues 4.667 1.384 1.153
Percentage of total 46.671 13.836 11.526
variance
Cumulative variance 46.671 60.057 72.033

(%)

industrial smelting and coal combustion (Men et al. 2018).
Appreciatively, the PC1 is mainly contributed by Fe-con-
taining magnetic particles in the road dusts emitted from
vehicles and industrial smelting.

Principal component 2 (PC2) explains 13.836% of the
total variance, in which, Cu, Cr, Co, and Ni show high posi-
tive loads. Likewise, the four are positively significantly cor-
related with each other (p <0.01) (Table 8). Cu and Cr in
the road dusts may come from the fractions of automobile
brakes (Hassan 2012; Thorpe and Harrison 2008). Cr may
also come from the wearing of Cr coatings in vehicular body
or exhausts from metallurgy and tanning. Co may stem from
the industrial production of magnets, catalysts, alloys, and
vehicular batteries (Hao et al. 2017; Sun et al. 2019). Ni
may come from fossil fuel combustion and metal smelting
(Duong and Lee 2009; Manno et al. 2006). In short, the PC2
is also contributed by the emissions from industry and traffic
but is more complicated in sources.

Principal component 3 (PC3) explains 11.526% of the total
variance and shows significant loads for Pb and Cd (Table 8).
Pb content is only positively significantly correlated with
Cd content (p <0.01), and not significantly with x; and the
other heavy metals (p>0.05) (Table 8). This suggests that Pb
is different in source from magnetic particles and its bearing
heavy metals. The high content of Pb but low x in the road
dusts besides a residential site at Dachang Town of the district
suggest the invasion of non-magnetic Pb pollutants such as
lead-rich paint, batteries, furniture parts, and other domestic
garbage. This coincides with an extremely high Pb content but
non-high ¢ in a residential topsoil of the same areas, as previ-
ously reported (Hu et al. 2022). Cd is not significantly corre-
lated with +; either. Cd may exist in non-magnetic industrial
or building dusts (Schwab et al. 2014; Wang et al. 2022, 2016).
In short, the PC3 in the road dusts may reflect non-magnetic
heavy metal sources.

4.5 Using v of urban road dust for monitoring
urban environment

Solidified roads in Shanghai are mostly cleaned twice a
week. The constituents of road dust, therefore, almost solely
stem from the dry and wet atmospheric deposition. In this
study, x ¢ of the road dusts in the four areas is almost linearly
correlated with Fe content (n=122, r=0.871; p<0.001),
fully suggesting that the magnetism of road dust is com-
pletely contributed by Fe-bearing particles, combined with
toxic heavy metals. Such fine metal-bearing particles are
suspended in the urban atmosphere, which pose threat to
human health. Compared with routine chemical analyses,
the magnetic measurements of samples are simple, rapid,
and low-cost. Through monitoring magnetic signal of road
dusts, we can quickly know the concentration of suspended
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Table 8 Correlation analyses

between the two of magnetic Xit Cu Zn

susceptibility (x;;) and heavy xie 1

metal content of the road dusts Cu 0.320%*% 1

%n the differen.t fqnctional areas Zn  0459%% 0.137 1

lsnolj;ziinczﬁgwt’ Shanghal, Pb —0.154 0014  0.019
Cd 0.171 0.369**  0.206*
Cr  0.497*% 0.801** 0.149
Co  0.527#*% 0.557#* 0.322%*
Ni  0.641%*% 0.554%* (0.329%*
Mn 0.708%% 0.342%*% (0.303**
Fe  0.871%*% 0.297**% 0.360**

Pb Cd Cr Co Ni Mn Fe
1

0.238** 1

—0.082 0.238** 1

—0.079 0.301** 0.518** 1

—0.046 0.421** 0.615** 0.600%* 1

—0.124 0.243** 0.455** 0.569** 0.613** 1

—0.111 0.253** 0.487** 0.370*%* 0.569** 0.647** 1

*Indicates the extremely significant level p <0.05

**Indicates the extremely significant level p <0.01

metal-bearing particles in the urban atmosphere and further
track the sources of emissions. The deposition of natural
dust can be predicted from climatic data after the establish-
ment of models (Bagheri-Bodaghabadi and Jafari 2022).
Magnetic parameters of road dust may also contribute to
predict the fluxes of anthropogenic emissions in the urban
areas. It should be further studied however.

5 Conclusions

The road dusts in Baoshan District of Shanghai are alkaline,
of which, y; is 838.7x 107® m? kg™' on average, about 30
times the magnetic background of the soils in Shanghai. x ¢
of the industrial and traffic road dusts is significantly higher
than that of the others, suggesting the significant influences
of industrial and traffic emissions on urban ground. 4%
of all the road dusts is less than 4% and that of 89.3% is
less than 2%, indicating the accumulation of anthropogenic
coarse magnetic particles.

Magnetic spherules, mainly composed of Fe oxides, com-
monly exist in the road dusts of Baoshan District, which are
more in content and coarser in grain size in the industrial and
traffic areas, implying that they mostly come from industrial
and vehicular emissions. Flake-shaped, rod-like, and other
irregular magnetic particles were also observed in the road
dusts, which may originate from metal processing and wear-
ing of vehicular brake pads, tires, and other body materials.

The SPI analyses indicate that the road dusts in Baoshan
District are heavily polluted by Cu, Zn, Pb, Cd, and Cr. ¢ of
the road dusts is significantly correlated with the contents of
Cu, Zn, Cr, Co, Ni, Mn, and Fe (p <0.01). Moreover, s of
the road dusts is significantly positively correlated with PLI
value (p <0.01), suggesting that x ;; can indicate the accumu-
lation of heavy metals in the road dusts effectively. The PCA
also illustrates the presence of artificial Fe-bearing magnetic
particles combined with toxic heavy metals in the road dusts.
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