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Abstract
Purpose A number of studies have been conducted on the occurrence, transport, and fate of microplastics in soil environ-
ments. The complexity of matrices presents significant challenges in investigating microplastics in soil, highlighting the need 
for further research and development in this field. In this review, sampling and pretreatment methods available for detect-
ing and further studying microplastics in soil environments are primarily focused with a minor discussion on their various 
sources and behavior. Finally, based on the current research findings, the directions of future research are proposed as well.
Methods Based on a comprehensive search of the available database, we provide updated information on the sources and 
behavior of microplastics in the soil and the analytical techniques available for their study.
Results Previous studies have predominantly focused on microplastic contamination and its levels in various environments. 
We propose that the focus of microplastic research needs to be redirected to allow a better understanding of the behavior and 
impact of soil microplastics. The novel approach involves modeling the behavior of microplastics in the soil and associated 
environmental impacts and risks and developing standardized testing methods. These tools will provide a comprehensive 
strategy for creating a healthy and safe environment.
Conclusions As plastic production increases worldwide, the accumulation of microplastics in the soil also increases, with potentially 
adverse implications for food security, human health, and climate change. A comprehensive strategy for rational delineation of 
microplastic behavior in the soil, as presented here, is needed to counteract and control the environmental impact of microplastics.

Keywords Soil microplastics · Polyethylene terephthalate · Polyamide · Polyvinyl chloride · Microplastic behavior

1 Introduction

Plastics are highly versatile and functional materials. Global 
plastic production continually increases, with 356 million 
tons produced in 2018. Of these, only 29.1 million tons have 

been collected, with 32.5% recycled and 24.9% landfilled. The 
amount of plastic waste, that remains uncollected and continues 
to be used or improperly disposed of, exacerbates the environ-
mental burden of plastics. Approximately 9 to 23 million tons 
of plastic waste enter rivers, lakes, and oceans each year, while 
13 to 25 million tons of plastic waste are discharged into terres-
trial environments (Lee and Cha 2022). By 2050, an estimated 
260 million tons of plastic waste will be generated worldwide, 
with at least 45% expected to enter the environment without 
being recycled or incinerated (Geyer et al. 2017; IEA 2018).

Microplastics are high-molecular-weight solid particles 
(typically < 5 mm in size) that do not dissolve in water. There 
are two types of microplastics, primary and secondary. The 
former, such as microbeads used in cleansers and cosmetics, 
are intentionally produced, whereas the latter are generated 
through physical and chemical weathering (i.e., fragmenta-
tion and degradation) of larger plastics in the environment 
(Andrady 2011; Masura et al. 2015). The biodegradation rate 
of microplastics is overly low; they are widely distributed in 
our environment, including the soil.
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Microplastics enter the soil and accumulate therein via 
various routes, e.g., resulting from agricultural activities, 
such as sludge and organic fertilizer use. They originate 
from different sources, such as tire dust, the atmosphere, 
and streams. Up to 90% of microplastics present in the 
sewage accumulate in the sludge, with microplastic sludge 
concentrations ranging from 1,500 to 56,400 particles/kg (Li 
et al. 2018; Mintenig et al. 2017). Further, organic fertilizers 
contain up to 895 microplastic particles/kg (Weithmann et al. 
2018), suggesting that long-term use of sludge and organic 
fertilizers can lead to microplastic contamination of soils. A 
recent study revealed the presence of up to 15.2 polyethylene 
(PE) microplastic particles per liter of groundwater in karst 
regions, e.g., the Salem Plateau and Driftless Area (the 
United States) (Panno et al. 2019). As the soil is a repository 
of all substances in the Earth's environment, it likely contains 
substantial amounts of microplastics. These microplastics 
adversely impact the ecosystem via various pathways, 
e.g., ingestion of plastics by animals, biomagnification 
and bioaccumulation in the food chain, absorption and 
accumulation of endocrine-disrupting substances contained in 
plastic additives, and exposure to pollutants (Cole et al. 2011).

Several research studies have comprehensively reviewed the 
various sources and distribution, the migration, transforma-
tion, and ecological impacts of microplastics in soil (Sajjad 
et al. 2022; Yang et al. 2021; You et al. 2022; Zhao et al. 2022). 
However, the research progress of microplastics in the soil is 
restricted by inherent technological inconsistencies and diffi-
culties in methods to identify and quantify their particles due 
to the complex matrices of soil. This review focuses sampling 
and pretreatment methods available for detecting and further 
studying microplastics in soil environments with a minor dis-
cussion on their various sources and behavior. We also discuss 
the implications of the current research findings and propose 
directions for future research for an improved understanding 
of the environmental impact of these pollutants.

2  Literature survey and discussion

2.1  Occurrence of microplastics and their behavior 
in the soil

2.1.1  Microplastic contamination in the soil

Microplastics are widely distributed in the environment, 
primarily attributed to the extensive production, consump-
tion, and disposal of plastic products. They enter the soil 
due to various anthropogenic activities (Fig. 1). Corradini 
et al. (2019) broadly classified the sources of microplastics 
in the soil as industrial, agricultural, and others (Table 1). 
Industrial sources include tire dust, asphalt, various road 
and building paints, traffic safety facilities, artificial turf, 

and sports facility flooring (Dehghani et al. 2017; Dris et al. 
2016; Dris et al. 2017; Henseler et al. 2019; Magnusson 
et al. 2016; Rezaei et al. 2019). In agriculture, the use of 
agricultural machinery, plastic mulch, polytunnels, agricul-
tural waste, sewage sludge containing microplastics, organic 
fertilizers, controlled-release fertilizers, soil amendments, 
contaminated irrigation water, and flooding all contribute to 
large amounts of microplastics (Blasing and Amelung 2018; 
Carr et al. 2016; He et al. 2018; Rodríguez-Seijo et al. 2019; 
Weithmann et al. 2018). Microplastics are also present in 
a wide range of living environments, e.g., in clothing, fur-
niture, or household items, and are released during waste 
incineration; they are also contributed by landfills and traf-
fic (Dris et al. 2015, 2016; Liebezeit and Liebezeit 2015).

In soils, microplastics occur in various forms. High lev-
els of PE, polypropylene (PP), polystyrene, and polyam-
ide (PA) microplastics are detected in agricultural areas. 
In contrast, styrene-butadiene rubber is present in soils 
near roads and residential areas, primarily arising from 
the wear and tear of automobile tires (Choi et al. 2021). 
In industrial areas in Sydney (Australia), polyvinyl chlo-
ride (PVC) was detected in the soil (Fuller and Gautam 
2016). Generally, the types of contaminating plastics vary 
with their sources, typically present on-site or located in 
adjacent areas.

Studies on soil microplastic distribution have been con-
ducted in several countries (Table 2). Most such studies 
originate in China because of its large population, vast ter-
ritory, and high plastic production. Another critical reason 
may be that plastic pollution control receives high atten-
tion and more studies are conducted. Further, most studies 
on soil microplastics have been conducted in agricultural 
areas, which are the main contaminated environments 
owing to the abundance of plastic sources, e.g., fertilizers 
and mulch, and their role as primary contributors to human 
and environmental microplastic exposure. In China, plastic 
concentrations of 40 ± 126 to 100 ± 141 particles/kg were 
detected in agricultural lands in the northern Loess Plateau 
(Han et al. 2019), and 10.3 ± 2.2 to 78.00 ± 12.91 particles/
kg were detected in farming lands in Shanghai (Liu et al. 
2018; Lv et al. 2019). The highest concentration of micro-
plastics in agricultural soil was detected in the Wuhan 
region, with 4.3 ×  104 to 6.2 ×  105 particles/kg (Zhou 
et al. 2019). These studies indicate that the distribution 
of microplastics in agricultural soil varies regionally in 
China. The microplastic concentration in agricultural soils 
of Mittelfranken, Germany was reported to be 0.34 ± 0.36 
particles/kg (Piehl et al. 2018). In South Korea's Yongin 
region, concentrations ranged from 81 to 18,870 particles/
kg (Kim et al. 2021), and in the Yeoju region, it was 664 
particles/kg (Choi et al. 2021). The variation in reported 
microplastic concentrations across regions and countries 
can be attributed to not only differences in the extent of 



781Journal of Soils and Sediments (2024) 24:779–792 

1 3

soil microplastic contamination but also methods of sam-
pling, pretreatment, and analysis.

Microplastics are present not only in agricultural lands but 
also in residential areas, roads, and forested areas. In forested 
regions in Wuhan, China, 9.6 ×  104 to 6.9 ×  105 microplas-
tic particles/kg were detected (Zhou et al. 2019). In contrast, 
184 ± 266 particles/kg of microplastics were detected in 

grasslands in the Santiago Province, Chile (Corradini et al. 
2021). In the case of Yeoju (South Korea), 500 microplastic 
particles/kg were detected in residential areas and 1,108 par-
ticles/kg in road soils, indicating that human residential and 
living environments contain microplastics (Choi et al. 2021). 
Additionally, microplastics were detected in the soil of 29 
floodplains in Switzerland (Scheurer and Bigalke 2018), and 

Fig. 1  Sources and occurrence of microplastics in the soil

Table 1  Major sources of microplastics in the soil

Major sources Major pollutants References

Industrial activities Tire dust, asphalt, paints from roads and buildings, traffic 
safety facilities, artificial turf, sports facility flooring, 
household plastic waste, and airborne microplastics

Dehghani et al. (2017), Dris et al. (2016), Henseler et al. 
(2019), Magnusson et al. (2016), Sommer et al. (2018), 
Unice et al. (2019), Prata (2018), Rezaei et al. (2019), 
Scheurer and Bigalke (2018)

Agricultural activities Use of agricultural machinery, plastic mulch, polytunnels, 
agricultural waste, sewage sludge, organic fertilizers, 
controlled-release fertilizers, soil amendments, 
contaminated irrigation water, and flooding

Carr et al. (2016), Heuchan et al. (2019), Hurley and 
Nizzetto (2018), Rodriguez-Seijo et al. (2019), 
Weithmann et al. (2018), Blasing and Amelung (2018), 
Ng et al. (2018), He et al. (2018), Steinmetz et al. (2016)

Other Clothing, home furniture, waste incineration, landfills, and 
traffic-emitted particles

Dris et al. (2015, 2016, 2017), Liebezeit and Liebezeit 
(2015)
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high concentrations of microplastics were detected in vacant 
lots in Wuhan, China (Zhou et al. 2019). Hence, microplastics 
are distributed widely in soils, such as soils of agricultural 
lands, residential areas, and roads, highly impacted by anthro-
pogenic and industrial activities, and soils relatively less 
affected by these activities, such as those in forested areas.

2.1.2  Transport and fate of microplastics in the soil

The types of microplastic behavior in the subsurface soil 
environment can be divided into three categories, i.e., 
surface migration, infiltration in unsaturated zones, and 
transport in saturated media (Kim et al. 2019) (Table 3). 
Although microplastics are believed to be stored or show 
delayed mobility in soils and sediments, the possible mobil-
ity of extremely small (µm to nm) microplastic particles in 
the subsurface environment needs to be investigated in detail 
(Alimi et al. 2018).

The transport of microplastics accumulated in the soil 
via surface runoff into streams and groundwater during pre-
cipitation can be explained or predicted based on theories 
related to soil erosion and sediment transport (Nizzetto et al. 
2016). Further, research on the transport of microplastics in 
unsaturated and saturated media, based on studies of colloid 
or nanoparticle behavior, has made considerable progress 
in recent decades (Alimi et al. 2018; Hüffer et al. 2017). 
The application of biosolids in agricultural fields is indeed 
a significant pathway for the transfer and accumulation 
of microplastics in soils. In Canada, the concentration of 
microplastics in biosolids used in agriculture was reported 
to range from 8.7 ×  103 to 1.4 ×  104 MP/kg and the annual 
loading of microplastics entering agricultural fields due to 
the application of biosolids was estimated to be 4.1 ×  1011 
to 1.3 ×  1012 particles (Crossman et al. 2020). Furthermore, 
it has been observed that agricultural fields where biosol-
ids are used more frequently and in larger quantities tend 
to have higher concentrations of microplastics. This can be 
explained by the fact that some of the microplastics present 
in biosolids were retained in the soil, leading to an accumu-
lation of microplastics in those areas over time (Table 4).

Understanding the distribution of microplastics in the soil 
is crucial for assessing their potential impacts on soil health 
and the environment. Many studies have been conducted on 
the distribution of microplastics in the surface layer of the 

soil, with few investigations on their vertical or horizontal 
distribution. In one study, the authors focused on the distri-
bution of plastics in three agricultural environments (agri-
cultural land, orchard, and greenhouse) in the Loess Plateau 
(northern China) at depths of 0–10 cm (surface layer) and 
10–30, suggested that the concentration of microplastics in 
the deeper layers was higher than in the surface layer (Han 
et al. 2019). However, in the orchard and greenhouse soils, 
the opposite tendency was observed as the concentrations 
of microplastics in the surface layer were 320 ± 329 and 
100 ± 254 particles/kg, respectively, higher than those in the 
deeper layers, which indicates that the vertical distribution 
of microplastics varies with the cultivation method. Further-
more, agricultural activities, such as plowing, disturb both 
the topsoil and subsoil and organisms, such as earthworms 
and springtails, can transport microplastics (Kim and An 
2019; Rillig et al. 2017). In contrast, no substantial differ-
ences were detected in the horizontal distribution of micro-
plastics inside and outside polytunnel cultivation areas in 
Yongin, South Korea (Kim et al. 2021).

The fate of microplastics in soil environments and their 
interaction with organisms have also been investigated, with 
several possible scenarios identified (Ng et al. 2018). For 
instance, soil organisms and animals can ingest or propa-
gate microplastics present in the soil, and plants can absorb 
nanoscale microplastics (Bandmann et al. 2012; Ng et al. 
2018). Soil bacteria, earthworms, moles, and other under-
ground organisms can break down microplastics into smaller 
particles, accelerating their transport within the soil (Rillig 
2012). Soil disturbances, caused by plant roots, affect root 
movement and growth, and have a similar effect on the 
behavior of microplastics (Gabet et al. 2003). Further, the 
formation of large soil pores resulting from crop harvesting 
or plant root decomposition promotes the vertical movement 
of microplastics (Li et al. 2020).

Microplastics interact with metals, affecting their adsorp-
tion and distribution in the soil (Yu et al. 2021). Moreover, 
microplastics compete with soil organic matter for the adsorp-
tion of organic compounds and other substances (Ng et al. 
2021). Interactions between microplastics and other sub-
stances in the soil can, in turn, adversely affect nitrogen and 
organic carbon cycling, nutrient delivery, and soil microbial 
activity (Dong et al. 2021a, b; Liu et al. 2018; Qi et al. 2020). 
According to recent studies, microplastics affect soil–plant 

Table 3  Microplastic behavior in underground environments

Behavior type Features References

Surface migration Surface runoff enters the river during precipitation, which can be explained or 
predicted using theories related to soil erosion and sediment transport

Nizzetto et al. (2022)

Infiltration of unsaturated zone Studies of transport within unsaturated and saturated media based on the 
behavior of colloids or nanoparticles

Alimi et al. (2018), 
Hüffer et al. (2017)Transport within the saturated medium
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systems and are ingested by various organisms at different 
trophic levels, ultimately accumulating in organisms along 
the food chain (Chai et al. 2020). For instance, as the con-
centration of microplastics in the soil increases, the ingestion 
of microplastics by exposed earthworms also increases (Guo 
et al. 2020). Pollutants, such as the adsorbed high-molecular-
weight additives, accumulate in earthworms and can then 
be transferred to other organisms through the food chain (Li 
et al. 2020). Progressing through the food chain, microplastics 
from the soil could ultimately affect humans (De Falco et al. 
2019). Microplastics can also disrupt soil nutrient cycling, 
impacting soil microbial activity, composition, and species 
diversity (Mbachu et al. 2021b), which could adversely impact 
plants and animals, also threatening food security. Notably, 
long-term disruption of soil microbial species diversity could 
adversely affect forest soil microbial communities and con-
tribute to climate change (Ng et al. 2021).

2.2  Methods for soil microplastic analysis

2.2.1  Soil sample collection

Investigating environmental microplastics involves several 
stages, such as sampling, isolation, separation, identifica-
tion, and quantification (Mai et al. 2018). However, no inter-
nationally recognized testing standards have yet been estab-
lished for the investigation and analysis of microplastics in 
soil media, and the International Organization for Standardi-
zation (ISO) is working on standardizing test methods in this 
field (Jeong et al. 2018).

Although the soil sampling process is relatively simple, it 
can considerably impact the analysis results. This is because 
errors associated with soil sampling are generally larger than 
measurement errors in the analytical process. Therefore, soil 
sampling strategies must be carefully designed and consist-
ent. For example, ISO 18400-104:2018 can be referenced to 
establish a soil sampling strategy (International Organiza-
tion for Standardization 2018). Soil sampling for studying 
the distribution of soil microplastics requires a strategy for 
securing representative samples from the target site or area. 
Such a strategy must consider specific methods and criteria 
for selecting soil sampling points, sampling depth, and the 
number of samples collected at the target site or area. As the 
vertical or horizontal distribution of microplastics in the soil 
is not uniform, it is crucial to standardize sampling point 
selection with a consistent and comparable sampling depth 
to ensure the representativeness of the samples. The soil can 
be sampled using either grab sampling or composite sam-
pling methods. Composite sampling is used for collecting 
representative samples at the target site. It involves select-
ing 2–6 sub-sites within the target site and combining the 
soil collected at each sub-site into a single sample. In South 
Korea, domestic standards for soil contamination testing pro-
vide specific guidelines for the soil sampling methodology 
for specific target areas (National Institute of Environmental 
Research 2017). For the agricultural land, 5–10 sub-sites are 
designated in a zigzag pattern within the target area, and the 
samples are collected at each sub-site and then combined. 
For factory areas, landfill sites, urban areas, and other areas, 
five sub-sites must be sampled, i.e., one in the center of the 

Table 4  Impact of microplastics on soil properties

Category Microplastic Impact References

Physical properties Microplastics alter soil aggregation, bulk density, porosity, and water-holding 
capacity

Ng et al. (2021), Qi et al. (2020)

Microplastics cause soil bulk density decrease, which is closely related to soil 
erosion risk

Mbachu et al. (2021a, b)

Impact on soil aggregation depends on the microplastic type
Heteroaggregation, where plastic particles attach to the soil particle surface, 

can cause microplastic retention in porous media; homoaggregation of 
microplastics can lead to particle size increase, hindering their movement

Li et al. (2018), Lu et al. (2018)

The soil mobility of nanometer-sized microplastics is affected by soil 
aggregation

Chemical properties Microplastics are involved in the absorption of metals and their distribution 
within the soil

Yu et al. (2021)

Microplastics compete with soil organic matter for the adsorption of organic 
compounds and other substances in the soil

Ng et al. (2021)

Microplastics can negatively affect nitrogen and organic carbon cycling, 
nutrient delivery, and soil microbial activity

Dong et al. (2021a, b), Qi et al. (2020)

Biological properties Microplastics can affect the soil–plant system, bioaccumulate, and concentrate 
along the food chain

Mbachu et al. (2021a, b)

Microplastics can disrupt nutrient cycling, affecting the activity, composition, 
and diversity of soil microorganisms

Mbachu et al. (2021a, b)
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target area and one each 5–10 m from the center and in the 
four directions away from the center. The samples are then 
to be combined. When the distance between the points is 
insufficient because of the presence of facilities in the target 
area, appropriate changes are made to adjust this distance.

After collection, the samples are dried, sieved, divided 
into analytical samples, pretreated, and finally analyzed 
(Álvarez-Lopeztello et  al. 2021; Amrutha and Warrier 
2020; Harms et al. 2021). To ensure sample representative-
ness, sufficient sample mass should be obtained. Domestic 
standards for soil contamination testing recommend col-
lecting approximately 0.5 kg of soil per sampling point. As 
the representative sample is a combination of 5–10 sub-site 
samples, the final sample mass is in the range of 2.5 to 5 kg 
(National Institute of Environmental Research 2017).

Soil samples are collected at various depths depending on 
the purpose of the investigation. The sampling depth would 
ideally be determined considering the vertical distribution 
of microplastics in the soil. Hitherto, few studies have been 
published on the vertical distribution and behavior of micro-
plastics in the soil. Most studies focused on microplastics 
in the topsoil as the primary sources of soil microplastics 
are located above ground. Accordingly, a specific depth 
standard for the topsoil is critical, and the analytical out-
comes may vary depending on the definition of the surface 
layer depth. For example, when microplastics are distributed 
mainly within a few centimeters from the soil surface, com-
paring microplastic concentrations at 5 and 30 cm sampling 
depths would reveal a lower concentration at the latter depth. 
Standardizing the topsoil depth is crucial for ensuring the 
consistency of the results and for comparing and evaluating 
the distribution of microplastics. In South Korea, according 
to the soil contamination testing standards, the topsoil is 
defined as the soil layer 0–15 cm from the surface. Hitherto, 
the sampling depth, in studies on microplastic occurrence in 
the soil, has ranged from 2 to 30 cm from the soil surface, 
with the most common sampling depth of up to 5 cm from 
the surface (Table 2). On agricultural land, the upper soil 
layer is disturbed by periodic plowings, such as paddy plow-
ing and field plowing. During plowing, the soil is mixed to 
approximately 30 cm depth; hence, the soil sampled up to 
30 cm from the surface is relatively homogeneous. Conse-
quently, for ease of investigation, the depth of the topsoil 
layer in agricultural land, where periodic plowing is per-
formed, could be set at up to 30 cm from the surface.

2.2.2  Organic matter decomposition

Soil samples often contain considerable amounts of organic 
matter, such as tree branches and plant roots. The organic 
matter interferes with the analytical separation of plastics 
from the soil. Specifically, it is difficult to spectrally distin-
guish microplastics from organic matter, and this reduces 

detection accuracy. In Raman and infrared spectroscopy, 
the organic matter can potentially distort the readings by 
visually interfering with the analysis (Blasing and Amelung 
2018). Furthermore, it is difficult to optically distinguish 
microplastics from organic matter during analysis (Shaw 
and Day 1994). In addition, the densities of specific soil 
components (e.g., soil organic matter and organic fibers) and  
microplastics are similar, which can impact the accuracy of 
density separation (Zhang and Liu 2018). Hence, organic 
matter needs to be removed from soil samples before 
analysis.

The removal efficiency of organic matter by decomposing 
them can be improved by adjusting the reaction conditions, 
such as reagent concentration and reaction time and tem-
perature. However, this is associated with the risk of micro-
plastic degradation. Consequently, standardized pretreat-
ment methods should be used to minimize plastic damage 
(Löder et al. 2017). Currently, no unified standard methods 
for organic matter decomposition are available, and there is 
a lack of systematic studies comparing the efficiency of vari-
ous methods or providing established protocols and guide-
lines (Rocha-Santos and Duarte 2017). Below, we provide 
a brief critical overview of the currently available methods 
for organic matter decomposition.

Organic matter decomposition methods can be classi-
fied as acid-based, alkali-based, oxidizing agent-based, 
and enzymatic decomposition. Although various methods 
are available for decomposing organic matter, each has cer-
tain limitations, and more research is warranted to allow 
accurate separation of microplastics from soil samples. 
Table 5 summarizes the advantages and disadvantages of 
each method. Acid-based decomposition methods involve 
sulfuric acid, nitric acid, chlorous acid, and others (Munno 
et al. 2018; Scheurer and Bigalke 2018; Zou et al. 2019), 
with nitric acid being the most commonly used. Nitric acid-
mediated decomposition of organic matter is robust, with a 
relatively short reaction time, from a few minutes to a few 
hours (Claessens et al. 2013; Scheurer and Bigalke 2018). 
However, acid treatment decomposes some plastics, such as 
acrylonitrile butadiene styrene, PA, and polyethylene tereph-
thalate (PET) (Enders et al. 2017; Zou et al. 2019).

Alkali-based decomposition methods mostly involve 
sodium hydroxide and potassium hydroxide (Foekema 
et al. 2013). These methods effectively decompose animal 
tissues and soil humic acids (Dehaut et al. 2016; Prata et al. 
2019). However, they do not decompose humins (Hurley and 
Nizzetto 2018). In contrast, they decompose plastics, such 
as polycarbonate (PC), PET, and cellulose acetate. Conse-
quently, these methods are not recommended for research 
(Hamm et al. 2018; Karami et al. 2017).

Oxidizing agent-based methods are widely used as they 
do not alter microplastics (Han et al. 2020; Zhang et al. 
2020). Hydrogen peroxide  (H2O2) is the most commonly 
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used oxidizer (He et al. 2018; Kumar et al. 2020). It effec-
tively removes organic matter from various samples, such as 
soil (Wang et al. 2021), sludge (Li et al. 2018), water sam-
ples (Wang et al. 2017), and animal cells (Lv et al. 2019). 
However, the reaction time is long, over 24 h (Ding et al. 
2021; Liu et al. 2018). Further, partial decomposition of 
certain plastics (PA, PS, PET, PVC, PC, polyurethane, PP, 
and low-density polyethylene) can occur during the reaction, 
making it unsuitable for microplastic analysis (Hurley and 
Nizzetto 2018; Nuelle et al. 2014).

Fenton oxidation  [H2O2 + Fe(II)] reaction decomposes 
organic matter in the soil more effectively than  H2O2 (Möller 
et al. 2022; Prata et al. 2019), with a relatively short reac-
tion time (1 –2 h) (Hurley et al. 2018). However, the sample 
temperature rises as heat is released during the reaction, 
which could lead to the decomposition of microplastics in 
the sample. Accordingly, the reaction temperature needs to 
be maintained at 40 ℃ or less (Junhao et al. 2021). Further, 
the sample pH needs to be maintained at 3.0 or lower to 
suppress the generation of oxidized iron, which would fuel 
Fenton oxidation (Hurley et al. 2018).

Decomposition methods involving protease, pectinase, 
isozyme, cellulase, and other enzymes are popular 
(Cole et al. 2014) and have been used for organic matter 
decomposition in biological samples. According to recent 
studies, the organic matter reduction efficiency reaches 
approximately 90% when mixed enzymes are used (Löder 
et al. 2017; Mbachu et al. 2021b). However, the reaction 
times are long (at least 1 d) (Möller et al. 2022).

2.2.3  Density gradient separation

Density gradient separation is based on the density differ-
ence between microplastics present in a sample and other 
substances not removed by organic matter oxidation. High-
density sand particles settle at the bottom during separation, 
and the supernatant containing low-density microplastics is 
preserved for analysis. The separation efficiency is deter-
mined by the density difference between the separation solu-
tion and plastic, such that the bigger the density difference, 
the better the separation. As shown in Table 6, for plastics, 
such as PVC and PET, where the density difference between 
the separation solution and plastic is low, the separation effi-
ciency may vary (Junhao et al. 2021; Liu et al. 2019; Rug-
gero et al. 2020; Wang et al. 2018, 2020).

During density gradient separation, separation efficiency 
(recovery and reproducibility), cost, and hazards of the chem-
icals need to be considered (Yu et al. 2020). Till now, water, 
NaCl,  ZnCl2, NaI, and  ZnBr2 solutions have been mainly 
used in microplastic research. NaCl is widely used because 
of its low cost and non-toxicity (Corradini et al. 2019; Liu 
et al. 2018; Lv et al. 2019; Zhou et al. 2018). However, the 
recovery rate of small plastic particles (< 1 mm) may be as 
low as 40% because of the small density difference to general 
plastics (Li et al. 2018; Ruggero et al. 2020; Wang and Wang 
2018). The density of  Na2WO4, NaBr,  3Na2WO4·9WO3·H2O, 
and  Li2WO4 solutions can reach 1.3–1.6 g/cm3 and these 
high-density reagents have high plastic separation efficiency; 
however, they are more expensive than other solvents, which 

Table 5  Advantages and disadvantages of different methods for organic matter decomposition

PP Polypropylene, PE Polyethylene, PA Polyamide, PS Polystyrene, PMA Polymethyl acrylate, PU Polyurethane, PVC Polyvinyl chloride, PET 
Polyethylene terephthalate, PTFE Polytetrafluoroethylene, LDPE Polypropylene low density, ABS Acrylonitrile butadiene styrene, CA Cellulose 
Acetate

Category Method Advantages Disadvantages References

Acid-based HNO3 Most general, highest reactivity, 
shortest reaction time (minutes 
to hours)

Decomposes ABS, PA, PET Dehaut et al. (2016), Scheurer 
and Bigalke (2018)

Alkali-based NaOH
KOH

Decomposes animal tissues 
(mussel, crab, and fish tissues)

Decomposes soil humic acids

Decomposes PC, PET, CA
Does not decompose soil 

humins

Dehaut et al. (2016), Hurley 
et al. (2018), Blasing and 
Amelung (2018)

Oxidizing agent-based H2O2 Most used, effective in decom-
posing fish tissue

Long reaction time (> 24 h)
Short-term reduction in oxidiz-

ing power
Decomposes PA, PS, PET, PVC, 

PC, PUR, PP, and LDPE

Cole et al. (2014), Nuelle et al. 
(2014), Tagg et al. (2017), 
Jabeen et al. (2017), Hurley 
et al. (2018), Liu et al. (2018), 
Lusher et al. (2018), Munno 
et al. (2018)Fenton reaction Most effective for environmental 

sample treatment, short reac-
tion time (1–2 h)

Reduced reaction efficiency 
at > pH 3

Affects plastics at high reaction 
temperatures (> 70 °C)

Enzymatic Protease
Pectinase
Viscozyme
Cellulase

Low decomposition efficiency Long reaction time (days) Möller et al. (2022)
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increases the cost of testing (Eo et al. 2019; Liu et al. 2019). 
In contrast,  CaCl2 solutions are relatively inexpensive and 
can be used at a density of 1.3 g/cm3 to efficiently separate 
microplastics. However, in some cases,  CaCl2 interferes with 
Fourier-transform infrared spectroscopy (Stolte et al. 2015).

The most commonly used density gradient separation 
solutions for environmental sample pretreatment are 8 M 
 ZnCl2 (Nuelle et al. 2014) and 10 M NaI (Imhof et al. 2012), 
with densities of 1.6 and 1.8 g/cm3 and pH of 8.8 and 2.4, 
respectively. The  ZnCl2 solution with a density of 1.6 g/cm3 
can be used for most microplastic separations (Junhao et al. 
2021; Liu et al. 2019; Wang et al. 2020). At 1.8 g/cm3, the 
density of NaI solution is higher than that of other separat-
ing solutions, and it is often used for efficient microplastic 
separation (Junhao et al. 2021; Wang et al. 2020; Zhang and 
Liu 2018). However, both these solutions require caution 
during handling because of their toxicity.

3  Conclusions and perspectives

To date, research on microplastics in the soil environment 
has mainly focused on identifying their presence and levels. 
However, systematic studies are needed to understand the 
occurrence, distribution, and impact of microplastics specifi-
cally in the soil to allow their environmental management. It 
is necessary to understand the behavior and migration char-
acteristics of microplastics in soil environments, but some 
critical gaps remain. Improved models for the prediction of 
microplastic behavior should be developed. Currently, col-
loid behavior models are used, but they do not reflect the 

characteristics of microplastics, which limits their ability to 
explain microplastic behavior in the environment. Accordingly, 
the characteristics of microplastics and environmental factors 
(e.g., exposure time) should be investigated, technologies to 
detect and quantify microplastics in soil environments should 
be developed, and predictive models should be iteratively 
verified and improved. Ultimately, such efforts would enable 
accurate assessment and prediction of microplastic behavior. 
In addition, studies on the impact and risk associated with the 
presence of microplastics in the soil environment are needed. 
Research regarding the risks of the exposure of humans as well 
as ecosystems to microplastics is currently at the stage of col-
lection or confirmation of the evidence of toxicity. The specific 
toxicity mechanisms and impacts of microplastics on humans 
and ecosystems have not yet been elucidated, and research on 
the effects of microplastic contamination on ecosystems and 
human health is still in its infancy. Research on the risks of 
environmental exposure to microplastics needs to be conducted 
in stages, including the assessment of the effects of long-term 
exposure on the environment and humans in terms of toxicity.

The most urgent and essential issue for evaluating the 
status, exposure, and behavior of microplastics is the estab-
lishment of standardized testing and analysis techniques. 
Currently, no standardized testing and analysis protocols for 
microplastics in the soil are available. Similarly, the method-
ologies for sample collection, pretreatment, and instrument-
based analyses need to be standardized to allow for the gen-
eration of consistent and reliable data. This would increase 
the reliability of the studies conducted on microplastic expo-
sure and behavior, e.g., through comparative evaluations and 
verifications of research results, for a better understanding 
and management of microplastics.

In conclusion, as plastic production increases worldwide, 
the exposure to and accumulation of microplastics in the 
soil also increases, with potentially adverse implications for 
food security, human health, and climate change. A com-
prehensive strategy for rational delineation of microplastic 
behavior in the soil is needed, for example, as presented 
in this review, to counteract and control the environmental 
impact of microplastics.
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