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Abstract
Purpose This study aims to investigate the anti-erosion potential of taproots and fibrous roots with different diameters in 
alluvial loess under the concentrated flow.
Materials and methods A pot experiment was conducted in the greenhouse. Alluvial loess widely distributed in north China 
was used for plant growing. Two herbs, alfalfa (Medicago sativa) with taproots and tall festuca (Festuca arundinacea) with 
fibrous roots, were selected for single and mixed planting. Root configuration and soil detachment capacity (Dc) at different 
depths were measured, then the anti-erosion potential of taproots and fibrous roots with different diameters was analyzed.
Results and discussion Fibrous roots exhibited greater root length density (RLD) and fine root (0–1 mm) ratio at all depths, 
while taproots had larger mean diameter and root volume density (RVD). The Dc was reduced by 25.3–56.6% in the pres-
ence of roots compared to soil without roots, and the Dc of single fibrous roots treatment was significantly lower than that 
of single taproots and mixed roots. Whether in soil containing taproots or fibrous roots, Dc was only significantly negatively 
correlated with the density of very fine roots (< 0.5 mm). In fibrous roots, the direct path coefficient of very fine roots to Dc 
was significantly higher than that of roots at other diameter classes, while in taproots, the direct path coefficient of coarse 
roots (> 2 mm) to Dc was highest.
Conclusions Variations in root diameter (< 0.5, 0.5–1, 1–2, > 2 mm) distribution and root density are important factors 
contributing to differences in Dc at different depths. In alluvial loess with low clay and high silt content, the high density of 
very fine roots (< 0.5 mm) in fibrous roots is critical for demonstrating greater anti-erosion potential. The presence of more 
medium roots (1–2 mm) and coarse roots (> 2 mm) is the main reason for decreasing in the anti-erosion potential of taproots.

Keywords Alluvial loess · Pot experiment · Taproots · Fibrous roots · Root configuration · Soil detachment capacity

1 Introduction

Loess soil is one of the most erosion-prone soils in the world, 
so engineering constructions in loess regions not only have 
to ensure their structural stability but also face constant ero-
sion control challenges (Wen and Zhen 2020; Feng and Li 
2021). With the continuous development of China’s trans-
portation network, the conflict between highway construction 

and environmental protection is becoming more and more 
intense. The exposed slope left by highway construction in the 
loess region has caused serious soil erosion and environmental 
imbalance, which has gradually become a major obstacle to 
the stable operation of highways in the later stages (Tao et al. 
2023; Huang et al. 2018). Therefore, it is particularly vital to 
restore the natural environment, control soil losses, and avoid 
soil erosion disasters by soil bioengineering in loess regions 
(Giupponi et al. 2019; Bischetti et al. 2021).

Water erosion is the most widespread and damaging type 
of soil erosion in the world, with the main forms being rain-
drop splash erosion, sheet erosion, gully erosion, and scour-
ing erosion (Prats et al. 2019; Luo et al. 2018). Exposed 
loess slopes are more vulnerable to water erosion than ordi-
nary soil slopes, which exacerbates soil and water loss until 
serious soil erosion disasters such as collapse, landslide, 
and debris flow occur (Chen and Zhang 2022; Tao et al. 
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2023). Plantation protection measures are widely used in 
bare slope restoration projects by increasing slope vegetation 
cover, reducing external environmental erosivity, improving 
soil erosion resistance, and then delaying slope soil erosion 
(Zou et al. 2022; Yang et al. 2023). Herbaceous plants have 
rapid ecological regulation ability and extensive adaptability, 
which is not only considered an ecological answer to solving 
soil erosion problems but also the important and primary 
object of bare slope restoration (Reubens et al. 2007; Wang 
et al. 2022a).

Water erosion of soil is mainly caused by raindrop ero-
sion and surface runoff erosion. Vegetation has a significant 
effect in reducing these types of erosion. Beeson and Doyle 
found that the amount of soil erosion in the unvegetated 
riparian zone was 5 times greater than in the vegetated ripar-
ian zone (Beeson and Doyle 1995). The improvement of 
soil erosion resistance by vegetation can be divided into two 
aspects: the above-ground part and the underground root 
system (Li and Pan 2018). In the process of water erosion 
on slopes, the vegetation canopy is usually the first line of 
defense, reducing erosion by intercepting rainfall and resist-
ing the impact of rainwater (Liu et al. 2021a). Research on 
erosion resistance in different types of grasslands shows that 
the contribution of plant canopies to runoff reduction is as 
high as 48.8% (Li et al. 2022). The stem of plants and the 
litter layer formed on the soil surface can also significantly 
reduce soil water erosion. In the typical grassland of the 
Loess Plateau, plant stems and the litter layer reduced the 
soil detachment capacity (Dc) by 30.3% and 59% respec-
tively (Wang et al. 2014; Liu et al. 2020).

Research by Gyssels shows that the above-ground portion 
of vegetation is more effective in controlling soil splash and 
rill erosion, but is limited to the initial stage of slope erosion 
(Gyssels 2005). Conversely, the growth of underground plant 
roots plays a vital role in enhancing soil structure, physical 
and chemical properties, and microbial distribution, particu-
larly in mitigating flow erosion in the later stages of slope 
erosion (Stokes et al. 2014). The physical binding of roots 
and soil can greatly improve the anti-scourability of soil, 
and roots growth can also effectively promote soil particle 
aggregation by improving soil organic matter content and 
microorganisms, thereby improving soil structure and slow-
ing soil disintegration rate (Wang et al. 2020, 2018). Previ-
ous studies have shown that plant roots account for more 
than 50% of the total Dc reduction caused by subsurface 
soil properties, highlighting the need to consider the effects 
of roots in soil anti-erosion studies (Wang and Zhang 2017; 
Karimi et al. 2022).

The erosion-reducing effect of plant roots depends not 
only on the number of roots in the soil (such as root length, 
surface area, volume, etc.), but also on specific root char-
acteristics (such as root type, diameter, tensile strength, 

etc.) (Vannoppen et al. 2015; Baets et al. 2007; Liu et al. 
2022). A large number of studies have quantified the role 
of plant roots in reducing erosion. For concentrated flow 
erosion, root density (RD), root diameter (D), and root 
length density (RLD) are the most commonly used root 
characteristics to estimate the erosion reduction potential of 
plant species (Vannoppen et al. 2016; Baets et al. 2009). At 
the same time, a mathematical model between soil detach-
ment rate (SDR), root length density (RLD), and root mass 
density (RD) has been proposed to predict the ability of 
plant roots to reduce soil erosion (Vannoppen et al. 2017). 
Under the same root density, the fibrous root system often 
has a greater ability to reduce erosion than taproots. Finer 
and denser fibrous roots can better improve soil cohesion 
by virtue of higher root tensile strength and more root-soil 
contact (Zhang et al. 2014; Mao et al. 2012). Wang and 
Zhang also found that the Dc of taproot grassland was 3.2 
times higher than that of fibrous root grassland (Wang and 
Zhang 2017). Root diameter is an important index of root 
morphology. The main roots and higher lateral roots of 
herbaceous plants have larger root diameters, but this does 
not mean that they have higher erosion resistance potential. 
By contrast, the improvement of soil anti-scourability was 
positively correlated with the number of fine roots, and the 
length density of roots with < 2 mm diameter was the main 
factor in reducing soil scouring (Li et al. 1992; Hao et al. 
2020). At the same time, several studies found that coarse 
roots had a poor performance in improving soil erosion 
resistance, and there was a positive correlation between 
root diameter and Dc (Stokes et al. 2009; Reubens et al. 
2007; Burylo et al. 2012), which may mean that plants 
characterized by a high proportion of fine roots are the 
most suitable for reducing soil detachment.

Currently, most studies focus on the effects of soil physi-
cal and chemical properties on soil erosion resistance after 
root action (Guo et al. 2018; Wu et al. 2016). Considering 
the specificity of alluvial loess, there are few studies on the 
direct influence of different herbaceous root configurations 
on soil consolidation and erosion resistance. To solve this 
problem, two herbaceous plants (alfalfa and tall festuca) 
which are widely used in soil bioengineering (Bischetti et al. 
2014, 2021; Giupponi et al. 2019), representing taproots and 
fibrous roots respectively, were selected for a pot experiment 
to reduce the impact on the heterogeneity of soil properties 
and climatic parameters. Then the varying root configuration 
along depth and root anti-erosion potential was investigated 
in alluvial loess. The purpose of our study is to answer the 
following questions: (1) What is the spatial distribution of 
roots in soil? (2) What is the effect of the roots of the two 
herbaceous plants on Dc? (3) What are the differences in the 
effects of different root types and diameter classes on the 
anti-erosion ability of alluvial loess?
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2  Materials and methods

2.1  Experimental setup

The soil for the pot experiment was collected from 
the slope topsoil (5–30 cm) of the Taihang Mountains 
Expressway, Zhangjiakou Sect. (115.699°E, 40.840°N), 
as shown in Fig.  1c. The soil texture is silt loam 
composed of 72.62 ± 0.82% silt (0.002–0.05  mm), 
18.11 ± 0.52% sand (0.05–2  mm), and 9.27 ± 0.28% 
clay (< 0.002  mm). The soil organic matter content 
is 16.27 g   kg−1. After removing stones and roots, the 
soil was passed through a 2 mm sieve and dried in an 
oven (110 °C, 72 h) for the next experiment. The plants 
were grown in a greenhouse at Shijiazhuang Tiedao 
University, as shown in Fig. 1(d). In the greenhouse, the 
temperature is maintained at 25–32 °C during the day 
and 15–20 °C at night. The light is 16 h per day, the 
darkness is 8 h, and the air humidity is 75%.

PVC pipes (11 cm in diameter and 25 cm in height) were 
used as containers for plant growth. These PVC pipes were 
cut in half lengthwise and then held together with two rigid 
hoops. At the bottom of the container, a layer of sponge 
wrapped one end of the PVC pipe for water permeability, 
and a plastic plate was placed at the bottom of each container 
to hold water and indirectly irrigate the soil through the bot-
tom sponge. Alfalfa (taproots) and tall fescue (fibrous roots) 
are selected as plant research objects because these two 
types of plants have the characteristics of fast growth and 
strong stress resistance, which are widely used in ecologi-
cal restoration (Ai et al. 2020). Four different depth ranges 
(0–5, 5–10, 10–15, and 15–20 cm) were set to study the 
changes in root distribution and soil anti-erosion ability with 
depth. There were four treatments, including single alfalfa 

(SA), single tall fescue (ST), mixed two types of plants (M), 
and plant-free control treatment (CK). Each treatment was 
repeated 4 times, with a total of 16 pots.

Before sowing, the dried soil was filled into PVC pipes 
in four times, each filling 670 g. After each filling, the soil 
in pipes was gently shaken and compacted to control the 
height of each filling to 5 cm, and the dry bulk density of 
the soil was 1.4 g  cm−3 (He et al. 2022). After four fillings, 
a further 1 cm of soil was added as the sowing layer. The 
total weight of seeds in each treatment was 0.4 g, with the 
M treatment containing two kinds of seeds, each weighing 
0.2 g. One week after sowing, the emergence of seedlings 
was observed and the number of plants in each pot was con-
trolled at 15 plants, then plants were grown continuously for 
150 days. To prevent soil structure from being damaged by 
supplementary water, water was added to the bottom plate 
for irrigating indirectly in the first month, and each pot of 
plant was watered with 100 ml daily. In the future growth 
time, each pot of plant was watered 2–3 times a week for 
300 ml. Among them, 100 ml of water is directly irrigated 
through topsoil and 200 ml is indirectly irrigated through 
bottom plates.

2.2  Laboratory experiment

After the growth period, the above-ground part of the plants 
and a 1 cm layer of topsoil were carefully removed from 
containers. The rigid hoops surrounding the PVC pipes were 
opened, and the PVC pipes were subsequently removed to 
obtain the complete soil columns. Using a ring knife (inner 
diameter 9 cm, height 4 cm), a soil sample was taken every 
5 cm along the depth direction. Concentrated flow experi-
ments were first carried out on these soil samples and then 
the root parameters in the soil were determined.

Fig. 1  The area of Taihang Mountains in China (a, b) and the location of soil sampling (c) and greenhouse experiment sites (d)
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2.2.1  Concentrated flow erosion experiment

Concentrated flow erosion was tested in a hydraulic flume 
with 3 m long, 0.2 m wide, and 0.2 m deep (Fig. 2). There 
is a steady flow tank on the top of the flume and a circular 
sample room (0.09 m diameter, 0.04 m deep) at a distance of 
0.2 m from the bottom of the flume. The inclination angle of 
the flume is 15°. The water pump pumps the water from the 
circular water tank into the steady flow tank at a flow rate 
of 4.8 L  min−1, allowing the water to flow out evenly from 
one side of the steady flow tank.

After sampling, two permeable stones were placed at the 
bottom and the top of the soil sample respectively, and then 
they were put into a water tank where the water level does 
not exceed the permeable stone at the sample bottom. The 
water was poured continuously on the top permeable stone 
until those samples to be tested are fully saturated, and then 
samples were removed from the water tank and placed for 8 h 
to remove gravity water. Before the scouring test, the soil sam-
ple was placed in the sample room, and the gap between the 
soil sample and the flume was filled with glass glue to reduce 
the marginal effect. During the scouring test, plastic buckets 
were used to collect water scouring soil samples. The scouring 
number is 6 times and the single scouring time is 40 s. After 
the scouring test, all collected water samples were left to stand 
for 5 h, then the supernatant was poured out, and the remaining 
water was filtered with filter paper. The filtered sample was 
dried in an oven at 105 °C for 24 h, and the dry weight of the 

scoured soil was calculated. Soil detachment capacity (Dc) is 
used to reflect the anti-scouring performance of the soil, and 
the calculation formula is:

where Mc (g) is the drying weight of sediment; A  (cm2) is 
the cross-sectional area of soil core; t (s) is the duration of 
erosion.

2.2.2  Root parameter

After scouring, the remaining soil sample containing roots was 
collected and put on a 0.25 mm sieve to separate the roots from 
the soil by washing, then the roots in scouring water were 
also separated by sieve. These roots were carefully collected 
from the sieve with tweezers, and then cleaned again with a 
detergent solution to remove the fine soil particles as much 
as possible. After cleaning, the root system was placed into a 
transparent petri dish (add clean water) to take pictures with a 
camera. The mean diameter (D), root length, root surface area, 
and root volume of the root system were analyzed by Rhizo 
Vision Explorer software (Rose et al. 2019). Root parameters, 
root length density (RLD), root surface density (RSAD), and 
root volume density (RVD) were calculated using Eqs. (2)–(4).

(1)D
c
=

M
c

At

(2)RLD =

RL

V

Fig. 2  The experimental flume used to measure the soil detachment capacity. 1, water tank and bump; 2, Steady flow tank; 3, Scoured flume; 4, 
Sample room



851Journal of Soils and Sediments (2024) 24:847–862 

1 3

where RL (cm) is the total root length in the sample; RSA 
 (cm2) is the total root surface area in the sample; RV  (cm3) 
is the total root volume in the sample; and V  (cm3) is the 
sampler volume.

2.3  Statistical analysis

Least-Significant Difference (LSD) tests were performed 
(P < 0.05) to analyze the difference of root density (RLD, 
RSAD, RVD, and D) in different treatments and soil depths. 
Pearson correlation analysis was applied to assess the rela-
tionships between root parameters and Dc. Regression analy-
sis was performed to establish the correlations between Dc 
and root parameters (RLD, RSAD, RVD, and D). Path analy-
sis was used to determine the importance of root parameters 
at different diameter classes on Dc. All analyses were per-
formed using SPSS 26.0 software and Origin 2021 software.

3  Results

3.1  Plants root configuration and vertical distribution

In Table 1, the RLD of ST treatment was significantly higher 
than that of SA and M at almost every depth (P < 0.05, Except 
for 5–10 cm of M), but the RVD and D of ST were lower 
than that of SA and M, especially in the depth of 0–10 cm. 

(3)RSAD =

RSA

V

(4)RVD =

RV

V

With increasing soil depth, the RLD of single planting treat-
ments (ST, SA) first decreased and then increased, and the 
greater root length density appeared in the surface layer 
(0–5 cm) and bottom layer (15–20 cm). The RLD of M treat-
ment initially increased and then decreased with depth, and 
the RLD at 0–10 cm depth was higher than that at 10–20 cm 
depth. RSAD, RVD, and D of the three root treatments 
decreased with soil depth, and these root parameters in sur-
face soil (0–5 cm) were significantly higher than in deeper soil 
(10–20 cm). In 0–10 cm depth, the order of D is SA > M > ST, 
but in 10–20 cm depth, the order of D is M > SA > ST.

The distribution of root length, surface area, and vol-
ume at different diameter classes in soil containing roots 
is presented in Fig. 3. The length proportion of very fine 
roots (< 0.5 mm) was highest in the three treatments. In 
ST treatment, the length proportion of very fine roots is 
70.71–87.59%, while in SA and M, the length proportion of 
very fine roots is 53.4–78.19%. With increasing soil depth, 
the length ratio of very fine roots gradually increased in SA 
and ST, while decreased first and then increased in M. In 
each treatment, the length ratio of fine roots (0.5–1 mm) 
is 12.31–37.90%. The total proportion of medium roots 
(1–2 mm) and coarse roots (> 2 mm) was less than 10% 
and gradually decreased with soil depth in all treatments. 
In the SA and M treatments, the coarse roots only appeared 
at 0–10 cm depth, and ST had no coarse roots in all depths. 
Compared to the root length proportion, the surface area and 
volume proportion of very fine roots are lower, while the 
situation of fine roots, medium roots, and coarse roots was 
just the opposite. In the 0–5 cm depth of SA, 53.4% of very 
fine root length brought 29.34% of surface area and 11.76% 
of volume, but 2.88% of coarse root length brought 11.31% 
of surface area and 29.58% of volume.

Table 1  Total root parameters 
at different depths of each 
treatment

Different lowercase letters indicates significant differences at P < 0.05 between different depths. Different 
capital letter indicates significant differences at P < 0.05 between different treatment
RLD Root length density, RSAD Root surface area density, RVD Root volume density, D Average diameter

Treatment Soil depth
(cm)

Total root parameters

RLD (mm  cm−3) RSAD  (mm2  cm−3) RVD  (mm3  cm−3) D (mm)

ST 0–5 104.88 ± 8.44abA 148.90 ± 21.61aA 21.59 ± 4.55aB 0.47 ± 0.04aB
5–10 89.78 ± 8.52bA 119.70 ± 14.74abAB 15.94 ± 2.57abB 0.45 ± 0.02aB

10–15 101.77 ± 15.20abA 115.15 ± 23.57abA 10.93 ± 2.91bA 0.34 ± 0.02bB
15–20 112.22 ± 12.02aA 107.25 ± 15.21bA 9.49 ± 1.97bA 0.30 ± 0.02bB

SA 0–5 70.75 ± 5.42abB 137.56 ± 4.14aA 30.59 ± 6.38aAB 0.67 ± 0.08aA
5–10 61.73 ± 7.85bB 110.17 ± 16.41abB 21.49 ± 5.10aAB 0.61 ± 0.04aA

10–15 66.22 ± 5.34bB 94.48 ± 5.81bA 12.78 ± 2.94bA 0.47 ± 0.07bA
15–20 79.13 ± 6.55aB 92.23 ± 1.39bA 9.70 ± 1.32bA 0.37 ± 0.04bA

M 0–5 80.73 ± 8.63abB 159.23 ± 17.64aA 35.75 ± 6.06aA 0.63 ± 0.07aA
5–10 87.18 ± 7.34aA 145.42 ± 13.61aA 26.67 ± 4.87aA 0.54 ± 0.05aA

10–15 70.31 ± 6.35bB 107.23 ± 9.76bA 15.62 ± 2.74bA 0.48 ± 0.03abA
15–20 76.32 ± 8.94abB 99.83 ± 18.87bA 12.00 ± 1.89bA 0.40 ± 0.04bA
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3.2  Soil detachment capacity under concentrated flow

The cumulative soil erosion at different depths is shown in 
Fig. 4. The cumulative erosion of soil without roots was sig-
nificantly higher than that of soil containing roots (P < 0.05), 
in which the total scouring sediment of plain soil at each 
depth was in the range of 45.07–47.94 g, while that of root-
containing soil was 21.66–33.79 g. Soil erosion of ST treat-
ment was significantly lower than that of SA and M treat-
ments (P < 0.05). Compared to CK treatment, the cumulative 
erosion reduction rate of ST was 48.79–51.94%, while that 
of SA and M was 25.28–38.78% and 31.27–36.12%, respec-
tively. At the same time, the cumulative erosion reduction 
ratio of root-containing soil increased with soil depth. In 
the range of 0–5 cm depth, the cumulative erosion curve of 
M treatment is between SA and ST, while in the range of 
10–20 cm, the cumulative erosion curve of M is higher than 
that of SA and ST.

Figure 5 shows the single erosion quantity of each treat-
ment at different depths. The first erosion quantity of each 
treatment approximately accounted for 30% of the cumulative 
soil erosion, among which the first erosion quantity of CK 
at different depths was in the range of 12.61–16.33 g, while 
those of ST, SA, and M were 6.17–7.09 g, 7.66–10.31 g, 

and 8.43–10.07 g, respectively. With the increase of scour-
ing times, single soil erosion of each treatment gradually 
decreases. The single erosion curves in 0–10 cm depth for 
each treatment were generally higher than those in 10–20 cm 
depth. In addition, the difference between the single erosion 
curves of different soil layers in ST and M was small, while 
in the CK and SA treatment, the curves between different 
depth ranges varied more.

3.3  Soil detachment capacity and total root parameters

Changes in initial soil detachment capacity  (Dc1) and total 
soil detachment capacity  (Dct) with depth are shown in Fig. 6. 
Planting significantly (P < 0.05) reduced  Dc1 and  Dct. At dif-
ferent depths, the range of  Dc1 in plain soil is 49.55–64.17 g 
 m2  s−1, and that of  Dct is 29.52–31.40 g  m2  s−1. The range of 
 Dc1 in soil containing roots was 24.26–40.59 g  m2  s−1, and 
that of  Dct was 14.19–22.13 g  m2  s−1. The  Dc1 and  Dct of ST 
were significantly lower than those of SA and M at all depths 
(P < 0.05). At 0–5 cm depth, SA treatment had higher  Dc1 and 
 Dct than M, while at 10–20 cm depth, M had higher  Dc1 and 
 Dct. With increasing soil depth, the Dc  (Dc1,  Dct) of ST, M, 
and CK first increased and then decreased, while that of SA 
decreased gradually.

Fig. 3  Root length, surface area, and volume distribution of different diameter classes. The circular plot shows the root diameter distribution 
within soil depths of 0–5 cm, 5–10 cm, 10–15 cm, and 15–20 cm from the outside to the inside, respectively
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The fitting relationships between soil detachment capac-
ity  (Dc1,  Dct) and total root parameters (RLD, RSAD, RVD, 
D) are shown in Fig. 7. Whether in the taproots or fibrous 
roots, there was a linear decrease relationship between RLD 
and Dc in Fig. 5(a) and (e). Among them, the RLD of ST 
(fibrous root) had a good fitting relationship with  Dc1 and 
 Dct, and the goodness of fit was 0.7128 and 0.8623 respec-
tively. In Fig. 7(b), (c), (f), and (g), the RSAD and RVD of 
fibrous roots have a poor fitting relationship with  Dc1 and 
 Dct, but both RSAD and RVD of taproots have a good linear 
growth relationship with  Dc1 and  Dct, and these goodness 
of fit were 0.7031, 0.6064, 0.8186, and 0.7706. The mean 
diameter (D) increases linearly with  Dc1 but has a poor fit-
ting relationship with  Dct in fibrous roots. In addition, the 
mean diameter showed a good linear growth relationship 
with  Dc1 and  Dct in taproots.

3.4  Effects of taproots and fibrous roots in different 
diameters on soil detachment capacity

The correlation analysis between root parameters at dif-
ferent diameter classes and soil detachment capacity  (Dc1, 
 Dct) is shown in Fig. 8. The results showed that no mat-
ter in the fibrous root or taproots, densities of fine roots 
(0.5–1 mm), medium roots (1–2 mm), and coarse roots 
(> 2 mm) were positively correlated with each other, but 
very fine root (< 0.5 mm) density was negatively cor-
related with them. The very fine root density  (RLD<0.5, 
 RSAD<0.5, and  RVD<0.5) was negatively correlated with 
 Dc1 and  Dct, and the correlation of fibrous roots was 
stronger than taproots. In fibrous roots, the density of 
fine and medium roots was positively correlated with 
 Dc1 and had no significant correlation with  Dct, while 
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in taproots, densities of fine roots, medium roots, and 
coarse roots were positively correlated with  Dc1 and  Dct. 
Due to the correlation analysis can only determine the 

relationship between root parameters and Dc, it is neces-
sary to use path analysis to study the main factors affect-
ing soil erosion.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

S
in

g
le

 s
o
il

 e
ro

si
o
n
 (

g
)

Scouring frequency (Times)

(a)
0-5cm

5-10cm

10-15cm

15-20cm

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

S
in

g
le

 s
o
il

 e
ro

si
o
n
 (

g
)

Scouring frequency (Times)

(b)
0-5cm

5-10cm

10-15cm

15-20cm

0

2

4

6

8

10

12

1 2 3 4 5 6

S
in

g
le

 s
o
il

 e
ro

si
o
n
 (

g
)

Scouring frequency (Times)

(c)
0-5cm

5-10cm

10-15cm

15-20cm

0

2

4

6

8

10

12

1 2 3 4 5 6

S
in

g
le

 s
o
il

 e
ro

si
o
n
 (

g
)

Scouring frequency (Times)

(d)
0-5cm

5-10cm

10-15cm

15-20cm

Fig. 5  The single soil erosion at different depths. Figures (a), (b), (c), and (d) show the changes in single erosion amount of CK, ST, SA, and M 
treatments, respectively

Fig. 6  Soil detachment capacity  (Dc1,  Dct) of each treatment at different depths
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In our study, there was an extreme correlation among 
RLD, RSAD, and RVD at the same diameter class, so path 
analyses of RLD, RSAD, and RVD in different diameters 
were carried out separately. First of all, the normality test of 
 Dc1 and  Dct was conducted. For the small sample of n = 12, 
the Shapiro–Wilk Test method was used. The result shows 
that  Dc1 and  Dct obey normal distribution and can be ana-
lyzed by regression. These results of normality tests can be 
referred to in the supplementary Fig. 1(a)–(d). The direct 

and indirect effects of root parameters in different diameters 
on soil detachment capacity  (Dc1,  Dct) are shown in Fig. 9, 
Tables 2 and 3. Some path analysis results of RSAD and 
RVD can be referred to in the Supplementary Tables 1–4.

In fibrous roots,  RLD<0.5 is the leading factor to explain 
the changes of  Dc1 and  Dct, and the direct path coefficient is 
-0.989 and -1.132. In addition, the indirect path coefficients 
of  RLD<0.5 passing through  RLD0.5–1 and  RLD1-2 to  Dc1 and 
 Dct are also larger (Table 2). In Fig. 9a and b, RVD and RSAD 
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of fine roots (0.5–1 mm) have a higher -direct path coeffi-
cient for  Dc1 than RLD, and RLD of medium roots (1–2 mm) 
have a higher direct path coefficient for  Dct than RVD and 
RSAD. The residual path coefficients of RLD in different 

diameters to  Dc1 and  Dct were 0.277 and 0.316 respectively, 
while those of RSAD and RVD were 0.490, 0.341, and 0.581, 
0.528. This shows that different diameter classes of RLD can 
explain more changes in Dc.
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Fig. 9  Path analysis diagram of influencing factors of soil detachment capacity  (Dc1,  Dct)

Table 2  The path analysis of 
RLD at different classes and Dc 
in fibrous roots

Dct total soil detachment capacity, Dc1 initial soil detachment capacity, X1 root length density of < 0.5 mm 
 (RLD<0.5), X2 root length density of 0.5-1 mm  (RLD0.5–1), X3 root length density of 1-2 mm  (RLD1-2)

Independent 
variable

Direct path 
coefficient

Indirect path coefficient

Dct Dc1 X1-Dct X2-Dct X3-Dct X1-Dc1 X2-Dc1 X3-Dc1

X1 -1.132 -0.989 - -0.642 -0.572 - -0.561 -0.499
X2 0.153 0.086 -0.087 - 0.113 -0.049 - 0.063
X3 0.415 0.166 -0.210 0.306 - -0.084 0.123 -
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In taproots, the density of coarse roots (> 2 mm) was the 
main factor to explain changes in Dc (Table 3). The direct 
path coefficient of very fine roots density to  Dc1 is the sec-
ond after coarse roots density in RLD, but for  Dct, medium 
roots have a higher direct path coefficient than very fine 
roots in RSAD and RVD (Fig. 9c and d). The residual path 
coefficient of taproots configuration parameters for  Dc1 is 
lower than that for  Dct, and residual path coefficients of 
RLD, RSAD, and RVD on Dc  (Dc1,  Dct) are similar in the 
taproots system, while in the fibrous root system, the resid-
ual path coefficient of RLD on Dc is obviously smaller than 
RVD and RSAD, especially for  Dc1.

4  Discussion

In the soil, the plant roots of developed from main roots 
or superior lateral roots tend to be thicker, which play the 
role of skeleton and support (Stokes et al. 2009). The fine 
roots of plants are usually lateral and fibrous roots that cross 
each other and extend in all directions, and fine roots have 
the basic physiological function of being able to absorb and 
transport more nutrients and water from the soil, which is 
closely related to the physical and chemical properties of the 
soil (Yang et al. 2014). Therefore, the configuration and dis-
tribution of roots can reflect the ability of plants to utilize soil  
resources to some extent (Guerrero-Campo et al. 2006). Based 
on these characteristics, plant roots of different species and diam-
eters play various roles and importance in the soil ecosystem.

The root morphological differences among different spe-
cies are mainly reflected in the topsoil because more than 
70% of the root parameters are distributed in the upper soil 
with 0–20 cm (Ye et al. 2017), so we investigated the verti-
cal distribution characteristics of root systems in the range of 
surface 20 cm depth for taproots and fibrous roots. In the wild 
environment, the roots of herbaceous plants are mainly com-
posed of roots with a diameter lower than 2 mm (Chimento 
and Amaducci 2015). He et al. also found that the fibrous 
root length with < 0.5 mm diameter accounted for the vast 
majority, and the root content of > 1 mm diameter class was 
smaller (He et al. 2022). This is in agreement with our research 

results. Among the three planting treatments in this study, the 
length proportion of very fine root (< 0.5 mm) was the larg-
est, in the range of 53.4% to 87.59%, followed by fine root 
(0.5–1 mm), accounting for 12.31–37.9%, and the root length 
density with > 1 mm diameter only accounted for 3.22–9.54%. 
In our study, taproots and fibrous roots exhibited significant 
differences when root density (RLD, RSAD, RVD) was used to 
quantify root distribution. Fibrous roots had higher RLD, while 
the average diameter of taproots was significantly (P < 0.05) 
higher than that of fibrous roots. Although the RLD of taproots 
was smaller, a higher root diameter brought more RSAD and 
RVD (Wang et al. 2023). Under the same growth conditions, 
these differences in root distribution may be affected by their 
own physiological characteristics, nutrient acquisition, and 
competition (Deljouei et al. 2022).

The differentiation of plant roots is often adapted to 
their growth needs to survive in adversity and disturbance 
(Klimešová and Herben 2021; Tao et al. 2021; Pang et al. 
2022). For example, differences in root types will affect the 
extension of roots in the soil. Taproots tend to have stronger 
soil penetration than fibrous roots, and thick RD is generally 
considered to be the primary advantage of taproots over fibrous 
roots in penetrating hard soil (He et al. 2022). To ensure that 
the soil density is roughly the same, our soil is compacted 
before sowing. Taproots with strong penetrating ability can 
reach the deep soil earlier, and root networks can be estab-
lished quickly in the deeper soil. Therefore, in the early stage 
of root underground competition, the growth space of fibrous 
roots in soil may be reduced (Cramer et al. 2012). We found 
that the distribution of very fine roots in M treatment was close 
to that of ST in the depth of 0–10 cm, while in the depth of 
10–20 cm, the root distribution of M treatment was similar to 
that of SA. This could mean that alfalfa roots (taproots), as a 
dominant competitive species, restrict the growth and devel-
opment of tall fescue (fibrous root) to deeper soil. Under the 
premise of controlling access to water and nutrients, dominant 
species usually adopt more active foraging strategies, which 
increase their root length, root surface area, or root volume, 
and increase the contact area between roots and soil to obtain 
more soil nutrient resources (Li et al. 2014; Hodge 2006). 
While the growth of fibrous roots in deep soil is limited, the 

Table 3  The path analysis of 
RLD at different classes and Dc 
in taproots

Dct total soil detachment capacity, Dc1 initial soil detachment capacity, X2 root length density of 0.5-1 mm 
 (RLD0.5–1), X3 root length density of 1-2 mm  (RLD1-2), X4 root length density of > 2 mm  (RLD>2)

Independent  
variable

Direct path 
coefficient

Indirect path coefficient

Dct Dc1 X1-Dct X2-Dct X3-Dct X4-Dct X1-Dc1 X2-Dc1 X3-Dc1 X4-Dc1

X1 -0.352 -0.406 - -0.219 -0.247 -0.120 - -0.253 -0.285 -0.138
X2 0.135 0.199 -0.084 - 0.028 0.034 -0.124 - 0.042 0.050
X3 0.300 -0.030 -0.211 0.063 - 0.157 -0.021 0.006 - 0.016
X4 0.438 -0.652 -0.149 0.110 0.229 - -0.222 0.164 0.340 -
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difference in root distribution caused by taproots intraspecific 
competition may also appear. Previous studies have shown 
that herbaceous plants tend to have lower root length, surface 
area, and diameter under high-density conditions (Sun et al. 
2018). In our study, the plant density of the dominant competi-
tor (alfalfa) in M was half of that in SA treatment. In the depth 
range of 10–20 cm, the M treatment which should have more 
fine roots showed a higher average diameter than SA.

Due to the boundary effect caused by the culture con-
tainer, the vertical distribution of roots may be different from 
the real situation in the field (Tian et al. 2017). Previous 
studies have shown that plant roots under field conditions are 
often concentrated in the topsoil, and the total root density 
decreased with depth (Ye et al. 2017; Zhong et al. 2018; 
Yang et al. 2022). In this study, a large number of roots 
grow in the gap between culture containers (PVC pipes) and 
soil, which means that the lateral growth of roots is limited. 
Under the guidance of foraging strategies, there is no doubt 
that the roots will more grow into the soil where water and 
nutrients may appear (Wang et al. 2022b). Because the water 
supply in our experiment comes from trays at the bottom of 
culture containers, this may cause the root system to grow 
more and extend to the deep soil layer, and this increase in 
foraging size may be the main reason for the high total root 
density in the lower soil (10–20 cm).

soil bioengineering technique is an effective way to 
reduce soil erosion, in which root reinforcement is consid-
ered to be the main source of soil erosion protection (Lou 
et al. 2022). Compared to shrubs and trees, herbaceous 
plants and their roots are often the first to protect the soil 
and lay the foundation for other plants growing because of 
their rapid growth and adaptability, so herbs are widely used 
in the restoration and protection of bare soil (Gao et al. 2022; 
Zanchi et al. 2022; Gomes et al. 2020). Rill erodibility (Kr) 
can better reflect the change of soil erosion resistance, in 
which the effect of herbaceous plants is more significant. 
Compared with the control field, the average Kr of herba-
ceous vegetation restoration soil decreased by 72% to 96% 
(Zhang et al. 2019). In addition, when considering the under-
ground part of the plant alone, the reduction rate of herba-
ceous plant root exfoliation to soil was more than 40% (Jiang 
et al. 2020). In our study, the soil detachment capacity (Dc) 
of root-containing treatment decreased by 25.3–56.6% com-
pared to treatment without roots, which further demonstrated 
the anti-erosion potential of herbaceous plant roots.

The temporal and spatial differences in rooted soil detach-
ment capacity are partly caused by changes in soil phys-
icochemical properties under the influence of plant roots 
(Li et al. 2015; Jiang et al. 2020). Roots can connect soil 
particles by interlacing, inserting, binding, and squeezing, 
and then improving the soil structure and strengthening the 
soil (Reubens et al. 2007; Li et al. 2017). In addition, root 
exudates and litter can continuously transport organic matter 

to the soil (Shahzad et al. 2015). These organic matter and 
its decomposition products can act as colloids between soil 
aggregates, thereby improving aggregate stability and soil 
cohesion, and improving soil erosion resistance (Wang et al. 
2014; Baets et al. 2008; Zhang et al. 2019). Due to the differ-
ent functional positioning of fine and coarse roots in the soil, 
their abilities to control soil erosion are different (Stokes 
et al. 2009; Geng and Jin 2022). In soil, coarse roots are an 
important root structure and the main water transport chan-
nel, therefore the extension direction of coarse roots during 
growth is mostly downward (Baets et al. 2007). However, 
fine roots need to absorb more nutrients from the soil and 
diverge in various directions during growth, making it easier 
to form anchoring relationships in shallow soil and protect 
the surface soil (Yang et al. 2014; Reubens et al. 2007). Finer 
and denser fibrous roots can also reduce the large pore space 
used for water movement, while the high porosity brought 
by coarse roots promotes water movement toward deeper 
soil, which may accelerate soil erosion (Lu et al. 2020). At 
present, fine roots have been proven to be a key factor in 
changing soil erosion resistance characteristics, the influ-
ence of roots in controlling soil detachment capacity largely 
depends on the number of fine roots and their distribution 
in soil (Hao et al. 2020).

Previous studies also proved that the soil erosion resistance 
of plant roots became stronger with the increase of RLD (Fu  
et al. 2022). In our study, the minimum detachment capacity 
of root-containing soil appeared in depth with higher RLD. 
Compared with RSAD and RVD, RLD in planting treatment 
could better reflect the change of Dc. Whether the initial soil 
detachment capacity  (Dc1) or the total soil detachment capac-
ity  (Dct), the residual path coefficient after the influence of 
each diameter class RLD was relatively small. Compared to 
fibrous roots, the residual path coefficient of taproots density 
to Dc is smaller, and the density of medium root and coarse 
root has higher relative importance. However, the effect of 
these thicker roots and fine roots on Dc seems to be different. 
Due to the interspersed growth of roots in the soil, thicker  
roots will destroy the original structure of the soil to some 
extent. Many studies have found that the ability of roots to 
reduce soil detachment decreased with the increase in root 
diameter (Baets et al. 2007; Parhizkar et al. 2021). Burylo et al. 
found that soil detachment rate (SDR) was negatively corre-
lated with the percentage of fine roots (< 0.5 mm) (Burylo  
et al. 2012). This is consistent with our results.

Compared with taproots, fibrous roots formed a complex 
fine root network through their strong root tillering ability and 
showed stronger soil and water conservation ability (Zhao 
et al. 2023). We also found that the Dc of single fibrous roots 
treatment was significantly lower than that of single taproots 
and mixed roots at each depth, which was undoubtedly caused 
by the difference in root type and configuration. The main 
root even aggravates soil erosion because the soil around the 
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exposed thick root is washed away more under the action of 
turbulence and vortex flow erosion (Baets et al. 2007). In our 
experiment process, we did find that there were more exposed 
roots in the soil samples with taproots. Most of these roots are 
coarse roots (> 2 mm) and the surrounding soil is looser. In 
addition, the rapid soil detachment caused by exposed roots 
may aggravate the marginal effect between soil samples and 
flume, thus increasing the soil detachment rate under the influ-
ence of local turbulence (Wang et al. 2019).

Altogether, the erosion intensity of soil decreased with 
the increase of soil cohesion. Previous researches have found 
that fibrous roots are usually more effective than taproots in 
controlling soil loss, especially in non-clay (Vannoppen et al. 
2017, 2015). The growth and development of fibrous roots 
have been proven to be more effective in increasing soil cohe-
sion, even a small amount of fibrous roots would increase soil 
cohesion to a certain extent (Zhong et al. 2016). Therefore, 
fibrous roots in low cohesion soils tend to have better ero-
sion resistance performance. Loess is easily eroded due to its 
texture and structure. Although loess has high cohesion and 
stability at low water content, its cohesion will dissipate rap-
idly with the increase of water content, and it is unrealistic to 
maintain low water content under the action of water erosion 
(Liu et al. 2021b). Therefore, in the alluvial loess with low 
clay content, the anti-erosion effect of fibrous roots may be 
magnified. As an important difference index of root configura-
tion, root diameter may explain the difference in anti-erosion 
potential of straight and whisker roots to some extent. In the 
alluvial loess of our study, the erosion resistance potential of 
very fine roots (< 0.5 mm) is significantly higher than that 
of roots in other diameters because only the density of very 
fine roots is negatively correlated with Dc, but these results 
do not mean that the coarse root has completely lost its anti-
erosion potential. Coarser roots are more effective in soil with 
low sand content (Vannoppen et al. 2017). At the same time, 
affected by the morphological characteristics of taproots, the 
soil protection effect through coarse root anchorage in large-
scale soil may be higher than in the local shallow soil (Stokes 
et al. 2009). But it is undeniable that in alluvial loess, fibrous 
roots show more strength in the process of controlling con-
centrated flow erosion by virtue of high-density fine roots. 
Meanwhile, with the growth and development of plant roots, 
the anti-erosion contribution of coarser taproots was gradu-
ally covered by high-density fibrous roots and even showed a 
negative contribution.

5  Conclusions

Pot experimental observations demonstrated that in the tap-
root and fibrous root, the length of very fine roots (< 0.5 mm) 
accounted for the largest proportion (53.4–87.59%), espe-
cially in the fibrous root system of deeper soil (10–20 cm). 

The length of > 1 mm roots accounted for less than 10% 
and more occurs in taproot systems of shallow soil. Both 
taproots and fibrous roots can effectively reduce the con-
centrated flow erosion of alluvial loess, with a reduced rate 
of 25.3% and 56.6%. Among them, fibrous roots have a 
greater potential for reducing soil detachment. The distri-
bution of finer roots is an important factor affecting the anti-
erosion potential. Only very fine roots (< 0.5 mm) density 
was significantly negatively correlated with soil detachment 
capacity (Dc), and coarser roots are not even conducive to 
resistance to soil erosion. Whether taproots or fibrous roots, 
RLD in different diameters could explain the majority of the 
changes in Dc, while RSAD and RVD of fibrous roots had 
a relatively low explanation extent. According to our novel 
findings, in alluvial loess with low clay and high silt content, 
the erosion resistance potential of very fine roots in fibrous 
roots is much greater than that of other diameter roots, which 
is similar to the results in sandy soil with low cohesion. 
The density of coarse roots (> 2 mm) in taproots also has 
a greater effect on Dc, but this effect is more disadvanta-
geous. In locally shallow soil, the anti-erosion potential of 
coarser roots is masked by finer roots. Therefore, in alluvial 
loess areas, the soil bioengineering dominated by fibrous 
root plants has more advantages in controlling soil erosion.
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